Perovskite Lightâ€Emitting Diodes with EQE Exceeding Dualâ€Additive Strategy for Defect Passivation and Nat

Advanced Materials 33, e2103268 DOI: 10.1002/adma.202103268

Citation Report

#	Article	IF	CITATIONS
1	Lewis adduct approach for self-assembled block copolymer perovskite quantum dots composite toward optoelectronic application: Challenges and prospects. Chemical Engineering Journal, 2022, 431, 133701.	6.6	19
2	lon Migration in Perovskite Lightâ€Emitting Diodes: Mechanism, Characterizations, and Material and Device Engineering. Advanced Materials, 2022, 34, e2108102.	11.1	85
3	Dimension tailoring via antisolvent enables efficient perovskite light-emitting diodes. Materials Today Nano, 2022, 17, 100170.	2.3	5
4	Tuning Precursor–Amine Interactions for Light-Emitting Lead Bromide Perovskites. Journal of Physical Chemistry Letters, 2022, 13, 704-710.	2.1	5
5	ZnO-Based Electron-Transporting Layers for Perovskite Light-Emitting Diodes: Controlling the Interfacial Reactions. Journal of Physical Chemistry Letters, 2022, 13, 694-703.	2.1	19
6	Efficient Green Quasi-Two-Dimensional Perovskite Light-Emitting Diodes Based on Mix-Interlayer. Frontiers in Chemistry, 2021, 9, 825822.	1.8	1
7	Interface engineering improves the performance of green perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 2998-3005.	2.7	16
8	Further Advancement of Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2022, 13, 274-290.	2.1	9
9	Design of two-dimensional halide perovskite composites for optoelectronic applications and beyond. Materials Advances, 2022, 3, 756-778.	2.6	14
10	Phosphonate/Phosphine Oxide Dyad Additive for Efficient Perovskite Lightâ€Emitting Diodes. Angewandte Chemie, 2022, 134, .	1.6	3
11	Amplified Spontaneous Emission with a Low Threshold from Quasiâ€2D Perovskite Films via Phase Engineering and Surface Passivation. Advanced Optical Materials, 2022, 10, .	3.6	15
12	Phosphonate/Phosphine Oxide Dyad Additive for Efficient Perovskite Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
13	12-Crown-4 ether assisted in-situ grown perovskite crystals for ambient stable light emitting diodes. Nano Energy, 2022, 95, 107000.	8.2	11
14	Small amines bring big benefits to perovskite-based solar cells and light-emitting diodes. CheM, 2022, 8, 351-383.	5.8	35
15	Ultraâ€Thermostability of Spatially Confined and Fully Protected Perovskite Nanocrystals by In Situ Crystallization. Small, 2022, 18, e2107452.	5.2	7
16	Effect of post-annealing on thermally evaporated reduced-dimensional perovskite LEDs. Applied Physics Letters, 2022, 120, .	1.5	9
17	Bright CsPbBr3 Perovskite Nanocrystals with Improved Stability by In-Situ Zn-Doping. Nanomaterials, 2022, 12, 759.	1.9	10
18	Passivation Layer of Potassium Iodide Yielding High Efficiency and Stable Deep Red Perovskite Light-Emitting Diodes, ACS Applied Materials & 2022, 14, 16404-16412,	4.0	17

#	Article	IF	CITATIONS
19	In Situ Fabrication of Cs ₃ Cu ₂ 1 ₅ : Tl Nanocrystal Films for High-Resolution and Ultrastable X-ray Imaging. Journal of Physical Chemistry Letters, 2022, 13, 2862-2870.	2.1	39
20	Star perovskite materials. Journal of Semiconductors, 2022, 43, 030203.	2.0	56
21	Revealing a Zinc Oxide/Perovskite Luminescence Quenching Mechanism Targeting Low-Roll-off Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 3121-3129.	2.1	7
22	Multifunctional <i>π</i> onjugated Additives for Halide Perovskite. Advanced Science, 2022, 9, e2105307.	5.6	33
23	High-Brightness Perovskite Microcrystalline Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 2963-2968.	2.1	5
24	In Situ Growth of Ultrapure Greenâ€Emitting FAPbBr ₃ â€PVDF Films via a Synergetic Dualâ€Additive Strategy for Wide Color Gamut Backlit Display. Advanced Materials Technologies, 2022, 7, .	3.0	3
25	Largeâ€Area and Efficient Skyâ€Blue Perovskite Lightâ€Emitting Diodes via Bladeâ€Coating. Advanced Materials, 2022, 34, e2108939.	11.1	20
