The Evolutionary Significance of Sugar Accumulation in

Australian Journal of Biological Sciences 16, 737 DOI: 10.1071/bi9630737

Citation Report

#	Article	IF	CITATIONS
1	POLYGLUCOSIDE SYNTHESIS IN Saccharum SPECIES. Annals of the New York Academy of Sciences, 1973, 210, 64-79.	3.8	4
2	Sugar-cane as an Energy Crop. Biotechnology and Genetic Engineering Reviews, 1984, 1, 311-346.	6.2	18
3	Taxonomy and Evolution. Developments in Crop Science, 1987, 11, 7-84.	0.1	218
4	Anatomy and Morphology. Developments in Crop Science, 1987, 11, 85-142.	0.1	133
5	Developmental Changes in the Anatomy of the Sugarcane Stem in Relation to Phloem Unloading and Sucrose Storage. Botanica Acta, 1992, 105, 70-80.	1.6	94
6	The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius welw Journal of Plant Physiology, 1993, 142, 493-496.	3.5	191
7	Temporal and Spatial Regulation of Sucrose Accumulation in the Sugarcane Stem. Functional Plant Biology, 1995, 22, 661.	2.1	170
8	A modified assay method shows leaf sucrose-phosphate synthase activity is correlated with leaf sucrose content across a range of sugarcane varieties. Functional Plant Biology, 1998, 25, 499.	2.1	20
9	Sugarcane. , 1999, , 287-310.		6
10	Sugarcane sucrose metabolism: scope for molecular manipulation. Functional Plant Biology, 2001, 28, 1.	2.1	18
11	Relationship between sucrose accumulation and activities of sucrose-phosphatase, sucrose synthase, neutral invertase and soluble acid invertase in micropropagated sugarcane plants. Acta Physiologiae Plantarum, 2002, 24, 441-446.	2.1	28
12	Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Molecular Biology, 2003, 52, 371-386.	3.9	126
13	Identification of Differentially Expressed Transcripts from Maturing Stem of Sugarcane by in silico Analysis of Stem Expressed Sequence Tags and Gene Expression Profiling. Plant Molecular Biology, 2004, 54, 503-517.	3.9	110
14	Study on agroclimatic condition and productivity pattern of sugarcane in india. Sugar Tech, 2004, 6, 141-149.	1.8	5
15	Integration of sucrose accumulation processes across hierarchical scales: towards developing an understanding of the gene-to-crop continuum. Field Crops Research, 2005, 92, 119-135.	5.1	54
16	Sink strength regulates photosynthesis in sugarcane. New Phytologist, 2006, 171, 759-770.	7.3	185
17	The identification and characterisation of alleles of sucrose phosphate synthase gene family III in sugarcane. Molecular Breeding, 2006, 18, 39-50.	2.1	39

