GAPIT Version 3: Boosting Power and Accuracy for Gen

Genomics, Proteomics and Bioinformatics 19, 629-640 DOI: 10.1016/j.gpb.2021.08.005

Citation Report

#	Article	IF	CITATIONS
1	Genome-wide association mapping of <i>Pyrenophora teres</i> f. <i>maculata</i> and <i>Pyrenophora teres</i> f. <i>teres</i>	0.8	3
2	Eagle for better genome-wide association mapping. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	0

3 Genome-wide association studies of mineral and phytic acid concentrations in pea (<i>Pisum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 662

4	Genomeâ€wide analysis reveals demographic and lifeâ€history patterns associated with habitat modification in landlocked, deepâ€spawning sockeye salmon (<i>Oncorhynchus nerka</i>). Ecology and Evolution, 2021, 11, 13186-13205.	0.8	2
5	Interactions of the barley <i>SD1</i> and <i>SD2</i> seed dormancy loci influence preharvest sprouting, seed dormancy, and malting quality. Crop Science, 2022, 62, 120-138.	0.8	5
6	Evaluations of Genomic Prediction and Identification of New Loci for Resistance to Stripe Rust Disease in Wheat (Triticum aestivum L.). Frontiers in Genetics, 2021, 12, 710485.	1.1	9
8	Genome-wide association mapping and genomic prediction for adult stage sclerotinia stem rot resistance in Brassica napus (L) under field environments. Scientific Reports, 2021, 11, 21773.	1.6	21
9	Genomic Regions Associated with Fusarium Wilt Resistance in Flax. International Journal of Molecular Sciences, 2021, 22, 12383.	1.8	10
10	Understanding Heterosis, Genetic Effects, and Genome Wide Associations for Forage Quantity and Quality Traits in Multi-Cut Pearl Millet. Frontiers in Plant Science, 2021, 12, 687859.	1.7	3
11	Genome-wide association study reveals white lupin candidate gene involved in anthracnose resistance. Theoretical and Applied Genetics, 2022, , 1.	1.8	4
12	Genome-wide superior alleles, haplotypes and candidate genes associated with tolerance on sodic-dispersive soils in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2022, 135, 1113-1128.	1.8	3
13	Genomic footprints of sorghum domestication and breeding selection for multiple end uses. Molecular Plant, 2022, 15, 537-551.	3.9	15
14	Genome-wide association study of cassava starch paste properties. PLoS ONE, 2022, 17, e0262888.	1.1	3
15	Genome Assembly of Alfalfa Cultivar Zhongmu-4 and Identification of SNPs Associated with Agronomic Traits. Genomics, Proteomics and Bioinformatics, 2022, 20, 14-28.	3.0	26

16 Unraveling the complex genetic basis of growth in New Zealand silver trevally (<i>Pseudocaranx) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 1

18	Insights Into the Genetic Architecture of Complex Traits in Napier Grass (Cenchrus purpureus) and QTL Regions Governing Forage Biomass Yield, Water Use Efficiency and Feed Quality Traits. Frontiers in Plant Science, 2021, 12, 678862.	1.7	12
19	Pilot scale genome wide association mapping identified novel loci for grain yield traits in rice. Plant Physiology Reports, 2022, 27, 11-21.	0.7	1
20	Single Nucleotide Polymorphism Detection for Peach Gummosis Disease Resistance by Genome-Wide Association Study. Frontiers in Plant Science, 2021, 12, 763618.	1.7	4

