Highâ€Performance Electrochemical NO Reduction inte MoS₂ Nanosheet

Angewandte Chemie - International Edition 60, 25263-25268 DOI: 10.1002/anie.202110879

Citation Report

#	Article	IF	CITATIONS
1	High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni ₂ P nanoarray under ambient conditions. Journal of Materials Chemistry A, 2021, 9, 24268-24275.	5.2	68
2	MnO2 nanoarray with oxygen vacancies: An efficient catalyst for NO electroreduction to NH3 at ambient conditions. Materials Today Physics, 2022, 22, 100586.	2.9	54
3	Recent advances in MoS ₂ -based materials for electrocatalysis. Chemical Communications, 2022, 58, 2259-2278.	2.2	30
4	Electrochemical Reduction of Gaseous Nitrogen Oxides on Transition Metals at Ambient Conditions. Journal of the American Chemical Society, 2022, 144, 1258-1266.	6.6	110
5	High-performance NH ₃ production <i>via</i> NO electroreduction over a NiO nanosheet array. Chemical Communications, 2021, 57, 13562-13565.	2.2	51
6	A theoretical study on molybdenum and sulfur co-doped graphene for electrocatalytic nitrogen reduction. Molecular Catalysis, 2022, 517, 112048.	1.0	6
7	Biomass Juncus derived carbon decorated with cobalt nanoparticles enables high-efficiency ammonia electrosynthesis by nitrite reduction. Journal of Materials Chemistry A, 2022, 10, 2842-2848.	5.2	47
8	Biomimetic FeMo(Se, Te) as Joint Electron Pool Promoting Nitrogen Electrofixation. Angewandte Chemie, 2022, 134, .	1.6	3
9	High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. Materials Today Physics, 2022, 23, 100619.	2.9	72
10	Bi nanodendrites for highly efficient electrocatalytic NO reduction to NH3 at ambient conditions. Materials Today Physics, 2022, 22, 100611.	2.9	36
11	Boosting electrochemical nitrite–ammonia conversion properties by a Cu foam@Cu ₂ O catalyst. Chemical Communications, 2022, 58, 517-520.	2.2	32
12	Biomimetic FeMo(Se, Te) as Joint Electron Pool Promoting Nitrogen Electrofixation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
13	Electro-reduction of N2 on nanostructured materials and the design strategies of advanced catalysts based on descriptors. Materials Today Physics, 2022, 22, 100609.	2.9	42
14	Dealloying layered PdBi ₂ nanoflakes to palladium hydride leads to enhanced electrocatalytic N ₂ reduction. Journal of Materials Chemistry A, 2022, 10, 11904-11916.	5.2	6
15	Iron-doped cobalt oxide nanoarray for efficient electrocatalytic nitrate-to-ammonia conversion. Journal of Colloid and Interface Science, 2022, 615, 636-642.	5.0	67
16	Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray. Inorganic Chemistry Frontiers, 2022, 9, 1366-1372.	3.0	58
17	Engineering Interface on a 3D Co _{<i>x</i>} Ni _{1–<i>x</i>} (OH) ₂ @MoS ₂ Hollow Heterostructure for Robust Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 9116-9125.	4.0	17
18	Ambient Ammonia Synthesis via Electrochemical Reduction of Nitrate Enabled by NiCo ₂ O ₄ Nanowire Array. Small, 2022, 18, e2106961.	5.2	171