26	Highâ€Efficiency Airâ€Processed Siâ€Based Perovskite Lightâ€Emitting Devices via PMMAâ€TBAPF ₆ Coâ€Doping. Advanced Optical Materials, 2022, 10, .	3.6	9
27	Spacer Organic Cation Engineering for Quasiâ€2D Metal Halide Perovskites and the Optoelectronic Application. Small Structures, 2022, 3, .	6.9	26
28	2D/3D Heterojunction perovskite light-emitting diodes with tunable ultrapure blue emissions. Nano Energy, 2022, 97, 107181.	8.2	32
29	Exciton harvesting in quasi-2D perovskite light-emitting diodes with an encapsulated thermally activated delayed fluorescence. Applied Physics Letters, 2021, 119, .	1.5	3
30	Mode-locking operation of an Er-doped fiber laser with (PEA) ₂ (CsPbBr ₃) _{<i>n</i>â^'1} PbBr ₄ perovskite saturable absorbers. Journal of Materials Chemistry C, 2022, 10, 7504-7510.	2.7	6
31	A Multifunctional Ionic Liquid Additive Enabling Stable and Efficient Perovskite Lightâ€Emitting Diodes. Small, 2022, 18, e2200498.	5.2	24
32	Top-Emitting Microcavity Light-Emitting Diodes Based on All-Thermally Evaporated Lead-Free Copper Halide Self-Trapped-Exciton Emitters. Journal of Physical Chemistry Letters, 2022, 13, 3431-3437.	2.1	9
33	High-Luminance Microsized CH ₃ NH ₃ PbBr ₃ Single-Crystal-Based Light-Emitting Diodes via a Facile Liquid-Insulator Bridging Route. ACS Nano, 2022, 16, 6394-6403.	7.3	13
34	Nacre inspired robust self-encapsulating flexible perovskite photodetector. Nano Energy, 2022, 98, 107254.	8.2	17
35	Highly emissive and color-tunable copper-based halide composites for bright white light-emitting diodes. Materials Chemistry Frontiers, 2022, 6, 1647-1657.	3.2	4
36	Quasi-2D halide perovskite crystals and their optoelectronic applications. Journal of Materials	5.2	16

#	Article	IF	CITATIONS
37	Frontier applications of perovskites beyond photovoltaics. Journal of Semiconductors, 2022, 43, 040203.	2.0	7
38	Marked Efficiency Improvement of FAPb0.7Sn0.3Br3 Perovskite Light-Emitting Diodes by Optimization of the Light-Emitting Layer and Hole-Transport Layer. Nanomaterials, 2022, 12, 1454.	1.9	4
39	Toward Continuous-Wave Pumped Metal Halide Perovskite Lasers: Strategies and Challenges. ACS Nano, 2022, 16, 7116-7143.	7.3	32
40	Highly Emissive Quasi-2D Perovskites Enabled by a Multifunctional Molecule for Bright Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 21636-21644.	4.0	13
41	CsPbBr3 nanocrystals embedded glass enables highly stable and efficient light-emitting diodes. Chemical Engineering Journal, 2022, 445, 136867.	6.6	24
42	Photoinduced Cross Linkable Polymerization of Flexible Perovskite Solar Cells and Modules by Incorporating Benzyl Acrylate. Advanced Functional Materials, 2022, 32, .	7.8	32
43	Microâ€Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications. Advanced Functional Materials, 2022, 32, .	7.8	25
44	Charge-carrier dynamics and regulation strategies in perovskite light-emitting diodes: From materials to devices. Applied Physics Reviews, 2022, 9, .	5.5	20
45	Enhanced spectral stability of blue perovskite light-emitting diodes via multidentate amine-based ligand. Applied Physics Letters, 2022, 120, 203502.	1.5	3
46	Cu substitution boosts self-trapped exciton emission in zinc-based metal halides for sky-blue light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 9530-9537.	2.7	8
47	Recent Progress in the Stability of Red-Emissive Perovskite Nanocrystals for Light-Emitting Diodes. , 2022, 4, 1233-1254.		20
48	Selfâ€Healing Perovskite Films Enabled by Fluorinated Crossâ€Linked Network Targeting Flexible Lightâ€Emitting Diode. Advanced Optical Materials, 2022, 10, .	3.6	5
49	Additive and interfacial control for efficient perovskite light-emitting diodes with reduced trap densities. Journal of Semiconductors, 2022, 43, 050502.	2.0	5
50	Perovskiteâ€Gallium Nitride Tandem Lightâ€Emitting Diodes with Improved Luminance and Color Tunability. Advanced Science, 2022, 9, .	5.6	15