		CITATION REPORT		
#	Article	IF		CITATIONS
22	Identification of the Potential Genes Regulating Seed Germination Speed in Maize. Plants, 2022, 1	1, 556. 1.	6	4
23	Evaluation of Methods for Measuring Fusarium-Damaged Kernels of Wheat. Agronomy, 2022, 12,	532. 1.	3	6
24	Epigenomics as a paradigm to understand the nuances of phenotypes. Journal of Experimental Bio 2022, 225, .	logy, o	.8	7
25	Genome-Wide Association Study for Resistance to Rhynchosporium in a Diverse Collection of Spri Barley Germplasm. Agronomy, 2022, 12, 782.	ng 1.	3	2
26	GWAS for Stripe Rust Resistance in Wild Emmer Wheat (Triticum dicoccoides) Population: Obstac and Solutions. Crops, 2022, 2, 42-61.	les o	.6	7
27	Genome-wide association study and genomic prediction of white rust resistance in USDA GRIN spi germplasm. Horticulture Research, 2022, 9, .	nach 2.	9	16
28	XSim version 2: simulation of modern breeding programs. G3: Genes, Genomes, Genetics, 2022, 1	2,. 0	.8	6
29	Genome-Wide Association Studies Provide Insight Into the Genetic Determination for Hyperpigmentation of the Visceral Peritoneum in Broilers. Frontiers in Genetics, 2022, 13, 820297	, 1 .	1	1
30	Unraveling the Genetic Basis of Key Agronomic Traits of Wrinkled Vining Pea (Pisum sativum L.) fo Sustainable Production. Frontiers in Plant Science, 2022, 13, 844450.	r 1.	7	6
31	GWAS for main effects and epistatic interactions for grain morphology traits in wheat. Physiology and Molecular Biology of Plants, 2022, 28, 651-668.	1.	4	6
33	Detection of Breeding-Relevant Fruit Cracking and Fruit Firmness Quantitative Trait Loci in Sweet Cherry via Pedigree-Based and Genome-Wide Association Approaches. Frontiers in Plant Science, 2 13, 823250.	2022, 1.	7	5
34	Identification of Secreted Protein Gene-Based SNP Markers Associated with Virulence Phenotypes Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen. International Journal of Molecula Sciences, 2022, 23, 4114.	of r 1.	8	3
35	Trend, population structure, and trait mapping from 15 years of national varietal trials of UK winte wheat. G3: Genes, Genomes, Genetics, 2022, 12, .	er O.	.8	5
36	Mapping maize chlorotic mottle virus tolerance loci in the Maize 282 Association Panel. Crop Scie 2022, 62, 1497-1510.	nce, O	.8	3
37	Genetic mapping and genomic prediction of sclerotinia stem rot resistance to rapeseed/canola (Brassica napus L.) at seedling stage. Theoretical and Applied Genetics, 2022, 135, 2167-2184.	1.	8	5
38	Genomic selection applications can improve the environmental performance of aquatics: A case st on the heat tolerance of abalone. Evolutionary Applications, 2022, 15, 992-1001.	udy 1.	5	17
39	Genetic analysis of resistance to bean leaf crumple virus identifies a candidate <i>LRRâ€RLK</i> ge Plant Journal, 2023, 114, 23-38.	ene. 2.	8	4
40	Dissecting the Genetic Architecture of Carbon Partitioning in Sorghum Using Multiscale Phenotyp Frontiers in Plant Science, 2022, 13, .	es. 1.	7	7

