IRON MAN interacts with BRUTUS to maintain iron hor

Proceedings of the National Academy of Sciences of the Unite 118,

DOI: 10.1073/pnas.2109063118

Citation Report

#	Article	IF	CITATIONS
3	bHLH11 inhibits bHLH IVc proteins by recruiting the TOPLESS/TOPLESS-RELATED corepressors. Plant Physiology, 2022, 188, 1335-1349.	4.8	22
4	Metal crossroads in plants: modulation of nutrient acquisition and root development by essential trace metals. Journal of Experimental Botany, 2022, 73, 1751-1765.	4.8	15
5	Inhibition of BRUTUS Enhances Plant Tolerance to Zn Toxicity by Upregulating Pathways Related to Iron Nutrition. Life, 2022, 12, 216.	2.4	5
7	Primary nutrient sensors in plants. IScience, 2022, 25, 104029.	4.1	14
8	Systemic Regulation of Iron Acquisition by <i>Arabidopsis</i> in Environments with Heterogeneous Iron Distributions. Plant and Cell Physiology, 2022, 63, 842-854.	3.1	10
9	The basic leucine zipper transcription factor <scp>OsbZIP83</scp> and the glutaredoxins <scp>OsGRX6</scp> and <scp>OsGRX9</scp> facilitate rice iron utilization under the control of <scp>OsHRZ</scp> ubiquitin ligases. Plant Journal, 2022, , .	5.7	5
11	The Ubiquitin Proteasome System and Nutrient Stress Response. Frontiers in Plant Science, 2022, 13, .	3.6	6
12	The Iron Deficiency-Regulated Small Protein Effector FEP3/IRON MAN1 Modulates Interaction of BRUTUS-LIKE1 With bHLH Subgroup IVc and POPEYE Transcription Factors. Frontiers in Plant Science, 0, 13, .	3.6	16
13	Iron uptake, signaling, and sensing in plants. Plant Communications, 2022, 3, 100349.	7.7	44
14	Biofortification of common bean (<i>Phaseolus vulgaris</i> L.) with iron and zinc: Achievements and challenges. Food and Energy Security, 2023, 12, .	4.3	10
15	IRONMAN peptide interacts with OsHRZ1 and OsHRZ2 to maintain Fe homeostasis in rice. Journal of Experimental Botany, 2022, 73, 6463-6474.	4.8	12
16	Iron redistribution induces oxidative burst and resistance in maize against Curvularia lunata. Planta, 2022, 256, .	3.2	4
17	FE UPTAKEâ€INDUCING PEPTIDE1 maintains Fe translocation by controlling Fe deficiency response genes in the vascular tissue of <i>Arabidopsis</i> . Plant, Cell and Environment, 2022, 45, 3322-3337.	5.7	7
18	A shoot derived long distance iron signal may act upstream of the IMA peptides in the regulation of Fe deficiency responses in Arabidopsis thaliana roots. Frontiers in Plant Science, 0, 13, .	3.6	9
19	Minireview: Chromatin-based regulation of iron homeostasis in plants. Frontiers in Plant Science, 0, 13, .	3.6	3
20	Similarities and differences in iron homeostasis strategies between graminaceous and nongraminaceous plants. New Phytologist, 2022, 236, 1655-1660.	7.3	14
21	CAN OF SPINACH, a novel long non-coding RNA, affects iron deficiency responses in Arabidopsis thaliana. Frontiers in Plant Science, 0, 13, .	3.6	6
22	Simultaneous Enhancement of iron Deficiency Tolerance and Iron Accumulation in Rice by Combining the Knockdown of OsHRZ Ubiquitin Ligases with the Introduction of Engineered Ferric-chelate Reductase. Rice, 2022, 15, .	4.0	1