#	Article	IF	CITATIONS
19	High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. Chemical Engineering Journal, 2022, 435, 135104.	6.6	71
20	Efficient ammonia synthesis <i>via</i> electroreduction of nitrite using single-atom Ru-doped Cu nanowire arrays. Chemical Communications, 2022, 58, 5257-5260.	2.2	17
21	A 3D FeOOH nanotube array: an efficient catalyst for ammonia electrosynthesis by nitrite reduction. Chemical Communications, 2022, 58, 5160-5163.	2.2	20
22	Ambient electrochemical N ₂ -to-NH ₃ conversion catalyzed by TiO ₂ decorated juncus effusus-derived carbon microtubes. Inorganic Chemistry Frontiers, 2022, 9, 1514-1519.	3.0	100
23	Efficient Ammonia Synthesis Via Electroreduction of Nitrite Using Single-Atom Ru-Doped Cu Nanowire Arrays. SSRN Electronic Journal, 0, , .	0.4	0
24	Co nanoparticle-decorated pomelo-peel-derived carbon enabled high-efficiency electrocatalytic nitrate reduction to ammonia. Chemical Communications, 2022, 58, 4259-4262.	2.2	40
25	A TiO _{2â^'<i>x</i>} nanobelt array with oxygen vacancies: an efficient electrocatalyst toward nitrite conversion to ammonia. Chemical Communications, 2022, 58, 3669-3672.	2.2	55
26	A FeCo ₂ O ₄ nanowire array enabled electrochemical nitrate conversion to ammonia. Chemical Communications, 2022, 58, 4480-4483.	2.2	34
27	Coupling denitrification and ammonia synthesis <i>via</i> selective electrochemical reduction of nitric oxide over Fe ₂ O ₃ nanorods. Journal of Materials Chemistry A, 2022, 10, 6454-6462.	5.2	52
28	Bifunctional P-Intercalated and Doped Metallic (1T)-Copper Molybdenum Sulfide Ultrathin 2D-Nanosheets with Enlarged Interlayers for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 14492-14503.	4.0	39
29	FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions. Nano Research, 2022, 15, 4008-4013.	5.8	61
30	Bi nanoparticles/carbon nanosheet composite: A high-efficiency electrocatalyst for NO reduction to NH3. Nano Research, 2022, 15, 5032-5037.	5.8	32
31	Two-dimensional porous Cu-CuO nanosheets: Integration of heterojunction and morphology engineering to achieve high-effective and stable reduction of the aromatic nitro-compounds. Chinese Chemical Letters, 2023, 34, 107295.	4.8	7
32	Amorphous Boron Carbide on Titanium Dioxide Nanobelt Arrays for Highâ€Efficiency Electrocatalytic NO Reduction to NH ₃ . Angewandte Chemie, 0, , .	1.6	6
33	Amorphous Boron Carbide on Titanium Dioxide Nanobelt Arrays for Highâ€Efficiency Electrocatalytic NO Reduction to NH ₃ . Angewandte Chemie - International Edition, 2022, 61, .	7.2	121
34	Ultrafine Cu nanoparticles decorated porous TiO2 for high-efficient electrocatalytic reduction of NO to synthesize NH3. Ceramics International, 2022, 48, 21151-21161.	2.3	21
35	High-efficiency NO electroreduction to NH3 over honeycomb carbon nanofiber at ambient conditions. Journal of Colloid and Interface Science, 2022, 616, 261-267.	5.0	26
36	An electrochemical biosensor for the assessment of tumor immunotherapy based on the detection of immune checkpoint protein programmed death ligand-1. Biosensors and Bioelectronics, 2022, 207, 114166.	5.3	14

#	ARTICLE CoO nanoparticle decorated N-doped carbon nanotubes: a high-efficiency catalyst for nitrate	IF	CITATIONS
37 38	reduction to ammonia. Chemical Communications, 2022, 58, 5901-5904. Sulfateâ€Enabled Nitrate Synthesis from Nitrogen Electrooxidation on a Rhodium Electrocatalyst.	1.6	9
39	Self-assembly synthesis of Ni-decorated Nb2C MXene as an efficient and stable catalyst towards electrochemical nitrogen reduction. Ceramics International, 2022, 48, 20599-20604.	2.3	10
40	Sulfateâ€Enabled Nitrate Synthesis from Nitrogen Electrooxidation on a Rhodium Electrocatalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
41	NiX ₂ (X = S, Se, and Te) Monolayers: Promising Anodes in Li/Na-Ion Batteries and Superconductors. Journal of Physical Chemistry C, 2022, 126, 6925-6933.	1.5	13
42	Atom-dispersed copper and nano-palladium in the boron-carbon-nitrogen matric cooperate to realize the efficient purification of nitrate wastewater and the electrochemical synthesis of ammonia. Journal of Hazardous Materials, 2022, 434, 128909.	6.5	21
43	Molybdenum-based nitrogen carrier for ammonia production via a chemical looping route. Applied Catalysis B: Environmental, 2022, 312, 121404.	10.8	22
44	Multicomponent TiO ₂ /Ag/Cu ₇ S ₄ @Se Heterostructures Constructed by an Interface Engineering Strategy for Promoting the Electrocatalytic Nitrogen Reduction Reaction Performance. Inorganic Chemistry, 2022, 61, 7165-7172.	1.9	7
45	Sulfur Vacancy-Rich MoS ₂ -Catalyzed Hydrodeoxygenation of Lactic Acid to Biopropionic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 5463-5475.	3.2	18
46	A theoretical descriptor for screening efficient NO reduction electrocatalysts from transition-metal atoms on N-doped BP monolayer. Journal of Colloid and Interface Science, 2022, 623, 432-444.	5.0	36
47	Design of S-vacancy FeS2 as an electrocatalyst for NO reduction reaction: A DFT study. Molecular Catalysis, 2022, 524, 112327.	1.0	4
48	High-entropy perovskite oxides: A versatile class of materials for nitrogen reduction reactions. Science China Materials, 2022, 65, 2711-2720.	3.5	13
49	ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. EScience, 2022, 2, 382-388.	25.0	88
50	Enhancing Electrocatalytic NO Reduction to NH ₃ by the CoS Nanosheet with Sulfur Vacancies. Inorganic Chemistry, 2022, 61, 8096-8102.	1.9	26
51	Electroreduction NO to NH3 over single metal atom anchored on pyrrole type defective graphene: A DFT study. Chinese Chemical Letters, 2023, 34, 107567.	4.8	6
52	Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. , 2022, 1, e9120010.		285
53	NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia. Chemical Communications, 2022, 58, 8097-8100.	2.2	79
54	Recent advances for Zn-gas batteries beyond Zn-air/oxygen battery. Chinese Chemical Letters, 2023, 34, 107600.	4.8	8

