Efficient performance of magnesium oxide loaded bioch Pb2+ and Cd2+ from aqueous solution

Ecotoxicology and Environmental Safety 221, 112426 DOI: 10.1016/j.ecoenv.2021.112426

Citation Report

#	Article	IF	CITATIONS
1	Phosphate removal from municipal effluent by a porous MgO-expanded graphite composite as a novel adsorbent: Evaluation of seawater as a natural source of magnesium ions. Journal of Water Process Engineering, 2021, 43, 102232.	5.6	16
2	Highly efficient and selective capture Pb(II) through a novel metal-organic framework containing bifunctional groups. Journal of Hazardous Materials, 2022, 427, 127852.	12.4	26
3	Fabrication of Mg-Doped Sargassum Biochar for Phosphate and Ammonium Recovery. Sustainability, 2021, 13, 12752.	3.2	4
4	Efficient removal of Cd(II) from aqueous environment by potassium permanganate-modified eucalyptus biochar. Biomass Conversion and Biorefinery, 2024, 14, 77-89.	4.6	7
5	Efficient adsorptive removal of fluoroquinolone antibiotics from water by alkali and bimetallic salts co-hydrothermally modified sludge biochar. Environmental Pollution, 2022, 298, 118833.	7.5	45
6	Adsorption of divalent copper from aqueous solution by magnesium chloride co-doped Cicer arietinum husk biochar: Isotherm, kinetics, thermodynamic studies and response surface methodology. Bioresource Technology Reports, 2022, 18, 101004.	2.7	4
7	Silver ions involved fluorescence "on–off―responses of gold nanoclusters system for determination of carbendazim residues in fruit samples. Food Chemistry, 2022, 386, 132836.	8.2	12
8	Preparation and application of MgO-loaded tobermorite to simultaneously remove nitrogen and phosphorus from wastewater. Chemical Engineering Journal, 2022, 446, 136809.	12.7	16
9	Adsorptive properties of MgO/WO3 nanoadsorbent for selected heavy metals removal from indigenous dyeing wastewater. Chemical Engineering Research and Design, 2022, 162, 775-794.	5.6	29
10	Insights on ball milling enhanced iron magnesium layered double oxides bagasse biochar composite for ciprofloxacin adsorptive removal from water. Bioresource Technology, 2022, 359, 127468.	9.6	13
11	Enhanced lead and copper removal in wastewater by adsorption onto magnesium oxide homogeneously embedded hierarchical porous biochar. Bioresource Technology, 2022, 365, 128146.	9.6	10
12	Simultaneous toxic Cd(II) and Pb(II) encapsulation from contaminated water using Mg/Al-LDH composite materials. Journal of Molecular Liquids, 2022, 368, 120810.	4.9	37
13	Enhanced removal of hexavalent chromium and nitrate in aquifers by alkali-modified emulsified vegetable oil. Journal of Cleaner Production, 2023, 384, 135636.	9.3	0
14	Facile synthesis of magnetic-activated nanocomposites for effective removal of cationic and anionic dyes in an aqueous environment: An equilibrium isotherm, kinetics and thermodynamic studies. Chemical Engineering Research and Design, 2023, 189, 319-332.	5.6	15
15	Ecotoxicological characterization of engineered biochars produced from different feedstock and temperatures. Science of the Total Environment, 2023, 861, 160640.	8.0	8
16	Transformation of oil scum as magnetic char for effective recovery of Cu and Ni from EDTA-bearing wastewater. Environmental Science: Water Research and Technology, 0, , .	2.4	0
17	Removal of Cd2+ from wastewater to form a three-dimensional fiber network using Si-Mg doped industrial lignin-based carbon materials. International Journal of Biological Macromolecules, 2023, 229, 62-69.	7.5	3
18	Effect of CeO2-Reinforcement on Pb Absorption by Coconut Coir-Derived Magnetic Biochar. International Journal of Molecular Sciences, 2023, 24, 1974.	4.1	3