51	Domain controlling and defect passivation for efficient quasi-2D perovskite LEDs. Journal of Semiconductors, 2022, 43, 050201.	2.0	2
52	Alkylamine-Doping Poly(3,4-ethylene dioxythiophene):Poly(styrene sulfonic acid)-Enhanced Operational Stability of Perovskite Light-Emitting Diodes: Chain Length Effect. ACS Applied Electronic Materials, 2022, 4, 2993-2999.	2.0	2
53	Roomâ€Temperature Synthesized Cdâ€Doped Cs ₃ Cu ₂ I ₅ : Stable and Excitationâ€Wavelength Dependent Dualâ€Color Emission for Advanced Antiâ€Counterfeiting. Chemistry - A European Journal, 2022, 28, .	1.7	11
54	Amine-Terminated Carbon Dots Linking Hole Transport Layer and Vertically Oriented Quasi-2D Perovskites through Hydrogen Bonds Enable Efficient LEDs. ACS Nano, 2022, 16, 9679-9690.	7.3	41

#	Article	IF	CITATIONS
55	Diammoniumâ€Mediated Perovskite Film Formation for High‣uminescence Red Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, .	11.1	23
56	Constructing Effective Hole Transport Channels in Crossâ€Linked Hole Transport Layer by Stacking Discotic Molecules for High Performance Deep Blue QLEDs. Advanced Science, 2022, 9, .	5.6	16
57	High performance perovskite light emitting diodes with an ionic compound. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
58	Pb-free halide perovskites for solar cells, light-emitting diodes, and photocatalysts. APL Materials, 2022, 10, .	2.2	11
59	Trade-off between the Performance and Stability of Perovskite Light-Emitting Diodes with Excess Halides. Journal of Physical Chemistry Letters, 2022, 13, 5179-5185.	2.1	2
60	Synthesis and Improved Photoluminescent Properties and Stability of Bromineâ€Rich CsPbBr ₃ Nanocrystals Via using CTAB as Additive. Crystal Research and Technology, 0, , 2200051.	0.6	1
61	Crystallization regulation and protection of quasi-2D perovskite film by copolymer to enhance the stability of perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 11258-11265.	2.7	6
62	Understanding and minimizing non-radiative recombination losses in perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 13590-13610.	2.7	29
63	Inkjet Printing Efficient Definedâ€Pixel Matrix Perovskite Lightâ€Emitting Diodes with a Polar Polymer Modification Layer. Advanced Materials Technologies, 2022, 7, .	3.0	9
64	High-Performance Deep Red Colloidal Quantum Well Light-Emitting Diodes Enabled by the Understanding of Charge Dynamics. ACS Nano, 2022, 16, 10840-10851.	7.3	21
65	Deepâ€Red Perovskite Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 21% Enabled by Ligandâ€Modulated Dimensionality Control. Advanced Optical Materials, 2022, 10, .	3.6	16
66	Stability of perovskite materials and devices. Materials Today, 2022, 58, 275-296.	8.3	35
67	Spectral Narrowing and Enhancement of Directional Emission of Perovskite Light Emitting Diode by Microcavity. Laser and Photonics Reviews, 2022, 16, .	4.4	9
68	Environmentâ€Friendly Perovskite Lightâ€Emitting Diodes: Progress and Perspective. Advanced Materials Interfaces, 2022, 9, .	1.9	13
69	Ultra-stable and color-tunable manganese ions doped lead-free cesium zinc halides nanocrystals in glasses for light-emitting applications. Nano Research, 2022, 15, 9368-9376.	5.8	19
70	Deepâ€Blue Lightâ€Emitting Diodes Constructed with Perovskite Quasiâ€2D and Nanocrystal Mixtures. Advanced Optical Materials, 2022, 10, .	3.6	8
71	Small Molecule-Induced Modulation of Grain Crystallization and Ion Migration Leads to High-Performance MAPbI ₃ Mini-Modules. ACS Applied Energy Materials, 2022, 5, 9471-9478.	2.5	3
72	Red Perovskite Lightâ€Emitting Diodes with Efficiency Exceeding 25% Realized by Coâ€Spacer Cations. Advanced Materials, 2022, 34, .	11.1	135

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
73	Metal Halide Perovskites toward Electrically Pumped Lasers. Laser and Photonics Reviews, 2022, 16, .	4.4	26
74	Deepâ€Blue Electroluminescence of Perovskites with Reduced Dimensionality Achieved by Manipulating Adsorptionâ€Energy Differences. Angewandte Chemie, 2022, 134, .	1.6	9