#	Article	IF	CITATIONS
41	Phenotypic variation and genome-wide association studies of main culm panicle node number, maximum node production rate, and degree-days to heading in rice. BMC Genomics, 2022, 23, .	1.2	1
42	ATP-dependent DNA helicase (TaDHL), a Novel Reduced-Height (Rht) Gene in Wheat. Genes, 2022, 13, 979.	1.0	8
43	A genome-wide association study unveils key chromosome regions involved in determining sodium accumulation in wheat under conditions of low potassium supply. Journal of Plant Physiology, 2022, 275, 153739.	1.6	2
45	Genome-wide association mapping of resistance to the sorghum aphid in Sorghum bicolor. Genomics, 2022, 114, 110408.	1.3	7
46	Recombination Landscape Divergence Between Populations is Marked by Larger Low-Recombining Regions in Domesticated Rye. Molecular Biology and Evolution, 2022, 39, .	3.5	5
48	Genome-wide association analysis of heat tolerance in the northern pike (Esox Lucius). Aquaculture, 2022, 559, 738459.	1.7	4
49	Genome-wide association study identified candidate SNPs and genes associated with hypoxia tolerance in large yellow croaker (Larimichthys crocea). Aquaculture, 2022, 560, 738472.	1.7	7
50	Population Genomics and Haplotype Analysis in Bread Wheat Identify a Gene Regulating Glume Pubescence. Frontiers in Plant Science, 0, 13, .	1.7	1
52	Genetic basis underlying tiller angle in rice (Oryza sativa L.) by genome-wide association study. Plant Cell Reports, 0, , .	2.8	4
53	Genomic Regions Associated With Seed Meal Quality Traits in Brassica napus Germplasm. Frontiers in Plant Science, 0, 13, .	1.7	2
54	Multi-Locus Genome-Wide Association Studies to Characterize Fusarium Head Blight (FHB) Resistance in Hard Winter Wheat. Frontiers in Plant Science, 0, 13, .	1.7	5
55	Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivum L.) using genome-wide association study. Scientific Reports, 2022, 12, .	1.6	13
56	Genome-Wide Association Study of Body Weight Trait in Yaks. Animals, 2022, 12, 1855.	1.0	4
57	Genome-Wide Association Study of Leaf Rust and Stem Rust Seedling and Adult Resistances in Tetraploid Wheat Accessions Harvested in Kazakhstan. Plants, 2022, 11, 1904.	1.6	4
60	Genetic dissection of nitrogen induced changes in the shoot and root biomass of spinach. Scientific Reports, 2022, 12, .	1.6	2
62	Whole-genome analysis of hard winter wheat germplasm identifies genomic regions associated with spike and kernel traits. Theoretical and Applied Genetics, 2022, 135, 2953-2967.	1.8	7
63	Genome-wide association study for grain yield and component traits in bread wheat (Triticum) Tj ETQq0 0 0 rgB	T /Overloc 1.1	k 10 Tf 50 102
66	Genomic selection with fixed-effect markers improves the prediction accuracy for Capsaicinoid contents in <i>Capsicum annuum</i> . Horticulture Research, 2022, 9, .	2.9	6

CITATION REPORT

#	Article	IF	Citations
67	Genome-Wide Association Study (GWAS) Reveals an SNP Associated with Waxy Trait and Development of a Functional Marker for Predicting Waxy Maize (Zea mays L. var. ceratina). Agronomy, 2022, 12, 2289.	1.3	1
68	Separation of the effects of two reduced height (Rht) genes and genomic background to select for less Fusarium head blight of short-strawed winter wheat (Triticum aestivum L.) varieties. Theoretical and Applied Genetics, 2022, 135, 4303-4326.	1.8	4
69	Resequencing worldwide spinach germplasm for identification of field resistance QTLs to downy mildew and assessment of genomic selection methods. Horticulture Research, 2022, 9, .	2.9	2
70	Exploring genetic diversity of wild and related tetraploid wheat species Triticum turgidum and Triticum timopheevii. Journal of Advanced Research, 2023, 48, 47-60.	4.4	4
71	How can we breed for phosphate efficiency in maize (<scp> <i>Zea mays</i> </scp>)?. Plant Breeding, 0, , .	1.0	0
72	Genome-wide association mapping of septoria nodorum blotch resistance in Nordic winter and spring wheat collections. Theoretical and Applied Genetics, 2022, 135, 4169-4182.	1.8	8
75	High-quality chromosome-scale genomes facilitate effective identification of large structural variations in hot and sweet peppers. Horticulture Research, 2022, 9, .	2.9	12
76	Worldwide Selection Footprints for Drought and Heat in Bread Wheat (Triticum aestivum L.). Plants, 2022, 11, 2289.	1.6	4
77	Mapping and selection of downy mildew resistance in spinach cv. whale by low coverage whole genome sequencing. Frontiers in Plant Science, 0, 13, .	1.7	5
78	High-resolution genome-wide association study of a large Czech collection of sweet cherry (<i>Prunus avium</i> L.) on fruit maturity and quality traits. Horticulture Research, 2023, 10, .	2.9	3
79	Deep learning-based phenotyping for genome wide association studies of sudden death syndrome in soybean. Frontiers in Plant Science, 0, 13, .	1.7	7
80	Focusing the GWAS <i>Lens</i> on days to flower using latent variable phenotypes derived from global multienvironment trials. Plant Genome, 0, , .	1.6	1
81	A family of methyl esterases converts methyl salicylate to salicylic acid in ripening tomato fruit. Plant Physiology, 2023, 191, 110-124.	2.3	4
83	Determination of traits responding to iron toxicity stress at different stages and genome-wide association analysis for iron toxicity tolerance in rice (Oryza sativa L.). Frontiers in Plant Science, 0, 13, .	1.7	2
84	Genome-wide association mapping of seed oligosaccharides in chickpea. Frontiers in Plant Science, 0, 13, .	1.7	0
86	N6-methyladenosine RNA modification promotes viral genomic RNA stability and infection. Nature Communications, 2022, 13, .	5.8	18
87	Genomic prediction of tocochromanols in exoticâ€derived maize. Plant Genome, 2023, 16, .	1.6	3
88	Rice Pangenome Array (<scp>RPGA</scp>): an efficient genotyping solution for pangenomeâ€based accelerated crop improvement in rice. Plant Journal, 0, , .	2.8	5

