Epitaxial growth of wafer-scale molybdenum disulfide sapphire

Nature Nanotechnology 16, 1201-1207 DOI: 10.1038/s41565-021-00963-8

Citation Report

#	Article	IF	CITATIONS
1	Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nature Nanotechnology, 2021, 16, 1231-1236.	15.6	120
2	Interlayer Excitons in Transition Metal Dichalcogenide Semiconductors for 2D Optoelectronics. Advanced Materials, 2022, 34, e2107138.	11.1	28
3	Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning. Nature Communications, 2021, 12, 5953.	5.8	42
4	An artificial neural network chip based on two-dimensional semiconductor. Science Bulletin, 2022, 67, 270-277.	4.3	20
5	Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides. IScience, 2021, 24, 103229.	1.9	24
6	The Road for 2D Semiconductors in the Silicon Age. Advanced Materials, 2022, 34, e2106886.	11.1	57
7	Enhancement of Photoresponse on Narrow-Bandgap Mott Insulator α-RuCl ₃ <i>via</i> Intercalation. ACS Nano, 2021, 15, 18113-18124.	7.3	10
8	Two-dimensional transition metal dichalcogenides and their heterostructures: Role of process parameters in top-down and bottom-up synthesis approaches. Materials Science in Semiconductor Processing, 2022, 139, 106313.	1.9	24
9	Growth of 2D Materials at the Wafer Scale. Advanced Materials, 2022, 34, e2108258.	11.1	43
10	Wafer-scale single-orientation 2D layers by atomic edge-guided epitaxial growth. Chemical Society Reviews, 2022, 51, 803-811.	18.7	18
11	Direct Detection of Inhomogeneity in CVD-Grown 2D TMD Materials via K-Means Clustering Raman Analysis. Nanomaterials, 2022, 12, 414.	1.9	4
12	Epitaxy of 2D Materials toward Single Crystals. Advanced Science, 2022, 9, e2105201.	5.6	24
13	High-Current Omega-Shaped Gated MoSâ,, Transistors. IEEE Transactions on Electron Devices, 2022, 69, 816-819.	1.6	1
14	Atomic-scale manufacture of metre-sized two-dimensional single crystals by interfacial modulation. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 108103.	0.2	1
15	2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chemical Reviews, 2022, 122, 6514-6613.	23.0	187
16	Epitaxial growth of highly-aligned MoS2 on c-plane sapphire. Surface Science, 2022, 720, 122046.	0.8	7
17	Mechanical Behavior of Blisters Spontaneously Formed by Multilayer 2D Materials. Advanced Materials Interfaces, 2022, 9, .	1.9	12
18	Cotrollable growth of monolayer MoS2 films and the application in devices. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0