75	Multifunctional Crystal Regulation Enables Efficient and Stable Skyâ€Blue Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	7.8	51
76	Deepâ€Blue Electroluminescence of Perovskites with Reduced Dimensionality Achieved by Manipulating Adsorptionâ€Energy Differences. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
77	A roadmap for the commercialization of perovskite light emitters. Nature Reviews Materials, 2022, 7, 757-777.	23.3	96
78	Ultrastable near-infrared perovskite light-emitting diodes. Nature Photonics, 2022, 16, 637-643.	15.6	125
79	Quantum dots enhanced stability of in-situ fabricated perovskite nanocrystals based light-emitting diodes: Electrical field distribution effects. Fundamental Research, 2022, , .	1.6	3
80	Stability of Perovskite Lightâ€Emitting Diodes: Existing Issues and Mitigation Strategies Related to Both Material and Device Aspects. Advanced Materials, 2022, 34, .	11.1	65
81	MAPbBr ₃ Firstâ€Order Distributed Feedback Laser with High Stability. Advanced Photonics Research, 0, , 2200071.	1.7	2
82	All Solutionâ€Processed High Performance Pureâ€Blue Perovskite Quantumâ€Dot Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	7.8	42
83	Crown-ether modified thermally evaporated perovskite light-emitting devices with increased operational stability. Journal of Luminescence, 2022, 252, 119317.	1.5	3
84	Recent promise of lead-free halide perovskites in optoelectronic applications. Chemical Engineering Journal, 2023, 451, 138926.	6.6	26
85	Recent progress of single-halide perovskite nanocrystals for advanced displays. Nanoscale, 2022, 14, 13990-14007.	2.8	5
86	High Efficient Cesium Copper Halide-Based Light Emitting Diodes with an insulating layer. , 2022, , .		0
87	Improved extraction efficiency of CsPbBr3 perovskite light-emitting diodes due to anodic aluminum oxide nanopore structure. Scientific Reports, 2022, 12, .	1.6	4
88	Lattice strain modulation toward efficient blue perovskite light-emitting diodes. Science Advances, 2022, 8, .	4.7	23
89	Tailoring the 2D/3D Phase Segregation for Highly Efficient Si-Based Perovskite Light-Emitting Diodes. , 2022, 4, 2080-2089.		3
90	Activity Enhancement of Photo-generated Carrier in CsPbBr3 Nanocrystals Improved by Cd Element. Optics Express, 0, , .	1.7	0

#	Article	IF	CITATIONS
91	Efficient and Stable Self-Assembly Blue-Emitting CsPbBr ₃ Nanoplatelets with Self-Repaired Surface Defects. ACS Applied Nano Materials, 2022, 5, 15062-15069.	2.4	5
92	Highâ€Efficiency Perovskite–Organic Blend Lightâ€Emitting Diodes Featuring Selfâ€Assembled Monolayers as Holeâ€Injecting Interlayers. Advanced Energy Materials, 2023, 13, .	10.2	11
93	High-Efficiency Tandem White Perovskite Light-Emitting Diodes by Using an Organic/Inorganic Intermediate Connector. Crystals, 2022, 12, 1286.	1.0	2
94	Stabilized Low-Dimensional Species for Deep-Blue Perovskite Light-Emitting Diodes with EQE Approaching 3.4%. Journal of the American Chemical Society, 2022, 144, 18470-18478.	6.6	26
95	Highâ€Performance Perovskite Lightâ€Emitting Diodes Enabled by Passivating Defect and Constructing Dual Energyâ€Transfer Pathway through Functional Perovskite Nanocrystals. Advanced Materials, 2022, 34, .	11.1	43
96	Interfaced Structures between Halide Perovskites: From Basics to Construction to Optoelectronic Applications. Advanced Energy Materials, 2023, 13, .	10.2	6
97	Overcoming the Outcoupling Limit of Perovskite Lightâ€Emitting Diodes with Artificially Formed Nanostructures. Advanced Materials, 2022, 34, .	11.1	12
98	Bio-Inspired Pangolin Design for Self-Healable Flexible Perovskite Light-Emitting Diodes. ACS Nano, 2022, 16, 17973-17981.	7.3	11
99	Organic–Inorganic Hybrid Devices—Perovskite-Based Devices. , 2022, , 283-307.		0
100	Intrinsic Ion Migration Dynamics in a One-Dimensional Organic Metal Halide Hybrid. ACS Energy Letters, 2022, 7, 3753-3760.	8.8	3