CITATION REPORT

#	Article	IF	CITATIONS
23	Fe deficiencyâ€induced ethylene synthesis confers resistance to <i>Botrytis cinerea</i> . New Phytologist, 2023, 237, 1843-1855.	7.3	8
24	Iron Nutrition in Plants: Towards a New Paradigm?. Plants, 2023, 12, 384.	3.5	14
26	<scp>ELONGATED HYPOCOTYL</scp> 5 regulates <scp><i>BRUTUS</i></scp> and affects iron acquisition and homeostasis in <i>Arabidopsis thaliana</i> . Plant Journal, 2023, 114, 1267-1284.	5.7	4
27	U-box E3 ubiquitin ligase PUB8 attenuates abscisic acid responses during early seedling growth. Plant Physiology, 2023, 191, 2519-2533.	4.8	3
28	Iron transport and homeostasis in plants: current updates and applications for improving human nutrition values and sustainable agriculture. Plant Growth Regulation, 2023, 100, 373-390.	3.4	2
29	Iron sensing in plants. Frontiers in Plant Science, 0, 14, .	3.6	6
30	Regulation of the iron-deficiency response by IMA/FEP peptide. Frontiers in Plant Science, 0, 14, .	3.6	4
31	Advances in Iron Retrograde Signaling Mechanisms and Uptake Regulation in Photosynthetic Organisms. Methods in Molecular Biology, 2023, , 121-145.	0.9	1
32	The Molecular Mechanism of GhbHLH121 in Response to Iron Deficiency in Cotton Seedlings. Plants, 2023, 12, 1955.	3.5	1
33	Comprehensive Survey of ChIP-Seq Datasets to Identify Candidate Iron Homeostasis Genes Regulated by Chromatin Modifications. Methods in Molecular Biology, 2023, , 95-111.	0.9	1
34	Revealing the molecular basis regulating the iron deficiency response in quinoa seedlings by physio-biochemical and gene expression profiling analyses. Plant and Soil, 0, , .	3.7	1
35	Molecular Regulation of Iron Homeostasis in Plants. Progress in Botany Fortschritte Der Botanik, 2023, , .	0.3	1
36	BRUTUS-LIKE (BTSL) E3 ligase-mediated fine-tuning of Fe regulation negatively affects Zn tolerance of Arabidopsis. Journal of Experimental Botany, 2023, 74, 5767-5782.	4.8	2
37	NO Is Not the Same as GSNO in the Regulation of Fe Deficiency Responses by Dicot Plants. International Journal of Molecular Sciences, 2023, 24, 12617.	4.1	2
38	Ironâ€dependent regulation of leaf senescence: a key role for the H2B histone variant HTB4. New Phytologist, 2023, 240, 461-463.	7.3	0
39	Iron and zinc homeostasis in plants: a matter of trade-offs. Journal of Experimental Botany, 2023, 74, 5426-5430.	4.8	1
40	Multilayered regulation of iron homeostasis in Arabidopsis. Frontiers in Plant Science, 0, 14, .	3.6	2
41	Transcriptome analysis of iron overâ€accumulating <i>Arabidopsis</i> genotypes uncover putative novel regulators of systemic and retrograde signaling. Plant Genome, 0, , .	2.8	Ο

#	Article	IF	CITATIONS
43	Evolutionary studies of the basic helix–loop–helix (<scp>bHLH</scp>) <scp>IVc</scp> gene family in plants and the role of <scp><i>AtILR3</i></scp> in <i>Arabidopsis</i> response to <scp>ABA</scp> stress. Physiologia Plantarum, 2024, 176, .	5.2	0
44	<scp>IRON MAN</scp> interacts with Cuâ€ <scp>DEFICIENCY INDUCED TRANSCRIPTION FACTOR</scp> 1 to maintain copper homeostasis. New Phytologist, 0, , .	7.3	1
45	How plants iron out the competing interests of growth and defence. Nature, 2024, 625, 671-672.	27.8	0
46	Spatial IMA1 regulation restricts root iron acquisition on MAMP perception. Nature, 2024, 625, 750-759.	27.8	1
47	IMA peptides regulate root nodulation and nitrogen homeostasis by providing iron according to internal nitrogen status. Nature Communications, 2024, 15, .	12.8	0
48	Shall we talk? New details in crosstalk between copper and iron homeostasis uncovered in <i>Arabidopsis thaliana</i> . New Phytologist, 2024, 242, 832-835.	7.3	0