Analysis of Land Use and Land Cover Change Using Tim North Korea

Remote Sensing 13, 3501 DOI: 10.3390/rs13173501

Citation Report

#	Article	IF	CITATIONS
1	Forest fire susceptibility assessment using google earth engine in Gangwon-do, Republic of Korea. Geomatics, Natural Hazards and Risk, 2022, 13, 432-450.	4.3	23
2	Land Cover and Land Use Mapping of the East Asian Summer Monsoon Region from 1982 to 2015. Land, 2022, 11, 391.	2.9	6
3	Analysis of Land Use Change and Driving Mechanisms in Vietnam during the Period 2000–2020. Remote Sensing, 2022, 14, 1600.	4.0	12
4	Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods. Remote Sensing, 2022, 14, 1977.	4.0	52
5	A review of multi-class change detection for satellite remote sensing imagery. Geo-Spatial Information Science, 2024, 27, 1-15.	5.3	22
6	Land use land cover analysis of the Great Ethiopian Renaissance Dam (GERD) catchment using remote sensing and GIS techniques. , 0, , 1-13.		3
7	Land Use and Land Cover Change in the Vaal Dam Catchment, South Africa: A Study Based on Remote Sensing and Time Series Analysis. Geomatics, 2023, 3, 205-220.	1.9	3
8	Prediction of Future Land Use/Land Cover Changes Using a Coupled CA-ANN Model in the Upper Omo–Gibe River Basin, Ethiopia. Remote Sensing, 2023, 15, 1148.	4.0	15
9	Random Forest Analysis of Land Use and Land Cover Change Using Sentinel-2 Data in Van Yen, Yen Bai Province, Vietnam. Environmental Science and Engineering, 2023, , 429-445.	0.2	3
10	Monitoring Land Use/Land Cover and Landscape Pattern Changes at a Local Scale: A Case Study of Pyongyang, North Korea. Remote Sensing, 2023, 15, 1592.	4.0	3
11	Climate change resilience by community involvement: a case study in Indian base stations for the well-known Himalayan trek routes of Darjeeling and West Sikkim. , 2023, , 193-207.		0
12	Analysis of Long-term Changes for Land Use and Land Cover using Machine Learning: A case study. , 2023, , .		1
13	Assessing landscape fragmentation due to urbanization in English Bazar Municipality, Malda, India, using landscape metrics. Environmental Science and Pollution Research, 2023, 30, 68716-68731.	5.3	4
14	A novel fuzzy Harris hawks optimization-based supervised vegetation and bare soil prediction system for Javadi Hills, India. Arabian Journal of Geosciences, 2023, 16, .	1.3	5
15	Characterization of Two Main Forest Cover Loss Transitions in North Korea from 1990 to 2020. Forests, 2023, 14, 1966.	2.1	1
17	Spatiotemporal approach for estimating potential CO2 sequestration by reforestation in the Korean Peninsula. Frontiers in Forests and Global Change, 0, 6, .	2.3	0
18	Using the Google Earth Engine cloud-computing platform to assess the long-term spatial temporal dynamics of land use and land cover within the Letaba watershed, South Africa. Geocarto International, 2023, 38, .	3.5	0
19	Model of the linkage between land cover changes to water discharge and food productivity: The case of the Konaweha watershed in Indonesia. Journal of the Geographical Institute Jovan Cvijic SASA, 2023, 73, 169-185.	1.0	0

CITATION REPORT

#	Article	IF	CITATIONS
20	Optimal parameters of random forest for land cover classification with suitable data type and dataset on Google Earth Engine. Frontiers in Earth Science, 0, 11, .	1.8	2
21	Quantitative assessment of Land use/land cover changes in a developing region using machine learning algorithms: A case study in the Kurdistan Region, Iraq. Heliyon, 2023, 9, e21253.	3.2	4
22	Quantifying LULC changes in Urmia Lake Basin using machine learning techniques, intensity analysis and a combined method of cellular automata (CA) and artificial neural networks (ANN) (CA-ANN). Modeling Earth Systems and Environment, 0, , .	3.4	1
23	Improving multi-crop area assessment through Bootstrapping: A focus on tomato fields. Remote Sensing Applications: Society and Environment, 2023, , 101115.	1.5	0
24	Pola Spasial Perubahan Tutupan Lahan/Penggunaan Lahan Menggunakan Google Earth Engine di Kabupaten Majalengka. Jurnal Pembangunan Wilayah & Kota, 2023, 19, 447-463.	0.1	0
25	Landsat-observed changes in forest cover and attribution analysis over Northern China from 1996‒2020. GIScience and Remote Sensing, 2024, 61, .	5.9	0
27	Utilizing Sentinel-2 Satellite Imagery for LULC and NDVI Change Dynamics for Gelephu, Bhutan. Applied Sciences (Switzerland), 2024, 14, 1578.	2.5	0
28	Land Use and Land Change Detection of the Ecosystem by Processing Sentinel Images. Lecture Notes in Networks and Systems, 2024, , 259-271.	0.7	ο