101	Interface Engineering with Quaternary Ammonium-Based Ionic Liquids toward Efficient Blue Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 50393-50400.	4.0	8
102	Promoting Energy Transfer Between Quasiâ€2D Perovskite Layers Toward Highly Efficient Red Lightâ€Emitting Diodes. Small, 2022, 18, .	5.2	12
103	Flexible perovskite light-emitting diodes: Progress, challenges and perspective. Science China Materials, 2023, 66, 1-21.	3.5	15
104	Efficient Quasi-2D Perovskite Light-Emitting Diodes Enabled by Regulating Phase Distribution with a Fluorinated Organic Cation. Nanomaterials, 2022, 12, 3495.	1.9	5
105	Enhanced Performance of Perovskite Light-emitting Diodes via Phenylmethylamine Passivation. Micromachines, 2022, 13, 1857.	1.4	0
106	Improving the Operational Stability of Nearâ€Infrared Quasiâ€2D Perovskite Lightâ€Emitting Diodes by Cation Engineering. Advanced Optical Materials, 2023, 11, .	3.6	3
107	Reduced Selfâ€Absorption of Quasiâ€2D Perovskites and Their Application in Color Conversion Layers. Advanced Optical Materials, 2023, 11, .	3.6	3
108	Optoelectronic response of semiconductor CsPb1â€'Cd Br3 nanocrystals: Role of Cd element. Journal of Luminescence, 2023, 253, 119444.	1.5	1

ARTICLE IF CITATIONS # Regulating the phase distribution of quasi-2D perovskites using a three-dimensional cyclic molecule 109 2.8 1 toward improved light-emitting performance. Nanoscale, 2022, 14, 17409-17417. Defect Passivation on Lead-Free CsSnI3 Perovskite Nanowires Enables High-Performance 14.4 28 Photodetectors with Ultra-High Stability. Nano-Micro Letters, 2022, 14, . A Spacer Cation Assisted Nucleation and Growth Strategy Enables Efficient and Highâ€Luminance 111 7.8 24 Quasiâ€2D Perovskite LEDs. Advanced Functional Materials, 2023, 33, . Degradation mechanisms of perovskite light-emitting diodes under electrical bias. Nanophotonics, 2.9 2023, 12, 451-476. Self-Assembled Bilayer Microstructure Improves Quasi-2D Perovskite Light-Emitting Diodes. Chemistry 113 3.2 2 of Materials, 0, , . Planar defect–free pure red perovskite light-emitting diodes via metastable phase crystallization. 4.7 Science Advances, 2022, 8, . Halide Chemistry in Tin Perovskite Optoelectronics: Bottlenecks and Opportunities. Angewandte 115 7.2 12 Chemie - International Edition, 2023, 62, . Halide Chemistry in Tin Perovskite Optoelectronics: Bottlenecks and Opportunities. Angewandte 1.6 Chemie, 2023, 135, . Red Perovskite Lightâ€Emitting Diodes: Recent Advances and Perspectives. Laser and Photonics Reviews, 117 4.4 19 2023, 17, . Zwitterions Narrow Distribution of Perovskite Quantum Wells for Blue Lightâ€Emitting Diodes with 118 11.1 Efficiency Exceeding 15%. Advanced Materials, 2023, 35, . Interfacial engineering of halide perovskites and two-dimensional materials. Chemical Society 119 18.7 13 Reviews, 2023, 52, 212-247. Highly stable lanthanide-doped CsPbI₃ perovskite nanocrystals with near-unity quantum 2.8 yield for efficient red light-emitting diodes. Nanoscale, 2023, 15, 1109-1118. Review on the promising roles of alkali metals toward highly efficient perovskite light-emitting 121 2.7 3 diodes. Journal of Materials Chemistry C, 2023, 11, 2011-2025. Molecularly understanding and regulating carrier injection behavior of ETL/perovskite towards high 6.6 performance PeLEDs. Chemical Engineering Journal, 2023, 456, 141077. Synthesis, crystal structure and white luminescence of zero-dimensional organic–inorganic zinc 123 2.7 8 halides. Journal of Materials Chemistry C, 2022, 10, 18279-18284. Synergistic passivation and stepped-dimensional perovskite analogs enable high-efficiency 124 5.8 néar-infrared light-emitting diodes. Nature Communications, 2022, 13, . Suppressed Energy Transfer Loss of Dionâ€"Jacobson Perovskite Enabled by DMSO Vapor Treatment for 125 8.8 19 Efficient Sky-Blue Light-Emitting Diodes. ACS Energy Letters, 2023, 8, 339-346. Unveiling Dopantâ€Induced Ultrafast Exciton Dynamics in Mn/Yb Codoped Perovskite Nanocrystals. , 0, , 2200071.