CITATION REPORT

#	Article	IF	CITATIONS
90	Genetic Dissection of Phosphorus Use Efficiency and Genotype-by-Environment Interaction in Maize. International Journal of Molecular Sciences, 2022, 23, 13943.	1.8	4
91	Identification of Genomic Loci Controlling Grain Macro and Micronutrient Variation in a Wild Barley (Hordeum vulgare spp. spontaneum) Diversity Panel. Agronomy, 2022, 12, 2839.	1.3	2
93	Novel Single-Nucleotide Variants for Morpho-Physiological Traits Involved in Enhancing Drought Stress Tolerance in Barley. Plants, 2022, 11, 3072.	1.6	2
94	Identification of a QTL region for ashy stem blight resistance using genome-wide association and linage analysis in common bean recombinant inbred lines derived from BAT 477 and NY6020-4. Frontiers in Plant Science, 0, 13, .	1.7	2
95	Genomic basis of the giga-chromosomes and giga-genome of tree peony Paeonia ostii. Nature Communications, 2022, 13, .	5.8	16
96	Genetic Determinants of Fiber-Associated Traits in Flax Identified by Omics Data Integration. International Journal of Molecular Sciences, 2022, 23, 14536.	1.8	2
97	TeaGVD: A comprehensive database of genomic variations for uncovering theÂgenetic architecture of metabolicÂtraits in tea plants. Frontiers in Plant Science, 0, 13, .	1.7	9
98	Genome-wide association study for resistance in bread wheat (Triticum aestivum L.) to stripe rust (Puccinia striiformis f. sp. tritici) races in Argentina. BMC Plant Biology, 2022, 22, .	1.6	4
99	A multi-reference parent nested-association mapping population to dissect the genetics of quantitative traits in durum wheat. Genetic Resources and Crop Evolution, 2023, 70, 1471-1485.	0.8	4
100	Genome wide association studies for acid phosphatase activity at varying phosphorous levels in Brassica juncea L. Frontiers in Plant Science, 0, 13, .	1.7	2
101	Genome-wide association study reveals novel genomic regions governing agronomic and grain quality traits and superior allelic combinations for Basmati rice improvement. Frontiers in Plant Science, 0, 13, .	1.7	4
102	Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon. Nature Communications, 2022, 13, .	5.8	7
103	Exome-wide variation in a diverse barley panel reveals genetic associations with ten agronomic traits in Eastern landraces. Journal of Genetics and Genomics, 2023, 50, 241-252.	1.7	2
106	Distinct genomic loci underlie quantitative resistance to Meloidogyne enterolobii galling and reproduction in Citrullus amarus. Plant Disease, 0, , .	0.7	0
107	AgroGenome: Interactive Genomic-Based Web Server Developed Based on Data Collected for Accessions Stored in Polish Genebank. Agriculture (Switzerland), 2023, 13, 193.	1.4	2
108	An integrated genomic and biochemical approach to investigate the potentiality of heirloom tomatoes: Breeding resources for food quality and sustainable agriculture. Frontiers in Plant Science, 0, 13, .	1.7	2
109	Genetics of spot blotch resistance in bread wheat (Triticum aestivum L.) using five models for GWAS. Frontiers in Plant Science, 0, 13, .	1.7	3
110	Genome-wide association study of yield-related traits in common wheat (Triticum aestivum L.) under normal and drought treatment conditions. Frontiers in Plant Science, 0, 13, .	1.7	5