			_
#	ARTICLE	IF	CITATIONS
55	Enhanced electrocatalytic nitrate reduction to ammonia using plasmaâ€induced oxygen vacancies in CoTiO _{3 â^' <i>x</i>} nanofiber. , 2022, 1, 6-13.		13
56	Facile Synthesis of Carbon Nanobelts Decorated with Cu and Pd for Nitrate Electroreduction to Ammonia. ACS Applied Materials & Interfaces, 2022, 14, 30969-30978.	4.0	30
57	High-efficiency electrocatalytic NO reduction to NH ₃ by nanoporous VN. , 2022, 1, e9120022.		191
58	Facile synthesis of widened MoS2 nanosheets vertically anchored on natural cellulose fibers for efficient removal of mercury ions from aquatic systems. Journal of Environmental Chemical Engineering, 2022, 10, 108229.	3.3	8
59	Electrocatalytic nitrate-to-ammonia conversion with ~100% Faradaic efficiency via single-atom alloying. Applied Catalysis B: Environmental, 2022, 316, 121683.	10.8	60
60	Hydrogen technology adoption analysis in Africa using a Doughnut-PESTLE hydrogen model (DPHM). International Journal of Hydrogen Energy, 2022, 47, 31521-31540.	3.8	7
61	Electrochemical Reduction of Nitric Oxide with 1.7% Solarâ€toâ€Ammonia Efficiency Over Nanostructured Coreâ€5hell Catalyst at Low Overpotentials. Advanced Science, 2022, 9, .	5.6	16
62	MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia. Nano Research, 2022, 15, 8890-8896.	5.8	69
63	Hollow Cu ₂ O@CoMn ₂ O ₄ Nanoreactors for Electrochemical NO Reduction to NH ₃ : Elucidating the Void onfinement Effects on Intermediates. Advanced Functional Materials, 2022, 32, .	7.8	15
64	Efficient purification of auto-exhaust carbon particles over non-noble metals (Fe, Co, Cu) decorated hexagonal NiO nanosheets. Fuel, 2022, 330, 125662.	3.4	7
65	High-loading Fe ₁ sites on vanadium disulfides: a scalable and non-defect-stabilized single atom catalyst for electrochemical nitrogen reduction. Journal of Materials Chemistry A, 2022, 10, 21142-21148.	5.2	3
66	Revealing the pH-dependent mechanism of nitrate electrochemical reduction to ammonia on single-atom catalysts. Nanoscale, 2022, 14, 15422-15431.	2.8	5
67	Confinement catalysis of a single atomic vacancy assisted by aliovalent ion doping enabled efficient NO electroreduction to NH ₃ . Journal of Materials Chemistry A, 2022, 10, 18690-18700.	5.2	42
68	Active-site and interface engineering of cathode materials for aqueous Zn—gas batteries. Nano Research, 2023, 16, 2325-2346.	5.8	63
69	Recent Advances in Upgrading of Low ost Oxidants to Valueâ€Added Products by Electrocatalytic Reduction Reaction. Advanced Functional Materials, 2022, 32, .	7.8	20
70	High-Efficiency Electrochemical Nitrate Reduction to Ammonia on a Co ₃ O ₄ Nanoarray Catalyst with Cobalt Vacancies. ACS Applied Materials & Interfaces, 2022, 14, 46595-46602.	4.0	62
71	Emerging p-Block-Element-Based Electrocatalysts for Sustainable Nitrogen Conversion. ACS Nano, 2022, 16, 15512-15527.	7.3	42
72	Single Transition Metal Atoms Anchored on Defective MoS ₂ Monolayers for the Electrocatalytic Reduction of Nitric Oxide into Ammonia and Hydroxylamine. Inorganic Chemistry, 2022. 61. 17448-17458.	1.9	9

