Surface Local Polarization Induced by Bismuthâ€Oxyge Interaction for CO₂ Photoreduction

Advanced Energy Materials 11, 2102389 DOI: 10.1002/aenm.202102389

Citation Report

#	Article	IF	CITATIONS
1	Ammonia-dependent synthesis of (BiO)2OHCl@Bi24O31Cl10 heterostructures with enhanced visible-light induced photocatalytic activities on levofloxacin removal. Journal of Alloys and Compounds, 2022, 901, 163647.	2.8	10
2	Boosting water decomposition by sulfur vacancies for efficient CO ₂ photoreduction. Energy and Environmental Science, 2022, 15, 1556-1562.	15.6	104
3	Tuning surface sites to boost photocatalytic degradation of phenol and ciprofloxacin. Chinese Chemical Letters, 2023, 34, 107204.	4.8	8
4	Photoswitchable Chlorine Vacancies in Ultrathin Bi ₄ O ₅ Cl ₂ for Selective CO ₂ Photoreduction. ACS Catalysis, 2022, 12, 3965-3973.	5.5	69
5	Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2. Nature Communications, 2022, 13, 1400.	5.8	131
6	A Review on Bismuth Oxyhalide (BiOX, X=Cl, Br, I) Based Photocatalysts for Wastewater Remediation. Frontiers in Catalysis, 2022, 2, .	1.8	15
7	Boosted CO2 photoreduction performance on Ru-Ti3CN MXene-TiO2 photocatalyst synthesized by non-HF Lewis acidic etching method. Journal of Colloid and Interface Science, 2022, 619, 179-187.	5.0	26
8	Enhancing the intrinsic properties of flower-like BiOI by S-doping toward excellent photocatalytic performances. Journal of Materials Science and Technology, 2022, 118, 181-189.	5.6	49
9	Defect engineering of BiOX (XÂ=ÂCl, Br, I) based photocatalysts for energy and environmental applications: Current progress and future perspectives. Coordination Chemistry Reviews, 2022, 464, 214541.	9.5	77
10	Electronic state tuning over Mo-doped W18O49 ultrathin nanowires with enhanced molecular oxygen activation for desulfurization. Separation and Purification Technology, 2022, 294, 121167.	3.9	15
11	Engineering Nonprecious Metal Oxides Electrocatalysts for Twoâ€Electron Water Oxidation to H ₂ O ₂ . Advanced Energy Materials, 2022, 12, .	10.2	39
12	Black phosphorus/Bi19Br3S27 van der Waals heterojunctions ensure the supply of activated hydrogen for effective CO2 photoreduction. Applied Catalysis B: Environmental, 2022, 317, 121727.	10.8	42
13	Dual vacancies induced local polarization electric field for high-performance photocatalytic H2 production. Applied Catalysis B: Environmental, 2022, 316, 121680.	10.8	37
14	Universal strategy engineering grain boundaries for catalytic oxidative desulfurization. Applied Catalysis B: Environmental, 2022, 317, 121714.	10.8	27
15	Polarized Cu–Bi Site Pairs for Nonâ€Covalent to Covalent Interaction Tuning toward N ₂ Photoreduction. Advanced Materials, 2022, 34, .	11.1	36
16	Highly Strained Biâ€MOF on Bismuth Oxyhalide Support with Tailored Intermediate Adsorption/Desorption Capability for Robust CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	40
17	Highly Strained Biâ€MOF on Bismuth Oxyhalide Support with Tailored Intermediate Adsorption/Desorption Capability for Robust CO ₂ Photoreduction. Angewandte Chemie, 2022, 134, .	1.6	4
18	Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor. Nature Communications, 2022, 13, .	5.8	42

#	Article	IF	CITATIONS
19	Hollow porous Co–Ni spinel nanosheet arrays with rich oxygen defects on carbon cloth toward highly efficient and selective CO2 photofixation. Carbon, 2022, 200, 149-155.	5.4	12
20	Oxygen vacancy and Van der Waals heterojunction modulated interfacial chemical bond over Mo2C/Bi4O5Br2 for boosting photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2022, 318, 121866.	10.8	35
21	Oxygen-vacancy-induced charge localization and atomic site activation in ultrathin Bi4O5Br2 nanotubes for boosted CO2 photoreduction. Chemical Engineering Journal, 2023, 452, 139304.	6.6	8
22	Recent progress of indium-based photocatalysts: Classification, regulation and diversified applications. Coordination Chemistry Reviews, 2022, 473, 214819.	9.5	8
23	Tuning oxygen vacancy in Bi2WO6 by heteroatom doping for enhanced photooxidation-reduction properties. Journal of Colloid and Interface Science, 2023, 629, 133-146.	5.0	14
24	A mesh-like BiOBr/Bi ₂ S ₃ nanoarray heterojunction with hierarchical pores and oxygen vacancies for broadband CO ₂ photoreduction. Journal of Materials Chemistry A, 2022, 10, 20934-20945.	5.2	43
25	State-of-the-art advancements of atomically thin two-dimensional photocatalysts for energy conversion. Chemical Communications, 2022, 58, 9594-9613.	2.2	10
26	Bimetallic <scp>In₂O₃</scp> / <scp>Bi₂O₃</scp> Catalysts Enable Highly Selective <scp>CO₂</scp> Electroreduction to Formate within Ultraâ€Broad Potential Windows. Energy and Environmental Materials, 2024, 7, .	7.3	6
27	Lower oxygen vacancy concentration in BiPO4 with unexpected higher photocatalytic activity. Chinese Chemical Letters, 2023, 34, 107844.	4.8	10
28	Symmetry breaking for semiconductor photocatalysis. Trends in Chemistry, 2022, 4, 1045-1055.	4.4	17
29	Bismuth-based materials for CO2 photoreduction. Current Opinion in Green and Sustainable Chemistry, 2023, 39, 100718.	3.2	3
30	Facetâ€specific Active Surface Regulation of Bi _{<i>x</i>} MO _y (M=Mo, V, W) Nanosheets for Boosted Photocatalytic CO ₂ reduction. Angewandte Chemie, 2022, 134, .	1.6	2
31	Uncovering mechanism of photocatalytic performance enhancement induced by multivariate defects on SnS2. Nano Research, 2023, 16, 2102-2110.	5.8	4
32	Facetâ€specific Active Surface Regulation of Bi _{<i>x</i>} MO _y (M=Mo, V, W) Nanosheets for Boosted Photocatalytic CO ₂ reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	46
33	Identification of the Active Sites on Metallic MoO2â€xÂNanoâ€Seaâ€Urchin for Atmospheric CO2ÂPhotoreduction Under UV, Visible and Nearâ€Infrared Light Illumination. Angewandte Chemie, 0, , .	1.6	3
34	Identification of the Active Sites on Metallic MoO _{2â^'<i>x</i>} Nanoâ€Seaâ€Urchin for Atmospheric CO ₂ Photoreduction Under UV, Visible, and Nearâ€Infrared Light Illumination. Angewandte Chemie - International Edition, 2023, 62, .	7.2	22
35	Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2023, 321, 122079.	10.8	80
36	Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation. Applied Catalysis B: Environmental, 2023, 323, 122148.	10.8	69