#	Article	IF	CITATIONS
19	Monitoring the Material Quality of Two-Dimensional Transition Metal Dichalcogenides. Journal of Physical Chemistry C, 2022, 126, 3797-3810.	1.5	3
20	Scalable Moiré Lattice with Oriented TMD Monolayers. Nanoscale Research Letters, 2022, 17, 34.	3.1	2
21	Emerging Two-Dimensional Inorganic Molecular Crystals: The Concept and Beyond. Journal of Physical Chemistry Letters, 2022, 13, 2173-2179.	2.1	12
22	Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Reports on Progress in Physics, 2022, 85, 046401.	8.1	74
23	The Intrinsic Thermodynamic Difficulty and a Stepâ€Guided Mechanism for the Epitaxial Growth of Uniform Multilayer MoS ₂ with Controllable Thickness. Advanced Materials, 2022, 34, e2201402.	11.1	27
24	Reducing Contact Resistance and Boosting Device Performance of Monolayer MoS ₂ by In Situ Fe Doping. Advanced Materials, 2022, 34, e2200885.	11.1	34
25	Gramâ€Scale Synthesized Twoâ€Dimensional VSe ₂ and SnSe ₂ for Ultrahigh Electrocatalytic Sulfion Recycling. Advanced Materials Interfaces, 2022, 9, .	1.9	10
26	Science of 2.5 dimensional materials: paradigm shift of materials science toward future social innovation. Science and Technology of Advanced Materials, 2022, 23, 275-299.	2.8	32
27	Wafer-Scale Uniform Synthesis of 2D Transition Metal Dichalcogenides Single Crystals via Chemical Vapor Deposition. Accounts of Materials Research, 2022, 3, 161-174.	5.9	12
28	Monolayer WS ₂ Lateral Homosuperlattices with Two-dimensional Periodic Localized Photoluminescence. ACS Nano, 2022, 16, 597-603.	7.3	7
29	Enhancement of InSe Field-Effect-Transistor Performance against Degradation of InSe Film in Air Environment. Nanomaterials, 2021, 11, 3311.	1.9	5
30	A Review on Chemical Vapour Deposition of Two-Dimensional MoS2 Flakes. Materials, 2021, 14, 7590.	1.3	23
31	Layer-by-Layer Growth of AA-Stacking MoS ₂ for Tunable Broadband Phototransistors. ACS Applied Materials & Interfaces, 2021, 13, 59154-59163.	4.0	26
32	Waferâ€Scale 2Hâ€MoS ₂ Monolayer for High Surfaceâ€enhanced Raman Scattering Performance: Chargeâ€Transfer Coupled with Molecule Resonance. Advanced Materials Technologies, 2022, 7, .	3.0	14
33	Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chemical Reviews, 2022, 122, 10319-10392.	23.0	89
34	Gate ontrolled Quantum Dots Based on 2D Materials. Advanced Quantum Technologies, 2022, 5, .	1.8	13
35	Monolayer MoS ₂ of High Mobility Grown on SiO ₂ Substrate by two-step Chemical Vapor Deposition. Chinese Physics B, 0, , .	0.7	2
36	Monolayer mosaic heterostructures. Nature Nanotechnology, 2022, 17, 439-440.	15.6	8

#	Article	IF	CITATIONS
37	Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility. Nano-Micro Letters, 2022, 14, 109.	14.4	31
38	Layer-by-layer epitaxy of multi-layer MoS2 wafers. National Science Review, 2022, 9, .	4.6	41
39	van der Waals epitaxy of 2D <i>h</i> -AlN on TMDs by atomic layer deposition at 250 °C. Applied Physics Letters, 2022, 120, .	1.5	13
40	2D materials-enabled optical modulators: From visible to terahertz spectral range. Applied Physics Reviews, 2022, 9, .	5.5	32
41	Gasâ€Phase Alkali Metalâ€Assisted MOCVD Growth of 2D Transition Metal Dichalcogenides for Large‣cale Precise Nucleation Control. Small, 2022, 18, e2106368.	5.2	15
42	Nanoampereâ€Level Piezoelectric Energy Harvesting Performance of Lithographyâ€Free Centimeterâ€Scale MoS ₂ Monolayer Film Generators. Small, 2022, 18, e2200184.	5.2	4
43	Lateral layered semiconductor multijunctions for novel electronic devices. Chemical Society Reviews, 2022, 51, 4000-4022.	18.7	12
44	Monolayer MoS2-Based Flexible and Highly Sensitive Pressure Sensor with Wide Sensing Range. Micromachines, 2022, 13, 660.	1.4	8
45	The Trend of 2D Transistors toward Integrated Circuits: Scaling Down and New Mechanisms. Advanced Materials, 2022, 34, e2201916.	11.1	37
46	Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature, 2022, 605, 69-75.	13.7	174
47	Self-Expanding Molten Salt-Driven Growth of Patterned Transition-Metal Dichalcogenide Crystals. Journal of the American Chemical Society, 2022, 144, 8746-8755.	6.6	15
48	One-step method to simultaneously synthesize separable Te and GeTe nanosheets. Nano Research, 2022, 15, 6736-6742.	5.8	4
49	Mechanisms of the epitaxial growth of two-dimensional polycrystals. Npj Computational Materials, 2022, 8, .	3.5	4
50	Multifunctional and Transformative Metaphotonics with Emerging Materials. Chemical Reviews, 2022, 122, 15414-15449.	23.0	23
51	Nanopatterning Technologies of 2D Materials for Integrated Electronic and Optoelectronic Devices. Advanced Materials, 2022, 34, e2200734.	11.1	25
52	Room-temperature ferromagnetism in two-dimensional transition metal chalcogenides: Strategies and origin. Journal of Alloys and Compounds, 2022, 913, 165289.	2.8	7
53	Crescent-shaped shadow of second harmonic generation in dielectric microsphere/TMD monolayer heterostructure. Journal Physics D: Applied Physics, 2022, 55, 325301.	1.3	3
54	Insight into the growth behaviors of MoS2 nanograins influenced by step edges and atomic structure of the substrate. Nano Research, 2022, 15, 7646-7654.	5.8	2