#	Article	IF	CITATIONS
73	Emerging two-dimensional metallenes: Recent advances in structural regulations and electrocatalytic applications. Chinese Journal of Catalysis, 2022, 43, 2802-2814.	6.9	9
74	A defect engineered p-block SnS _{2â^'<i>x</i>} catalyst for efficient electrocatalytic NO reduction to NH ₃ . Inorganic Chemistry Frontiers, 2022, 10, 280-287.	3.0	54
75	Isolated Electronâ€Rich Ruthenium Atoms in Intermetallic Compounds for Boosting Electrochemical Nitric Oxide Reduction to Ammonia. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
76	Atomically dispersed Co catalyst for electrocatalytic NO reduction to NH3. Chemical Engineering Journal, 2023, 454, 140333.	6.6	57
77	Isolated Electronâ€Rich Ruthenium Atoms in Intermetallic Compounds for Boosting Electrochemical Nitric Oxide Reduction to Ammonia. Angewandte Chemie, 0, , .	1.6	0
78	Single-layer MoS2 with adjacent Mo sites for efficient electrocatalytic nitrogen fixation via spin-delocalized electrons effect. Applied Catalysis B: Environmental, 2023, 323, 122186.	10.8	5
79	Atomically Fe-doped MoS2â^'x with Fe-Mo dual sites for efficient electrocatalytic NO reduction to NH3. Applied Catalysis B: Environmental, 2023, 324, 122241.	10.8	63
80	Innovative Electrochemical Strategies for Hydrogen Production: From Electricity Input to Electricity Output. Angewandte Chemie - International Edition, 2023, 62, .	7.2	37
81	Innovative elektrochemische Strategien für die Wasserstoffproduktion: Von der Stromspeicherung bis zur Stromerzeugung. Angewandte Chemie, 2023, 135, .	1.6	1
82	Ionic Liquidâ€Assisted Electrocatalytic NO Reduction to NH ₃ by Pâ€Doped MoS ₂ . ChemCatChem, 2023, 15, .	1.8	35
83	Hexagonal boron nitride nanoribbon as a novel metal-free catalyst for high-efficiency NO reduction to NH3. Fuel, 2023, 339, 126943.	3.4	7
84	Efficient electrolytic conversion of nitrogen oxyanion and oxides to gaseous ammonia in molten alkali. Chemical Engineering Journal, 2023, 456, 141060.	6.6	2
85	Efficient electrocatalysts refined from metal-dimer-anchored PC6 monolayers for NO reduction to ammonia. International Journal of Hydrogen Energy, 2023, 48, 5961-5975.	3.8	16
86	Electrochemical NO reduction to NH3 on Cu single atom catalyst. Nano Research, 2023, 16, 5857-5863.	5.8	59
87	Rational design of carbon-based electrocatalysts for enhancing redox reactions in rechargeable metal batteries. Nano Research, 2023, 16, 4246-4276.	5.8	10
88	Electrocatalytic NO Reduction to NH ₃ on Mo ₂ C Nanosheets. Inorganic Chemistry, 2023, 62, 653-658.	1.9	33
89	Scalable synthesis of MoS2 nanosheets electrocatalyst towards high-efficiency nitrite reduction to ammonia. Journal of Power Sources, 2023, 559, 232668.	4.0	11
90	Ternary photocatalysts with electron modulation for efficient photocatalytic hydrogen evolution reactions: CdS-induced ring electrons transfer effect. Materials Today Energy, 2023, 32, 101235.	2.5	1