# 127	ARTICLE Efficient single-component white light emitting diodes enabled by lanthanide ions doped lead halide perovskites via controlling Förster energy transfer and specific defect clearance. Light: Science and Applications, 2022, 11	IF 7.7	Citations 28
128	Comprehensive Passivation for Highâ€Performance Quasiâ€2D Perovskite LEDs. Small, 2023, 19, .	5.2	12
129	Efficient Red Light Emitting Diodes Based on a Zeroâ€Đimensional Organic Antimony Halide Hybrid. Advanced Materials, 2023, 35, .	11.1	26
130	Blue Light Hazard Optimization for White Lightâ€Emitting Diode of Mn ²⁺ â€Activated 0D Cs ₃ Cu ₂ Br ₅ Perovskite Materials. Advanced Materials Interfaces, 2023, 10, .	1.9	6
131	Emerging Halide Perovskite Ferroelectrics. Advanced Materials, 2023, 35, .	11.1	30
132	An Organic–Inorganic Tin Halide Perovskite with Over 2000â€Hour Emission Stability. Advanced Optical Materials, 2023, 11, .	3.6	1
133	Ion migration in metal halide perovskite QLEDs and its inhibition. Chinese Physics B, 2023, 32, 018507.	0.7	2
134	Heterointerface engineering of perovskite defects and energetics for light-emitting diodes. Nano Research, 2023, 16, 5525-5532.	5.8	7
135	Blue Halide Perovskite Materials: Preparation, Progress, and Challenges. Laser and Photonics Reviews, 2023, 17, .	4.4	10
136	Photoluminescence Enhancement for Efficient Mixedâ€Halide Blue Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	4
137	Interface regulation toward low driving voltage perovskite light-emitting diodes. Applied Physics Letters, 2023, 122, .	1.5	3
138	Molecular Bridging Strategy Enables High Performance and Stable Quasi-2D Perovskite Light-Emitting Devices. ACS Energy Letters, 2023, 8, 1018-1025.	8.8	20
139	Manipulating Crystallization Dynamics for Efficient and Spectrally Stable Blue Perovskite Lightâ€Emitting Diodes. Laser and Photonics Reviews, 2023, 17, .	4.4	3
140	Effect of multi-interface patterns on the light-outcoupling of perovskite light-emitting diodes. Applied Physics Letters, 2023, 122, 021106.	1.5	1
141	Efficient Perovskite Light-Emitting Diodes by Buried Interface Modification with Triphenylphosphine Oxide. ACS Applied Materials & Interfaces, 2023, 15, 3644-3650.	4.0	15
142	Advances in electrically driven light-emitting diodes based on lead-free metal halides. Chemical Communications, 2023, 59, 1116-1124.	2.2	3
143	Towards micro-PeLED displays. Nature Reviews Materials, 2023, 8, 341-353.	23.3	15
144	Unveiling the Degraded Electron Durability in Reduced-Dimensional Perovskites. Nanoscale, 0, , .	2.8	0

#	Article	IF	CITATIONS
145	Revealing Atomicâ€Level Surface Passivation of PbI ₂ â€Reconditioned Red Perovskite Quantum Dots. Advanced Optical Materials, 2023, 11, .	3.6	4
146	Influence of Mn2+ doping on the optical properties of Cs2AgBiCl6 double perovskite luminescent phosphors. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	4
147	Crystallization control based on A-site cation strategy for blue FAPbBr3 perovskite nanoplatelets with pure emission. Applied Surface Science, 2023, 615, 156355.	3.1	3
148	Multidentate Molecule Anchoring Halide Perovskite Surface and Regulating Crystallization Kinetics toward Efficient Lightâ€Emitting Diodes. Small, 2023, 19, .	5.2	10
149	Universal Molecular Control Strategy for Scalable Fabrication of Perovskite Light-Emitting Diodes. Nano Letters, 2023, 23, 985-992.	4.5	15
150	Phosphine oxide additives for perovskite light-emitting diodes and solar cells. CheM, 2023, 9, 562-575.	5.8	18