CITATION REPORT

#	Article	IF	CITATIONS
19	Genomics-Assisted Crop Improvement. , 2007, , .		23
20	Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnology Journal, 2007, 5, 109-117.	8.3	184
21	Production of polyhydroxybutyrate in sugarcane. Plant Biotechnology Journal, 2007, 5, 162-172.	8.3	94
22	Why does sugarcane (Saccharum sp. hybrid) grow slowly?. South African Journal of Botany, 2007, 73, 546-551.	2.5	43
23	Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling. Functional and Integrative Genomics, 2007, 7, 153-167.	3.5	106
24	Screen of Genes Linked to High-Sugar Content in Stems by Comparative Genomics. Rice, 2008, 1, 166-176.	4.0	38
26	Supply and demand: sink regulation of sugar accumulation in sugarcane. Journal of Experimental Botany, 2009, 60, 357-364.	4.8	129
27	Early Exposure to Ethylene Modifies Shoot Development and Increases Sucrose Accumulation Rate in Sugarcane. Journal of Plant Growth Regulation, 2010, 29, 149-163.	5.1	16
28	Downregulation of pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase activity in sugarcane culms enhances sucrose accumulation due to elevated hexose-phosphate levels. Planta, 2010, 231, 595-608.	3.2	52
29	Plant growth, canopy photosynthesis and light availability in three sugarcane varieties. Sugar Tech, 2010, 12, 160-166.	1.8	16
31	Transgenic expression of trehalulose synthase results in high concentrations of the sucrose isomer trehalulose in mature stems of fieldâ€grown sugarcane. Plant Biotechnology Journal, 2011, 9, 32-37.	8.3	34
32	Sucrose accumulation in sugarcane: a potential target for crop improvement. Acta Physiologiae Plantarum, 2011, 33, 1571-1583.	2.1	15
33	Sucrose Mobilisation in Sugarcane Stalk Induced by Heterotrophic Axillary Bud Growth. Tropical Plant Biology, 2012, 5, 173-182.	1.9	15
34	Ethanol from sugarcane in <scp>B</scp> razil: a â€~midway' strategy for increasing ethanol production while maximizing environmental benefits. GCB Bioenergy, 2012, 4, 119-126.	5.6	52
35	High-throughput assessment of transgene copy number in sugarcane using real-time quantitative PCR. Plant Cell Reports, 2012, 31, 167-177.	5.6	35
36	Matureâ€stem expression of a silencingâ€resistant sucrose isomerase gene drives isomaltulose accumulation to high levels in sugarcane. Plant Biotechnology Journal, 2013, 11, 502-509.	8.3	33
39	Metabolic engineering of sugars and simple sugar derivatives in plants. Plant Biotechnology Journal, 2013, 11, 142-156.	8.3	177
40	Identification and genes expression analysis of ATP-dependent phosphofructokinase family members among three Saccharum species. Functional Plant Biology, 2013, 40, 369.	2.1	9

CITATION REPORT

#	Article	IF	CITATIONS
41	Grain, sugar and biomass accumulation in tropical sorghums. I. Trade-offs and effects of phenological plasticity. Functional Plant Biology, 2013, 40, 342.	2.1	35
42	Preliminary Evaluation of Some Qualitative Traits of Sugarcane Germplasm of North-Western Nigeria. Nigerian Journal of Basic and Applied Sciences, 2013, 21, .	0.2	0
43	The potential of the energy cane as the main biomass crop for the cellulosic industry. Chemical and Biological Technologies in Agriculture, 2014, 1, .	4.6	69
44	Phenotypic characterization of the Miami World Collection of sugarcane (Saccharum spp.) and related grasses for selecting a representative core. Genetic Resources and Crop Evolution, 2014, 61, 1581-1596.	1.6	25
45	Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus <i><scp>S</scp>accharum</i> . Plant Journal, 2014, 79, 162-172.	5.7	40
46	Sugarcane Bioenergy. , 2015, , 383-405.		4
47	Recent Advancements in Gene Expression and Enabling Technologies in Crop Plants. , 2015, , .		6
49	Tissue-specific transcriptome analysis within the maturing sugarcane stalk reveals spatial regulation in the expression of cellulose synthase and sucrose transporter gene families. Plant Molecular Biology, 2015, 89, 607-628.	3.9	55
50	Metabolic Changes Associated with the Sink-Source Transition During Sprouting of the Axillary Buds on the Sugarcane Culm. Tropical Plant Biology, 2016, 9, 1-11.	1.9	16
51	Ethylene-induced transcriptional and hormonal responses at the onset of sugarcane ripening. Scientific Reports, 2017, 7, 43364.	3.3	38
52	Development of a Three-Dimensional Ray-Tracing Model of Sugarcane Canopy Photosynthesis and Its Application in Assessing Impacts of Varied Row Spacing. Bioenergy Research, 2017, 10, 626-634.	3.9	31
53	Assessment of Stalk Properties to Predict Juice Yield in Sorghum. Bioenergy Research, 2017, 10, 657-670.	3.9	17
54	Expression analysis of genes associated with sucrose accumulation in sugarcane under normal and GA3-induced source–sink perturbed conditions. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	11
55	Comparison between different selection indices in energy cane breeding. Genetics and Molecular Research, 2017, 16, .	0.2	13
56	A novel Sugarcane bacilliform virus promoter confers gene expression preferentially in the vascular bundle and storage parenchyma of the sugarcane culm. Biotechnology for Biofuels, 2017, 10, 172.	6.2	9
57	Association of variation in the sugarcane transcriptome with sugar content. BMC Genomics, 2017, 18, 909.	2.8	41
58	A virus-derived short hairpin RNA confers resistance against sugarcane mosaic virus in transgenic sugarcane. Transgenic Research, 2018, 27, 203-210.	2.4	26
59	Culm transcriptome sequencing of Badila (Saccharum officinarum L.) and analysis of major genes involved in sucrose accumulation. Plant Physiology and Biochemistry, 2019, 144, 455-465.	5.8	12