CITATION REPORT

#	Article	IF	Citations
37	Layer-Contacted Graphene-Like BN/Ultrathin Bi3O4Br Stacking for Boosting Photocatalytic Molecular Oxygen Activation. Transactions of Tianjin University, 2023, 29, 235-245.	3.3	2
38	Boosting visible light driven gas–solid phase photocatalytic reduction of CO2 on BiOCl microspheres by enhanced carrier transportation through lattice structure modification. Separation and Purification Technology, 2023, 306, 122654.	3.9	2
39	Research progress on the formation, detection methods and application in photocatalytic reduction of CO2 of oxygen vacancy. Journal of CO2 Utilization, 2023, 67, 102344.	3.3	12
40	Vacancy Pair-Induced Charge Rebalancing with Surface and Interfacial Dual Polarization for CO ₂ Photoreduction. ACS Catalysis, 2022, 12, 15728-15736.	5.5	15
41	Oxygen Vacancyâ€Mediated Exciton Effect in Hierarchical BiOBr Enables Dichotomy of Energy Transfer and Electron Transfer in Photocatalysis. Advanced Functional Materials, 2023, 33, .	7.8	19
42	Synergism of oxygen–iodine binary vacancies with the interfacial electric field: enhancing CO ₂ photoreduction over V _{O–I} -BiOCl/BiOI atomic-thin nanosheets. Journal of Materials Chemistry A, 2023, 11, 4057-4066.	5.2	5
43	Recent progress of membrane technology for chiral separation: A comprehensive review. Separation and Purification Technology, 2023, 309, 123077.	3.9	19
44	Advances in the understanding of the structure–performance relationships of 2D material catalysts based on electron microscopy. Materials Chemistry Frontiers, 2023, 7, 2764-2778.	3.2	6
45	Structurally designable Bi2S3/P-doped ZnO S-scheme photothermal metamaterial enhanced CO2 reduction. Separation and Purification Technology, 2023, 312, 123365.	3.9	4
46	Defective materials for CO2 photoreduction: From C1 to C2+ products. Coordination Chemistry Reviews, 2023, 482, 215057.	9.5	9
47	Recent progress of low-dimensional metal sulfides photocatalysts for energy and environmental applications. , 2023, 1, 100001.		4
48	Implanting nitrogen-doped graphene quantum dots on porous ultrathin carbon nitride for efficient metal-free photocatalytic hydrogen evolution. Journal of Environmental Chemical Engineering, 2023, 11, 109801.	3.3	4
49	Efficient photoreduction of carbon dioxide into carbon-based fuels: a review. Environmental Chemistry Letters, 2023, 21, 1499-1513.	8.3	3
50	Atomicâ€Level Regulated 2D ReSe ₂ : A Universal Platform Boostin Photocatalysis. Advanced Materials, 2023, 35, .	11.1	25
51	Constructing atomic surface concaves on Bi5O7Br nanotube for efficient photocatalytic CO2 reduction. Nano Energy, 2023, 109, 108305.	8.2	22
52	Tunable Interfacial Charge Transfer in a 2D–2D Composite for Efficient Visibleâ€Lightâ€Driven CO ₂ Conversion. Advanced Materials, 2023, 35, .	11.1	51
53	Precisely modulate interfacial Bi-O bridge bond in Co-TCPP/Bi3O4Br to trigger long-lasting charge separation for boosting CO2 photoreduction. Chemical Engineering Journal, 2023, 465, 142663.	6.6	4
54	Fabrication and characterization of Z-scheme BiOCl/C/Cu ₂ O heterojunction nanocomposites as efficient catalysts for the photocatalytic reduction of CO ₂ . Dalton Transactions, 2023, 52, 6375-6387.	1.6	2

CITATION REPORT

		CITATION REPORT	on Report	
#	Article	IF	Citations	
55	Design of grain boundaries enriched nickel molybdate for enhanced catalytic oxidative desulfurization. Applied Catalysis B: Environmental, 2023, 333, 122779.	10.8	16	
77	Investigating the role of oxygen vacancies in metal oxide for enhanced electrochemical reduction on NO ₃ ^{â^²} to NH ₃ : mechanistic insights. Inorganic Chemistry Frontiers, 0, , .	f 3.0	Ο	