#	Article	IF	CITATIONS
55	Modulated Photoluminescence of Single‣ayer MoS ₂ via Nanostructured SrTiO ₃ Surface. Advanced Materials Interfaces, 2022, 9, .	1.9	1
56	Circuit‣evel Memory Technologies and Applications based on 2D Materials. Advanced Materials, 2022, 34, .	11.1	17
57	Multifunctional Dual Gated Coupling Device Using Van Der Waals Ferroelectric Heterostructure. Advanced Electronic Materials, 2022, 8, .	2.6	7
58	A Facile Approach Towards Wrinkle-Free Transfer of 2d-Mos2 Films Via Hydrophilic Si3n4 Substrate Engineering. SSRN Electronic Journal, 0, , .	0.4	0
59	On-chip photonics and optoelectronics with a van der Waals material dielectric platform. Nanoscale, 2022, 14, 9459-9465.	2.8	4
60	Structure and morphology of 2H-MoTe2 monolayer on GaAs(111)B grown by molecular-beam epitaxy. Npj 2D Materials and Applications, 2022, 6, .	3.9	4
61	Engineering the Crack Structure and Fracture Behavior in Monolayer MoS ₂ By Selective Creation of Point Defects. Advanced Science, 2022, 9, .	5.6	10
62	A review on recent advances of chemical vapor deposition technique for monolayer transition metal dichalcogenides (MX2: Mo, W; S, Se, Te). Materials Science in Semiconductor Processing, 2022, 148, 106829.	1.9	20
63	Epitaxial growth of wafer-scale transition metal dichalcogenide monolayers by metalorganic chemical vapor deposition. , 2022, , .		0
64	Progress and perspective on the growth of two-dimensional single crystals. Science Bulletin, 2022, 67, 1410-1412.	4.3	4
65	Inkjet-printed TMDC–graphene heterostructures for flexible and broadband photodetectors. Journal of Applied Physics, 2022, 131, .	1.1	3
66	Passâ€Transistor Logic Circuits Based on Waferâ€Scale 2D Semiconductors. Advanced Materials, 2022, 34, .	11.1	20
67	Recent Progress in 2D Inorganic/Organic Charge Transfer Heterojunction Photodetectors. Advanced Functional Materials, 2022, 32, .	7.8	23
68	Epitaxial growth of inch-scale single-crystal transition metal dichalcogenides through the patching of unidirectionally orientated ribbons. Nature Communications, 2022, 13, .	5.8	34
69	Thin-Film Transistors from Electrochemically Exfoliated In2Se3 Nanosheets. Micromachines, 2022, 13, 956.	1.4	7
70	New Approaches to Produce Largeâ€Area Single Crystal Thin Films. Advanced Materials, 2023, 35, .	11.1	14
71	2D Oxides for Electronics and Optoelectronics. Small Science, 2022, 2, .	5.8	22
72	Highly Tunable, Broadband, and Negative Photoresponse MoS ₂ Photodetector Driven by Jon-Gel Gate Dielectrics, ACS Applied Materials & amp: Interfaces, 2022, 14, 32412-32419	4.0	12