#	Article	IF	CITATIONS
60	Effects of Exogenous GA3 and DPC Treatments on Levels of Endogenous Hormone and Expression of Key Gibberellin Biosynthesis Pathway Genes During Stem Elongation in Sugarcane. Sugar Tech, 2019, 21, 936-948.	1.8	16
61	Expression analysis of genes associated with sucrose accumulation and its effect on source–sink relationship in high sucrose accumulating early maturing sugarcane variety. Physiology and Molecular Biology of Plants, 2019, 25, 207-220.	3.1	25
62	Fuzzy controller in the selection of sugarcane and energy cane ideotypes. Euphytica, 2020, 216, 1.	1.2	0
63	Evolutionary expansion and functional divergence of sugar transporters in <i>Saccharum</i> (<i>S.) Tj ETQq1 1</i>	0.784314 5.7	$rg_{20}^{BT}/Overlood$
64	Coupling kinetic models and advection–diffusion equations. 1. Framework development and application to sucrose translocation and metabolism in sugarcane. In Silico Plants, 2021, 3, .	1.9	5
65	Identification of proteins and metabolic networks associated with sucrose accumulation in sugarcane (<i>Saccharum</i> spp. interspecific hybrids). Journal of Plant Interactions, 2021, 16, 166-178.	2.1	9
66	Sugarcane Breeding for Enhanced Fiber and Its Impacts on Industrial Processes. , 0, , .		1
67	Introductory Chapter: Bioengineered Sugarcane - A Sustainable Biofactory of Renewable Energy. , 0, , .		0
69	Wasserumsatz und Stoffbewegungen. Progress in Botany Fortschritte Der Botanik, 1965, , 65-89.	0.3	1
70	Integrating Omics Approaches in Sugarcane Improvement. , 2013, , 191-250.		4
72	Promoting Utilization of Saccharum spp. Genetic Resources through Genetic Diversity Analysis and Core Collection Construction. PLoS ONE, 2014, 9, e110856.	2.5	51
73	CHANGES OF SUCROSE CONTENT AND INVERTASE ACTIVITY DURING SUGARCANE STEM STORAGE. Indonesian Journal of Agricultural Science, 2016, 8, 75.	0.3	15
74	Wasserumsatz und Stoffbewegungen. , 1965, , 65-89.		0
75	Blütenökologie und andere ökologische Sondergebiete. , 1965, , 484-497.		0
76	Blütenökologie und andere ökologische Sondergebiete. Progress in Botany Fortschritte Der Botanik, 1965, , 484-497.	0.3	1
77	Physiological and Agronomic Traits of Certain Sugarcane Genotypes Grown under Field Conditions as Influenced by Early Drought Stress. Agronomy, 2021, 11, 2319.	3.0	19
78	Reduction of ethylene biosynthesis in sugarcane induces growth and investment in the non-enzymatic antioxidant apparatus. Plant Cell Reports, 2022, 41, 979-993.	5.6	2
79	Temporal Gene Expression in Apical Culms Shows Early Changes in Cell Wall Biosynthesis Genes in Sugarcane. Frontiers in Plant Science, 2021, 12, 736797.	3.6	1

CITATION REPORT

#

82