#	Article	IF	CITATIONS
91	Ce-doped MoS _{2â^'<i>x</i>} nanoflower arrays for electrocatalytic nitrate reduction to ammonia. Inorganic Chemistry Frontiers, 2023, 10, 1543-1551.	3.0	28
92	Efficient electrochemical NO reduction to NH3 over metal-free g-C3N4 nanosheets and the role of interface microenvironment. Journal of Hazardous Materials, 2023, 448, 130890.	6.5	5
93	p-Block Antimony Single-Atom Catalysts for Nitric Oxide Electroreduction to Ammonia. ACS Energy Letters, 2023, 8, 1281-1288.	8.8	60
94	Activating dual atomic electrocatalysts for the nitric oxide reduction reaction through the P/S element. Materials Horizons, 2023, 10, 2160-2168.	6.4	8
95	The β-PdBi ₂ monolayer for efficient electrocatalytic NO reduction to NH ₃ : a computational study. Inorganic Chemistry Frontiers, 2023, 10, 2677-2688.	3.0	6
96	Iron-doping strategy promotes electroreduction of nitrate to ammonia on MoS2 nanosheets. Inorganic Chemistry Communication, 2023, 151, 110621.	1.8	27
97	Defective 1TËŠ-MoX2 (XÂ=ÂS, Se, Te) monolayers for electrocatalytic ammonia synthesis: Steric and electronic effects on the catalytic activity. Fuel, 2023, 342, 127779.	3.4	1
98	Polyoxometalates Encapsulated into Hollow Periodic Mesoporous Organosilica as Nanoreactors for Extraction Oxidation Desulfurization. Catalysts, 2023, 13, 747.	1.6	2
99	Electrocatalytic Disproportionation of Nitric Oxide Toward Efficient Nitrogen Fixation. Advanced Energy Materials, 2023, 13, .	10.2	11
100	The state-of-the-art in the electroreduction of NO _{<i>x</i>} for the production of ammonia in aqueous and nonaqueous media at ambient conditions: a review. New Journal of Chemistry, 2023, 47, 6018-6040.	1.4	5
101	Integrating RuO ₂ @TiO ₂ catalyzed electrochemical chlorine evolution with a NO oxidation reaction for nitrate synthesis. Inorganic Chemistry Frontiers, 2023, 10, 2100-2106.	3.0	17
102	Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes. Frontiers of Chemical Science and Engineering, 2023, 17, 726-734.	2.3	16
103	Hexagonal Cobalt Nanosheets for High-Performance Electrocatalytic NO Reduction to NH ₃ . Journal of the American Chemical Society, 2023, 145, 6899-6904.	6.6	38
104	Defective TiO _{2â~'} <i>_x</i> for Highâ€Performance Electrocatalytic NO Reduction toward Ambient NH ₃ Production. Small, 2023, 19, .	5.2	17
105	Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia. Nano Research, 2023, 16, 6632-6641.	5.8	30
106	Single Selenium Atomic Vacancy Enabled Efficient Visible-Light-Response Photocatalytic NO Reduction to NH3 on Janus WSSe Monolayer. Molecules, 2023, 28, 2959.	1.7	5
107	Elaborately tuning the electronic structure of single-atom nickel sites using nickel nanoparticles to markedly enhance the electrochemical reduction of nitrate into ammonia. Journal of Energy Chemistry, 2023, 83, 32-42.	7.1	11
108	Design of material regulatory mechanism for electrocatalytic converting NO/NO ₃ ^{â^'} to NH ₃ progress. Natural Sciences, 2023, 3, .	1.0	9

#	Article	IF	CITATIONS
113	Engineering active sites of cathodic materials for high-performance Zn-nitrogen batteries. Nano Research, 2023, 16, 9214-9230.	5.8	16
117	Recent advances in electrocatalytic NO _{<i>x</i>} reduction into ammonia. , 2023, 1, 645-664.		2
120	Recent advances in defect-engineered molybdenum sulfides for catalytic applications. Materials Horizons, 2023, 10, 3948-3999.	6.4	4
137	Highly selective and efficient photocatalytic NO removal: Charge carrier kinetics and interface molecular process. Nano Research, 2024, 17, 1003-1026.	5.8	0
142	Recent progress in iron-series-element-based electrocatalysts for Zn–air batteries. Materials Chemistry Frontiers, 2024, 8, 485-506.	3.2	0
147	Electrochemical reduction of gaseousÂnitric oxide into ammonia: a review. Environmental Chemistry Letters, 2024, 22, 189-208.	8.3	3