151	A hole injection monolayer enables cost-effective perovskite light-emitting diodes. Journal of Materials Chemistry C, 2023, 11, 2851-2862.	2.7	2
152	Two-dimensional semiconducting Cu(<scp>i</scp>)/Sb(<scp>iii</scp>) bimetallic hybrid iodides with a double perovskite structure and photocurrent response. Nanoscale, 2023, 15, 5265-5273.	2.8	1
153	Interfacial modification for the fabrication of Silicon-based green perovskite Light-Emitting diodes. Applied Surface Science, 2023, 616, 156547.	3.1	3
154	Ultralow-threshold quasi-CW lasing from FAPbBr ₃ perovskite first-order DFB laser. Nanotechnology, 2023, 34, 175201.	1.3	0
155	Laser-induced controllable crystallization of organic-inorganic hybrid perovskites assisted by gold nanoislands. Optical Materials Express, 2023, 13, 538.	1.6	1
156	A Polymer Strategy toward Highâ€Performance Multifunctional Perovskite Optoelectronics: From Polymer Matrix to Device Applications. Advanced Optical Materials, 2023, 11, .	3.6	4
157	Understanding the Role of Small Cations on the Electroluminescence Performance of Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2023, 33, .	7.8	3
158	Vacuumâ€Deposited Inorganic Perovskite Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 10% via Composition and Crystallinity Manipulation of Emission Layer under High Vacuum. Advanced Science, 2023, 10, .	5.6	10
159	Composition and structure regulation of Ruddlesden–Popper perovskite for light-emitting diodes applications. Journal of Materials Chemistry C, 2023, 11, 3448-3458.	2.7	0
160	Passivation strategies for mitigating defect challenges in halide perovskite light-emitting diodes. Joule, 2023, 7, 272-308.	11.7	32
161	Achieving Efficient Lightâ€Emitting Diodes by Controlling Phase Distribution of Quasiâ€2D Perovskites. Advanced Electronic Materials, 2023, 9, .	2.6	5
162	Insight into Diphenyl Phosphine Oxygen-Based Molecular Additives as Defect Passivators toward Efficient Quasi-2D Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2023, 15, 10877-10884.	4.0	4

#	Article	IF	CITATIONS
163	Highâ€Efficiency Quasiâ€2D Perovskite Lightâ€Emitting Diodes Using a Dualâ€Additive Strategy Guided by Preferential Additiveâ€Precursor Interactions. Advanced Optical Materials, 2023, 11, .	3.6	3
164	Polymer-doped perovskite nanocrystals for efficient single active layer white light-emitting diodes through energy transfer. Polymer, 2023, 271, 125805.	1.8	3
165	Unlocking the Potential of Blue Perovskite Lightâ€Emitting Diodes for Activeâ€Matrix Displays. Advanced Optical Materials, 2023, 11, .	3.6	2
166	Water-induced nucleation growth kinetics enhancement of cesium lead bromide perovskite nanocrystals. Cell Reports Physical Science, 2023, 4, 101305.	2.8	3
167	Anisotropic emission of orientation-controlled mixed-dimensional perovskites for light-emitting devices. Journal of Materiomics, 2023, 9, 762-767.	2.8	0
168	Influence of Ionic Additives in the PEDOT:PSS Hole Transport Layers for Efficient Blue Perovskite Light Emitting Diodes. ACS Applied Materials & Interfaces, 0, , .	4.0	3
169	Flexible Quantum Dot Lightâ€Emitting Device for Emerging Multifunctional and Smart Applications. Advanced Materials, 2023, 35, .	11.1	13
170	High Color-Purity and Efficient Pure-Blue Perovskite Light-Emitting Diodes Based on Strongly Confined Monodispersed Quantum Dots. Nano Letters, 2023, 23, 2405-2411.	4.5	12
171	Challenges and developments for the blue perovskite nanocrystal light-emitting diodes. Dalton Transactions, 2023, 52, 3921-3941.	1.6	2