#	Article	IF	CITATIONS
73	Strategies for Controlled Growth of Transition Metal Dichalcogenides by Chemical Vapor Deposition for Integrated Electronics. ACS Materials Au, 2022, 2, 665-685.	2.6	16
74	Chemical insights into two-dimensional quantum materials. Matter, 2022, 5, 2168-2189.	5.0	2
75	Engineering Grain Boundaries in Twoâ€Đimensional Electronic Materials. Advanced Materials, 2023, 35, .	11.1	6
76	Detailed study on MOCVD of wafer-scale MoS2 monolayers: From nucleation to coalescence. MRS Advances, 2022, 7, 751-756.	0.5	6
77	High-performance hierarchical O-SnS/l-ZnIn ₂ S ₄ photodetectors by leveraging the synergy of optical regulation and band tailoring. Materials Horizons, 2022, 9, 2364-2375.	6.4	9
78	Highâ€Output Photodetector by Microlithographic Mono‣ayer MoS ₂ for Image Sensor. Advanced Materials Technologies, 2023, 8, .	3.0	2
79	Stepâ€Climbing Epitaxy of Layered Materials with Giant Outâ€ofâ€Plane Lattice Mismatch. Advanced Materials, 2022, 34, .	11.1	8
80	Heteroepitaxy of semiconducting 2H-MoTe2 thin films on arbitrary surfaces for large-scale heterogeneous integration. , 2022, 1, 701-708.		15
81	Intergranular Diffusionâ€Assisted Liquidâ€Phase Chemical Vapor Deposition for Waferâ€Scale Synthesis of Patternable 2D Semiconductors. Advanced Functional Materials, 2022, 32, .	7.8	3
82	Chemical Vapor Deposition of Uniform and Large-Domain Molybdenum Disulfide Crystals on Glass/Al2O3 Substrates. Nanomaterials, 2022, 12, 2719.	1.9	2
83	2D semiconductors for specific electronic applications: from device to system. Npj 2D Materials and Applications, 2022, 6, .	3.9	53
84	On-Surface Synthesis toward Two-Dimensional Polymers. Journal of Physical Chemistry Letters, 2022, 13, 8062-8077.	2.1	9
85	Epitaxial growth of wafer-scale single-crystal transition metal dichalcogenide monolayers for future electronics. Matter, 2022, 5, 2405-2408.	5.0	2
86	Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Frontiers of Physics, 2022, 17, .	2.4	10
87	NaCl-Assisted Chemical Vapor Deposition of Large-Domain Bilayer MoS2 on Soda-Lime Glass. Nanomaterials, 2022, 12, 2913.	1.9	2
88	Synthesis of a Selectively Nb-Doped WS ₂ –MoS ₂ Lateral Heterostructure for a High-Detectivity PN Photodiode. ACS Nano, 2022, 16, 12073-12082.	7.3	15
89	Controlled Growth of Two-Dimensional Heterostructures: In-Plane Epitaxy or Vertical Stack. Accounts of Materials Research, 2022, 3, 999-1010.	5.9	12
90	A Capillary-Force-Assisted Transfer for Monolayer Transition-Metal-Dichalcogenide Crystals with High Utilization. ACS Nano, 2022, 16, 15016-15025.	7.3	7

