Electrical gas sensors for meat freshness assessment an

Trends in Food Science and Technology 118, 36-44 DOI: 10.1016/j.tifs.2021.08.036

Citation Report

#	Article	IF	CITATIONS
1	Chemical Defectâ€Driven Response on Grapheneâ€Based Chemiresistors for Subâ€ppm Ammonia Detection. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
2	Chemical Defectâ€Driven Response on Grapheneâ€Based Chemiresistors for Subâ€ppm Ammonia Detection. Angewandte Chemie, 2022, 134, .	1.6	2
3	A Water-Dispersible Carboxylated Carbon Nitride Nanoparticles-Based Electrochemical Platform for Direct Reporting of Hydroxyl Radical in Meat. Foods, 2022, 11, 40.	1.9	2
4	Hydrogel Coated Flexible Ph Sensor System for Fish Spoilage Monitoring. SSRN Electronic Journal, 0, ,	0.4	0
5	Critical review and recent advances of 2D materials-Based gas sensors for food spoilage detection. Critical Reviews in Food Science and Nutrition, 2023, 63, 10536-10559.	5.4	11
6	Pushing Down the Limit of NH ₃ Detection of Graphene-Based Chemiresistive Sensors through Functionalization by Thermally Activated Tetrazoles Dimerization. ACS Nano, 2022, 16, 10456-10469.	7.3	8
7	Artificial senses and their fusion as a booming technique in food quality assessment. Quality Assurance and Safety of Crops and Foods, 2022, 14, 9-18.	1.8	3
8	Non-destructive determination of beef freshness based on colorimetric sensor array and multivariate analysis. Sensors and Actuators B: Chemical, 2022, 369, 132282.	4.0	21
9	Recent Progress in Amine Gas Sensors for Food Quality Monitoring: Novel Architectures for Sensing Materials and Systems. ACS Sensors, 2022, 7, 2104-2131.	4.0	60
10	Olfactory visualization sensor system based on colorimetric sensor array and chemometric methods for high precision assessing beef freshness. Meat Science, 2022, 194, 108950.	2.7	11
11	Advances in functional guest materials for resistive gas sensors. RSC Advances, 2022, 12, 24614-24632.	1.7	14
12	Copper-based metal oxides for chemiresistive gas sensors. Journal of Materials Chemistry C, 2022, 10, 16218-16246.	2.7	10
13	Challenges and Opportunities for Printed Electrical Gas Sensors. ACS Sensors, 2022, 7, 2804-2822.	4.0	23
14	Hydrogen Sulfide Gas Detection in ppb Levels at Room Temperature with a Printed, Flexible, Disposable In ₂ O ₃ NPsâ€Based Sensor for IoT Food Packaging Applications. Advanced Materials Technologies, 0, , 2201086.	3.0	2
15	Hydrogel coating flexible pH sensor system for fish spoilage monitoring. Materials Today Chemistry, 2022, 26, 101183.	1.7	3
16	Wireless pressure sensor system for fish quality monitoring. Teoriâ I Praktika Pererabotki Mâsa, 2022, 7, 150-155.	0.2	1
17	Conducting Polymer Based Ammonia and Hydrogen Sulfide Chemical Sensors and Their Suitability for Detecting Food Spoilage. Advanced Materials Technologies, 2023, 8, .	3.0	11
18	Engineered nanomaterialsâ€based sensing systems for assessing the freshness of meat and aquatic products: A stateâ€ofâ€theâ€art review. Comprehensive Reviews in Food Science and Food Safety, 2023, 22, 430-450.	5.9	14

CITATION REPORT

#	Article	IF	CITATIONS
19	Metal–oxide–semiconductor resistive gas sensors for fish freshness detection. Comprehensive Reviews in Food Science and Food Safety, 2023, 22, 913-945.	5.9	8
20	Recent Advances in Smart Organic Sensors for Environmental Monitoring Systems. ACS Applied Electronic Materials, 2023, 5, 77-99.	2.0	5
21	Application of intelligent packaging for meat products: A systematic review. Veterinary Medicine and Science, 2023, 9, 481-493.	0.6	14
22	Room Temperature Ammonia Gas Sensor Based on p-Type-like V2O5 Nanosheets towards Food Spoilage Monitoring. Nanomaterials, 2023, 13, 146.	1.9	10
23	Applications, challenges and prospects of bionic nose in rapid perception of volatile organic compounds of food. Food Chemistry, 2023, 415, 135650.	4.2	6
24	Visualization and prediction of TVB-N content in chilled pork by hyperspectral imaging. Food Science and Technology, 0, 43, .	0.8	0
25	Sensing materials for fresh food quality deterioration measurement: a review of research progress and application in supply chain. Critical Reviews in Food Science and Nutrition, 0, , 1-19.	5.4	2
26	Sensitive and Reversible Ammonia Gas Sensor Based on Single-Walled Carbon Nanotubes. Chemosensors, 2023, 11, 247.	1.8	3
39	Multisensor Sunflower Oil Quality Assessment System Based on $\hat{a} \in \infty$ Electronic Nose $\hat{a} \in \mathbf{e}$, 2023, , .		0
44	Scope of Nanotechnology in Food Science and Food Engineering. , 2023, , 285-301.		Ο