The 1986–2021 paroxysmal episodes at the summit cradynamics and hazard

Earth-Science Reviews 220, 103686

DOI: 10.1016/j.earscirev.2021.103686

Citation Report

#	Article	IF	CITATIONS
1	Anatomy of a Paroxysmal Lava Fountain at Etna Volcano: The Case of the 12 March 2021, Episode. Remote Sensing, 2021, 13, 3052.	4.0	23
2	Tephra characterization and multi-disciplinary determination of Eruptive Source Parameters of a weak paroxysm at Mount Etna (Italy). Journal of Volcanology and Geothermal Research, 2022, 421, 107431.	2.1	7
3	Volcanic tremor and long period events at Mt. Etna: Same mechanism at different rates or not?. Physics of the Earth and Planetary Interiors, 2022, 324, 106850.	1.9	0
4	Near Real-Time Petrologic Monitoring on Volcanic Glass to Infer Magmatic Processes During the February–April 2021 Paroxysms of the South-East Crater, Etna. Frontiers in Earth Science, 2022, 10, .	1.8	13
5	The Most Intense Deflation of the Last Two Decades at Mt. Etna: The 2019–2021 Evolution of Ground Deformation and Modeled Pressure Sources. Geophysical Research Letters, 2022, 49, .	4.0	9
6	Quantifying Strombolian Activity at Etna Volcano. Geosciences (Switzerland), 2022, 12, 163.	2.2	4
7	Syn-Eruptive Processes During the January–February 2019 Ash-Rich Emissions Cycle at Mt. Etna (Italy): Implications for Petrological Monitoring of Volcanic Ash. Frontiers in Earth Science, 2022, 10, .	1.8	3
8	Modeling the crystallization conditions of clinopyroxene crystals erupted during February–April 2021 lava fountains at Mt. Etna: Implications for the dynamic transfer of magmas. Lithos, 2022, 420-421, 106710.	1.4	3
9	Comparison between Automated and Manual Detection of Lava Fountains from Fixed Monitoring Thermal Cameras at Etna Volcano, Italy. Remote Sensing, 2022, 14, 2392.	4.0	27
10	Performance of a Rotational Sensor to Decipher Volcano Seismic Signals on Etna, Italy. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	2
11	Rock magnetic fingerprint of Mt. Etna volcanic ash. Geophysical Journal International, 0, , .	2.4	4
12	Explosive Paroxysmal Events at Etna Volcano of Different Magnitude and Intensity Explored through a Multidisciplinary Monitoring System. Remote Sensing, 2022, 14, 4006.	4.0	13
13	Energy threshold changes in volcanic activity at Mt. Etna (Italy) inferred from volcanic tremor. Scientific Reports, 2022, 12, .	3.3	2
14	Infrasonic gliding reflects a rising magma column at Mount Etna (Italy). Scientific Reports, 2022, 12, .	3.3	8
15	Volcanic Tremor Tracks Changes in Multiâ€Vent Activity at Mt. Etna, Italy: Evidence From Analyses of Seismic Array Data. Geophysical Research Letters, 2022, 49, .	4.0	5
16	Real-time probabilistic assessment of volcanic hazard for tephra dispersal and fallout at Mt. Etna: the 2021 lava fountain episodes. Bulletin of Volcanology, 2023, 85, .	3.0	O
17	Evolving shallow conduit revealed by tremor and vent activity observations during episodic lava fountaining of the 2021 Geldingadalir eruption, Iceland. Bulletin of Volcanology, 2023, 85, .	3.0	7
18	Coexisting Strombolian and Hawaiian activity during the 2018 fissure eruption of Kīlauea – Implications for processes of weak explosions. Journal of Volcanology and Geothermal Research, 2023, 435, 107754.	2.1	1

#	Article	IF	CITATIONS
19	A Multi-Sensor Satellite Approach to Characterize the Volcanic Deposits Emitted during Etna's Lava Fountaining: The 2020–2022 Study Case. Remote Sensing, 2023, 15, 916.	4.0	13
20	Tracking a Pyroclastic Density Current With Seismic Signals at Mt. Etna (Italy). Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	0
21	A New Radarâ€Based Statistical Model to Quantify Mass Eruption Rate of Volcanic Plumes. Geophysical Research Letters, 2023, 50, .	4.0	7
22	Towards a Multi-Hazard Assessment at Etna Volcano (Italy): The PANACEA Project. Advances in Science, Technology and Innovation, 2023, , 31-35.	0.4	1
23	The magmatic evolution of South-East Crater (Mt. Etna) during the February–April 2021 sequence of lava fountains from a mineral chemistry perspective. Bulletin of Volcanology, 2023, 85, .	3.0	3
24	The Capabilities of FY-3D/MERSI-II Sensor to Detect and Quantify Thermal Volcanic Activity: The 2020–2023 Mount Etna Case Study. Remote Sensing, 2023, 15, 2528.	4.0	1
25	Clustering of eruptive events from high-precision strain signals recorded during the 2020–2022 lava fountains at the Etna volcano (Italy). Natural Hazards and Earth System Sciences, 2023, 23, 1743-1754.	3.6	1
26	A SO2 flux study of the Etna volcano 2020–2021 paroxysmal sequences. Frontiers in Earth Science, 0, 11, .	1.8	1
27	Modeling the Trajectories of Ballistics in the Summit Area of Mt. Etna (Italy) during the 2020–2022 Sequence of Lava Fountains. Geosciences (Switzerland), 2023, 13, 145.	2.2	2
28	Automatic Early Warning to Derive Eruption Source Parameters of Paroxysmal Activity at Mt. Etna (Italy). Remote Sensing, 2023, 15, 3501.	4.0	3
29	Observing Etna volcano dynamics through seismic and deformation patterns. Scientific Reports, 2023, 13, .	3.3	1
30	Design of alkali activated foamy binders from Sicilian volcanic precursors. Ceramics International, 2023, 49, 38835-38846.	4.8	2
31	Rapid provision of maps and volcanological parameters: quantification of the 2021 Etna volcano lava flows through the integration of multiple remote sensing techniques. Bulletin of Volcanology, 2023, 85, .	3.0	0
32	Insights into post-emplacement lava flow dynamics at Mt. Etna volcano from 2016 to 2021 by synthetic aperture radar and multispectral satellite data. Frontiers in Earth Science, 0, 11 , .	1.8	0
34	The influence of volcano topographic changes on infrasound amplitude: lava fountains at Mt. Etna in 2021. Bulletin of Volcanology, 2023, 85, .	3.0	0
35	Assessment of eruption source parameters using infrasound and plume modelling: a case study from the 2021 eruption of Mt. Etna, Italy. Scientific Reports, 2023, 13, .	3.3	0
36	Assessing impending hazards from summit eruptions: the new probabilistic map for lava flow inundation at Mt. Etna. Scientific Reports, 2023, 13, .	3.3	1
37	Outgassing behaviour during highly explosive basaltic eruptions. Communications Earth & Environment, 2024, 5, .	6.8	0

3

CITATION REPORT

#	Article	IF	CITATIONS
38	Exploiting PlanetScope Imagery for Volcanic Deposits Mapping. Technologies, 2024, 12, 25.	5.1	O
39	A fast compilation of the VONA messages using a computer-assisted procedure. Bulletin of Volcanology, 2024, 86, .	3.0	0