Non-invasive diagnosis of deep vein thrombosis from u learning

Npj Digital Medicine 4, 137

DOI: 10.1038/s41746-021-00503-7

Citation Report

#	ARTICLE	IF	Citations
2	Evaluation of Machine Learning Algorithms for Early Diagnosis of Deep Venous Thrombosis. Mathematical and Computational Applications, 2022, 27, 24.	0.7	6
3	Investigation of two different human d-dimer assays in the horse. BMC Veterinary Research, 2022, 18, .	0.7	O
4	Ultrasound Image Segmentation for Deep Vein Thrombosis using Unet-CNN based on Denoising Filter. , 2022, , .		3
6	Assistive artificial intelligence for ultrasound image interpretation in regional anaesthesia: an external validation study. British Journal of Anaesthesia, 2023, 130, 217-225.	1.5	22
7	Accurate assessment of the lung sliding artefact on lung ultrasonography using a deep learning approach. Computers in Biology and Medicine, 2022, 148, 105953.	3.9	8
8	Evaluation of the impact of assistive artificial intelligence on ultrasound scanning for regional anaesthesia. British Journal of Anaesthesia, 2023, 130, 226-233.	1.5	15
9	Impact of cognitive workload and situation awareness on clinicians' willingness to use an artificial intelligence system in clinical practice. IISE Transactions on Healthcare Systems Engineering, 2023, 13, 89-100.	1.2	4
10	The application of an age adjusted D-dimer threshold to rule out suspected venous thromboembolism (VTE) in an emergency department setting: a retrospective diagnostic cohort study. BMC Emergency Medicine, 2022, 22, .	0.7	O
11	Measuring the Compression Force Required for Vascular Shortening in Ultrasonic Vascular Models. Cureus, 2022, , .	0.2	0
12	Acoustic Attenuation and Dispersion in Fatty Tissues and Tissue Phantoms Influencing Ultrasound Biomedical Imaging. ACS Omega, 2023, 8, 1319-1330.	1.6	5
13	Artificial intelligence-based iliofemoral deep venous thrombosis detection using a clinical approach. Scientific Reports, 2023, 13, .	1.6	2
14	Deep learning applications in visual data for benign and malignant hematological conditions: a systematic review and visual glossary. Haematologica, 0, , .	1.7	O
15	In Situ Pulmonary Arterial Thrombosis: Literature Review and Clinical Significance of a Distinct Entity. American Journal of Roentgenology, 2023, 221, 57-68.	1.0	6
16	Applying artificial intelligence to the use of ultrasound as an educational tool: A focus on ultrasoundâ€guided regional anesthesia. Anatomical Sciences Education, 0, , .	2.5	2
17	Robust and Realtime Large Deformation Ultrasound Registration Using End-to-End Differentiable Displacement Optimisation. Sensors, 2023, 23, 2876.	2.1	1
18	From "Nice-to-Have―to "Must-Have:―Al's Inevitable Progression?. , 0, , 38-40.		O
27	A Smart IoMT-Based Health Assisting Tool for Predicting Deep Vein Thrombosis. , 2023, , .		0
28	Adopting artificial intelligence in cardiovascular medicine: a scoping review. Hypertension Research, 2024, 47, 685-699.	1.5	5

#	Article	IF	CITATIONS
30	Active Learning on Medical Image. , 2023, , 51-67.		0
31	BlasT: Blood Clot Classification Model Using Transfer Learning Based Convolutional Neural Network. , 2024, , .		O
32	ML and DL-based Segmentation and Classification of Different Types of Venous Thrombosis., 2023,,.		0