		CITATION REPORT	
#	Article	IF	CITATIONS
111	Multiomics Based Association Mapping in Wheat Reveals Genetic Architecture of Quality and Allergenic Related Proteins. International Journal of Molecular Sciences, 2023, 24, 1485.	1.8	1
112	Genome-Wide Association Study of Arabinoxylan Content from a 562 Hexaploid Wheat Collectic Plants, 2023, 12, 184.	n. 1.6	3

Dissecting the genetic architecture of leaf morphology traits in mungbean ($\langle i \rangle$ Vigna radiata $\langle i \rangle$ (L.)) Tj ETQq0 0 0 rgBT /Overlock 10 Tf f_{i}

116	Wild barley (Hordeum spontaneum) and landraces (Hordeum vulgare) from Turkey contain an abundance of novel Rhynchosporium commune resistance loci. Theoretical and Applied Genetics, 2023, 136, .	1.8	0
117	Marker-trait association analyses revealed major novel QTLs for grain yield and related traits in durum wheat. Frontiers in Plant Science, 0, 13, .	1.7	7
118	Genome-wide association and genomic prediction for resistance to southern corn rust in DH and testcross populations. Frontiers in Plant Science, 0, 14, .	1.7	1
119	Genome-wide association analyses of leaf rust resistance in cultivated emmer wheat. Theoretical and Applied Genetics, 2023, 136, .	1.8	1
120	Detection of the local adaptive and genome-wide associated loci in southeast Nigerian taro (Colocasia esculenta (L.) Schott) populations. BMC Genomics, 2023, 24, .	1.2	0
121	White Lupin Drought Tolerance: Genetic Variation, Trait Genetic Architecture, and Genome-Enabled Prediction. International Journal of Molecular Sciences, 2023, 24, 2351.	1.8	2
122	Candidate genes affecting stomatal density in rice (Oryza sativa L.) identified by genomeâ€wide association. Plant Science, 2023, 330, 111624.	1.7	3
123	QTL and Candidate Genes for Flax Disease Resistance. Compendium of Plant Genomes, 2023, , 121-148.	0.3	1
124	Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs. Journal of Integrative Agriculture, 2024, 23, 217-227.	1.7	1
125	White Lupin Adaptation to Moderately Calcareous Soils: Phenotypic Variation and Genome-Enabled Prediction. Plants, 2023, 12, 1139.	1.6	0
128	Chromosome-level genome assembly and population genomic resource to accelerate orphan crop lablab breeding. Nature Communications, 2023, 14, .	5.8	10
130	Identification of leaf rust resistance loci in a geographically diverse panel of wheat using genome-wide association analysis. Frontiers in Plant Science, 0, 14, .	1.7	0
131	Association mapping unravels the genetics controlling seedling drought stress tolerance in winter wheat. Frontiers in Plant Science, 0, 14, .	1.7	5
132	Genome-wide association analysis and validation with KASP markers for nut and shell traits in almond (Prunus dulcis [Mill.] D.A.Webb). Tree Genetics and Genomes, 2023, 19, .	0.6	5
133	The broad use of the Pm8 resistance gene in wheat resulted in hypermutation of the AvrPm8 gene in the powdery mildew pathogen. BMC Biology, 2023, 21, .	1.7	11