172	Multidentate Zwitterionic Ligand-Assisted Formation of Pure Bromide-Based Perovskite Nanosheets and Their Application in Blue Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2023, 14, 2736-2743.	2.1	0
173	Smoothing Energy Transfer Enabling Efficient Largeâ€Area Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Laser and Photonics Reviews, 2023, 17, .	4.4	1
174	Tuning the energy transfer in Ruddlesden–Popper perovskites phases through isopropylammonium addition – towards efficient blue emitters. Nanoscale, 2023, 15, 6673-6685.	2.8	2
175	Lowâ€Dimensional Phase Regulation to Restrain Nonâ€Radiative Recombination for Skyâ€Blue Perovskite LEDs with EQE Exceeding 15 %. Angewandte Chemie - International Edition, 2023, 62, .	7.2	23
176	Lowâ€Dimensional Phase Regulation to Restrain Nonâ€Radiative Recombination for Skyâ€Blue Perovskite LEDs with EQE Exceeding 15 %. Angewandte Chemie, 0, , .	1.6	2
177	Manipulating Ionic Behavior with Bifunctional Additives for Efficient Skyâ€Blue Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2023, 33, .	7.8	32
178	Energy‣evel Regulation and Lowâ€Ðimensional Phase Rearrangement via a Multifunctional Spacer Group toward Efficient Skyâ€Blue Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	2
179	Stabilizing FASnI ₃ -based perovskite light-emitting diodes with crystallization control. Nanoscale, 2023, 15, 6954-6959.	2.8	3
180	Highly Efficient Quasi 2D Blue Perovskite Electroluminescence Leveraging a Dual Ligand Composition. Advanced Functional Materials, 2023, 33, .	7.8	9

#	Article	IF	CITATIONS
181	Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nature Photonics, 2023, 17, 435-441.	15.6	25
182	Hybrid Ligand Polymerization for Weakly Confined Lead Halide Perovskite Quantum Dots. ACS Applied Materials & Interfaces, 2023, 15, 20208-20218.	4.0	4
183	Carrier Balanced Distribution Regulation of Multi-emissive Centers in Tandem PeLEDs. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2023, 38, 1062.	0.6	1
184	Recent progress of copper halide perovskites: properties, synthesis and applications. Journal of Materials Chemistry C, 2023, 11, 6260-6275.	2.7	5
185	Narrow-band violet light-emitting diodes based on one-dimensional lead bromides. Journal of Luminescence, 2023, 260, 119872.	1.5	2
186	The influence of the capping ligands on the optoelectronic performance, morphology, and ion liberation of CsPbBr3 perovskite quantum dots. Nano Research, 2023, 16, 10626-10633.	5.8	6
188	Perovskite Light-Emitting Diodes. , 2023, , 53-71.		0
189	Dualâ€Defect Manipulation Enables Efficient and Spectrally Stable Blue Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	8
190	Strategies for improving the device performance of \$2mathbf{D}\$ perovskite field-effect transistors. , 2023, , .		0
210	Advances in All-Inorganic Perovskite Nanocrystal-Based White Light Emitting Devices. ACS Omega, 2023, 8, 17337-17349.	1.6	1
220	Advances in the Application of Perovskite Materials. Nano-Micro Letters, 2023, 15, .	14.4	40
222	Focus on perovskite emitters in blue light-emitting diodes. Light: Science and Applications, 2023, 12, .	7.7	14
228	Light management for perovskite light-emitting diodes. Nature Nanotechnology, 2023, 18, 981-992.	15.6	12
300	Two-dimensional complex metal halides: influence of restricted dimensionality on functional properties. Journal of Materials Chemistry A, 2024, 12, 5055-5079.	5.2	0
311	Vapour-deposited perovskite light-emitting diodes. Nature Reviews Materials, 2024, 9, 282-294.	23.3	0