#	Article	IF	CITATIONS
19	Biochar-supported magnesium oxide as high-efficient lead adsorbent with economical use of magnesium precursor. Environmental Research, 2023, 229, 115863.	7.5	2
20	Synthesis of novel magnetic activated carbon for effective Cr(VI) removal via synergistic adsorption and chemical reduction. Environmental Technology and Innovation, 2023, 30, 103092.	6.1	15
21	Incorporation of MgO-humic acid in iron oxide based magnetic composite facilitates for effective remediation of lead, arsenic and bacterial effect in water. Journal of Molecular Liquids, 2023, 380, 121684.	4.9	3
22	Simultaneous and efficient removal of Cd(II) and As(III) by a magnesium-manganese codoped biochar composite: Sorption performance and governing mechanisms. Journal of Environmental Chemical Engineering, 2023, 11, 109919.	6.7	1
23	Highly Efficient Cd2+ Removal Using Tobermorite with pH Self-Adjustment Ability from Aqueous Solution. Materials, 2023, 16, 1314.	2.9	3
24	Waste-Based Ceramsite for the Efficient Removal of Ciprofloxacin in Aqueous Solutions. International Journal of Environmental Research and Public Health, 2023, 20, 5042.	2.6	0
25	Oil spill remediation by biochar derived from bio-energy industries with a pilot-scale approach during the X-Press Pearl maritime disaster. Marine Pollution Bulletin, 2023, 189, 114813.	5.0	4
26	NaHCO3 activated sludge-derived biochar by KMnO4 modification for Cd(II) removal from aqueous solutions. Environmental Science and Pollution Research, 2023, 30, 57771-57787.	5.3	5
27	Remarkable performance of GO/ZnO nanocomposites under optimized parameters for remediation of Cd (II) from water. Applied Surface Science, 2023, 626, 157238.	6.1	5
28	Composite of Ag2O-CuO/biochar as an adsorbent for removal of amoxicillin and paracetamol from aqueous solution. International Journal of Environmental Science and Technology, 2023, 20, 13411-13422.	3.5	1
29	Enhanced adsorptive removal of rifampicin and tigecycline from single system using nano-ceria decorated biochar of mango seed kernel. Heliyon, 2023, 9, e15802.	3.2	2
30	Co-adsorption mechanisms of Cd(II) and As(III) by an Fe-Mn binary oxide biochar in aqueous solution. Chemical Engineering Journal, 2023, 466, 143199.	12.7	27
31	Facile fabrication of highly porous MgO-modified biochar derived from agricultural residue for efficient Cd(II) removal from wastewater. Inorganic Chemistry Communication, 2023, 154, 110900.	3.9	6
32	Fabrication and characterization of magnetic eucalyptus carbon for efficient Cr(VI) removal in aqueous solution and its mechanisms. Arabian Journal of Chemistry, 2023, 16, 105047.	4.9	4
33	Methyl orange dye adsorption and degradation at low temperature using iron oxide-incorporated biochar derived from industrial by-products. Bioresource Technology Reports, 2023, 22, 101470.	2.7	1
34	Comparative Investigation of Biochar-Based Nanocomposites Over Pristine Biochar: An Overview. Advances in Science, Technology and Innovation, 2023, , 57-68.	0.4	0
35	Effect of foliar application of nanoparticles on growth, physiology, and antioxidant enzyme activities of lettuce (Lactuca sativa L.) plants under cadmium toxicity. Environmental Science and Pollution Research, 0, , .	5.3	1
36	Magnetic polyacrylonitrile-melamine nanoadsorbent (PAN-Mel@Fe3O4) for effective adsorption of Cd (II) and Pb (II) from aquatic area. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 298, 116871.	3.5	2

#	Article	IF	CITATIONS
37	Unraveling adsorption characteristics and removal mechanism of novel Zn/Fe-bimetal-loaded and starch-coated corn cobs biochar for Pb(II) and Cd(II) in wastewater. Journal of Molecular Liquids, 2023, 391, 123375.	4.9	5
38	Flower-like imide covalent organic framework as an electrochemical platform catcher for simultaneous sensitive detection of trace Pb(II) and Cd(II). Microchemical Journal, 2023, 193, 109165.	4.5	ο
39	Bio-oil and biochar production from Ageratum conyzoides using triple-stage hydrothermal liquefaction and utilization of biochar in removal of multiple heavy metals from water. Chemosphere, 2023, 340, 139858.	8.2	0
40	Enhanced complexation and electrostatic attraction through fabrication of amino- or hydroxyl-functionalized Fe/Ni-biochar composite for the adsorption of Pb(II) and Cd(II). Separation and Purification Technology, 2024, 328, 125074.	7.9	6
41	Enhanced removal capacities and mechanisms of Mn/Fe-loaded biochar composites functionalized with chitosan Schiff-base or hydroxyl toward Pb(II) and Cd(II) from aqueous solutions. Journal of Environmental Chemical Engineering, 2023, 11, 111132.	6.7	1
42	Preparation of Biomass Carbon Composites MgO@ZnO@BC and Its Adsorption and Removal of Cu(II) and Pb(II) in Wastewater. Molecules, 2023, 28, 6982.	3.8	Ο
43	Removal of Pb2+ from aqueous solution using an MgO nano-hybridized magnetic biochar from spent coffee grounds. Chemical Physics Letters, 2023, , 140894.	2.6	0
44	Surface-loaded magnesium and phosphorus-modified lignite adsorbents: Efficient adsorption and immobilization for remediation of Cd-contaminated water and soil. Environmental Technology and Innovation, 2023, 32, 103442.	6.1	2
45	Enhancing lead removal from wastewater and alleviating lead stress in soil-wheat systems using starch-stabilized Fe-Ni/biochar composites: Synthesis and physico-chemical investigations. Chemical Engineering Research and Design, 2024, 182, 608-624.	5.6	0
46	High efficiency and mechanisms of Cd2+, Cu2+, Mn2+ removal from aqueous solution by modified tobermorite. Journal of Water Process Engineering, 2023, 56, 104515.	5.6	Ο
47	Developing a biocatalyst showcasing the synergistic effect of rice husk biochar and bacterial cells for the removal of heavy metals. New Journal of Chemistry, 2023, 47, 21199-21213.	2.8	2
48	Adsorptive removal of cadmium from aqueous medium-a critical review. Physics and Chemistry of the Earth, 2023, , 103538.	2.9	Ο
49	Simultaneous removal of triadimefon and dinotefuran by a new biochar-based magnesium oxide composite in water: Performances and mechanism. Separation and Purification Technology, 2024, 336, 126213.	7.9	0
50	Fabrication of two novel amino-functionalized and starch-coated CuFe2O4-modified magnetic biochar composites and their application in removing Pb2+ and Cd2+ from wastewater. International Journal of Biological Macromolecules, 2023, , 128973.	7.5	Ο
51	Utilization of local rich banana straw bioresource to solve Cd2+ pollution problem in major non-ferrous metal production areas of Southwest China. Materials Today Sustainability, 2024, 25, 100670.	4.1	0

CITATION REPORT