Clinically Translatable Prevention of Anthracycline Car Mediated by Topoisomerase II Beta and Not Metal Chels

Circulation: Heart Failure

14, e008209

DOI: 10.1161/circheartfailure.120.008209

Citation Report

#	Article	IF	CITATIONS
1	Primary prevention of chronic anthracycline cardiotoxicity with ACE inhibitor is temporarily effective in rabbits, but benefits wane in post-treatment follow-up. Clinical Science, 2022, 136, 139-161.	1.8	1
2	Novel Therapeutics for Anthracycline Induced Cardiotoxicity. Frontiers in Cardiovascular Medicine, 2022, 9, 863314.	1.1	15
3	Myocardial protection of propofol on apoptosis induced by anthracycline by PI3K/AKT/Bcl-2 pathway in rats. Annals of Translational Medicine, 2021 , .	0.7	1
4	POSSIBLE CARDIOPROTECTIVE MECHANISM OF ACTION OF DEXRAZOXANE, AND PROBABLE HUMAN TOPOISOMERASE IIÎ ² INHIBITORS: AN IN SILICO ANALYSIS. Ankara Universitesi Eczacilik Fakultesi Dergisi, 0, ,	0.2	0
5	Relevance of Ferroptosis to Cardiotoxicity Caused by Anthracyclines: Mechanisms to Target Treatments. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	9
6	Ethoxyquin is a Competent Radical-Trapping Antioxidant for Preventing Ferroptosis in Doxorubicin Cardiotoxicity. Journal of Cardiovascular Pharmacology, 2022, 80, 690-699.	0.8	14
7	Current Status and Trends of Research on Anthracycline-Induced Cardiotoxicity from 2002 to 2021: A Twenty-Year Bibliometric and Visualization Analysis. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-21.	1.9	5
8	Preventing effect of astragalus polysaccharide on cardiotoxicity induced by chemotherapy of epirubicin: A pilot study. Medicine (United States), 2022, 101, e30000.	0.4	0
9	Doxorubicin-induced cardiotoxicity: causative factors and possible interventions. Journal of Pharmacy and Pharmacology, 2022, 74, 1677-1688.	1.2	16
10	Anthracycline-induced cardiotoxicity: targeting high-density lipoproteins to limit the damage?. Lipids in Health and Disease, 2022, 21, .	1.2	8
11	Doxorubicin causes ferroptosis and cardiotoxicity by intercalating into mitochondrial DNA and disrupting Alas1-dependent heme synthesis. Science Signaling, 2022, 15, .	1.6	34
12	MicroRNAs in doxorubicin-induced cardiotoxicity: The DNA damage response. Frontiers in Pharmacology, 0, 13 , .	1.6	5
15	Molecular Glue Discovery: Current and Future Approaches. Journal of Medicinal Chemistry, 2023, 66, 9278-9296.	2.9	11