ARTICLE

134 Effects of genetic components of plant development on yield-related traits in wheat (Triticum) Tj ETQq0 0 0 rgBT /Qverlock 10 Tf 50 742

135	Development and characterization of a sorghum multi-parent advanced generation intercross (MAGIC) population for capturing diversity among seed parent gene pool. G3: Genes, Genomes, Genetics, 2023, 13, .	0.8	2
136	Multiple-model GWAS identifies optimal allelic combinations of quantitative trait loci for malic acid in tomato. Horticulture Research, 2023, 10, .	2.9	2
137	Identification of candidate genes for LepR1 resistance against Leptosphaeria maculans in Brassica napus. Frontiers in Plant Science, 0, 14, .	1.7	1
138	The genetic architecture of soybean photothermal adaptation to high latitudes. Journal of Experimental Botany, 2023, 74, 2987-3002.	2.4	2
141	QTL Mapping: Strategy, Progress, and Prospects in Flax. Compendium of Plant Genomes, 2023, , 69-99.	0.3	Ο
142	Heritability and gene functions associated with sclerotia formation of Rhizoctonia solani AG-7 using whole genome sequencing and genome-wide association study. Microbial Genomics, 2023, 9, .	1.0	0
143	Genome-Wide Association Study for Grain Protein, Thousand Kernel Weight, and Normalized Difference Vegetation Index in Bread Wheat (Triticum aestivum L.). Genes, 2023, 14, 637.	1.0	2
144	A Genome-Wide Association Study to Identify Novel Candidate Genes Related to Low-Nitrogen Tolerance in Cucumber (Cucumis sativus L.). Genes, 2023, 14, 662.	1.0	0
145	Genome-Wide Association Analysis of Grain Hardness in Common Wheat. Genes, 2023, 14, 672.	1.0	1
146	The Allele Catalog Tool: a web-based interactive tool for allele discovery and analysis. BMC Genomics, 2023, 24, .	1.2	3
147	Genetic architecture of rust resistance in a wheat (Triticum turgidum) diversity panel. Frontiers in Plant Science, 0, 14, .	1.7	Ο
149	Genomics-driven breeding for local adaptation of durum wheat is enhanced by farmers' traditional knowledge. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
150	Preselection of QTL markers enhances accuracy of genomic selection in Norway spruce. BMC Genomics, 2023, 24, .	1.2	1
151	A translatome-transcriptome multi-omics gene regulatory network reveals the complicated functional landscape of maize. Genome Biology, 2023, 24, .	3.8	8
153	Genome-wide association study in two-row spring barley landraces identifies QTL associated with plantlets root system architecture traits in well-watered and osmotic stress conditions. Frontiers in Plant Science, 0, 14, .	1.7	4
154	Genome-Wide Association Study on Reproductive Traits Using Imputation-Based Whole-Genome Sequence Data in Yorkshire Pigs. Genes, 2023, 14, 861.	1.0	3
155	CT-Based Phenotyping and Genome-Wide Association Analysis of the Internal Structure and Components of Maize Kernels. Agronomy, 2023, 13, 1078.	1.3	0

#	Article	IF	CITATIONS
156	Skim resequencing finely maps the downy mildew resistance loci in spinach cultivars Whale and Lazio. Horticulture Research, 0, , .	2.9	0
158	Genetic analysis of global faba bean diversity, agronomic traits and selection signatures. Theoretical and Applied Genetics, 2023, 136, .	1.8	4

CITATION REPORT

Re-sequencing and transcriptomic analysis reveal differential expression patterns and sequence variation in glucosyltransferase gene related to anthocyanin biosynthesis in walnut (Juglans regia) Tj ETQq0 0 0 rgBT7/Overlo¢k 10 Tf 50 159