#	Article	IF	CITATIONS
91	Thermal stability and high-temperature photoluminescence of chemical vapor deposited MoS ₂ in different atmosphere. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 052201.	0.9	2
92	Effect of flexoelectricity on a bilayer molybdenum disulfide Schottky contact. Nano Energy, 2022, 102, 107701.	8.2	7
93	A facile approach towards Wrinkle-Free transfer of 2D-MoS2 films via hydrophilic Si3N4 substrate. Applied Surface Science, 2022, 604, 154523.	3.1	2
94	Facet engineering of ultrathin two-dimensional materials. Chemical Society Reviews, 2022, 51, 7327-7343.	18.7	23
95	Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. , 2022, 1, 220006-220006.		17
96	Van der Waals Epitaxial Growth of 2D Layered Roomâ€Temperature Ferromagnetic CrS ₂ . Advanced Materials Interfaces, 2022, 9, .	1.9	8
97	Mass transfer techniques for large-scale and high-density microLED arrays. International Journal of Extreme Manufacturing, 2022, 4, 042005.	6.3	20
98	Synthesis of twoâ€dimensional materials: How computational studies can help?. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	1
99	Chemical vapor deposition: a potential tool for wafer scale growth of two-dimensional layered materials. Journal Physics D: Applied Physics, 2022, 55, 473001.	1.3	15
100	Gate-Tunable Junctions within Monolayer MoS ₂ –WS ₂ Lateral Heterostructures. ACS Applied Nano Materials, 2022, 5, 15775-15784.	2.4	0
101	Stitchingâ€Induced Structural Corrugation of Twisted Grain Boundaries in CVDâ€Grown MoS ₂ Domains. Physica Status Solidi - Rapid Research Letters, 0, , 2200291.	1.2	0
102	Perspective of Vanadium Disulfide: A Rising Star Finds Plenty of Room in Single and Multielectron Energy Storage. Energy & Fuels, 2022, 36, 13931-13955.	2.5	4
103	Exciton resonances for atomically-thin optics. Journal of Applied Physics, 2022, 132, .	1.1	6
104	Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation. Nature Communications, 2022, 13, .	5.8	24
105	Chemical Vapor Deposition of 4 Inch Waferâ€Scale Monolayer MoSe ₂ . Small Science, 2022, 2,	5.8	13
106	Oneâ€Step Exfoliation Method for Plasmonic Activation of Largeâ€Area 2D Crystals. Advanced Science, 2022, 9, .	5.6	10
107	Flux-assisted growth of atomically thin materials. , 2022, 1, 864-872.		12
108	Challenges of Waferâ€Scale Integration of 2D Semiconductors for Highâ€Performance Transistor Circuits. Advanced Materials, 2022, 34, .	11.1	28

	CITATION R	EPORT	
#	Article	IF	Citations
109	Nanomechanical Resonators: Toward Atomic Scale. ACS Nano, 2022, 16, 15545-15585.	7.3	55
110	The shapes of synthesized twoâ€dimensional materials. SmartMat, 2023, 4, .	6.4	5
111	Two-dimensional devices and integration towards the silicon lines. Nature Materials, 2022, 21, 1225-1239.	13.3	79
112	A general one-step plug-and-probe approach to top-gated transistors for rapidly probing delicate electronic materials. Nature Nanotechnology, 2022, 17, 1206-1213.	15.6	24
113	Two-Dimensional Wedge-Shaped Magnetic EuS: Insight into the Substrate Step-Guided Epitaxial Synthesis on Sapphire. Journal of the American Chemical Society, 2022, 144, 19758-19769.	6.6	10
114	Interface Influence on the Photoelectric Performance of Transition Metal Dichalcogenide Lateral Heterojunctions. ACS Omega, 2022, 7, 39187-39196.	1.6	2
115	Highly Efficient Deposition of Centimeter‣cale MoS ₂ Monolayer Film on Dragontrail Glass with Large Singleâ€Crystalline Domains. Small Methods, 0, , 2201079.	4.6	2
116	Epitaxy of wafer-scale bilayer MoS2 thin film for P-N diodes. Matter, 2022, 5, 3580-3582.	5.0	0
117	Directional growth of quasi-2D Cu2O monocrystals on rGO membranes in aqueous environments. IScience, 2022, 25, 105472.	1.9	0
118	Nucleation and growth studies of large-area deposited WS ₂ on flexible substrates. Materials Research Express, 2022, 9, 116401.	0.8	3
119	Synthesis and ellipsometric characterizations of large-scale MoS2 sub-monolayer. Thin Solid Films, 2022, 762, 139562.	0.8	3
120	High performance piezotronic thermoelectric devices based on zigzag MoS2 nanoribbon. Nano Energy, 2022, 104, 107888.	8.2	6
121	Reservoir computing with 2D materials. Nature Electronics, 2022, 5, 715-716.	13.1	2
122	Controllable Growth of Wafer-scale Monolayer Transition Metal Dichalcogenides Ternary Alloys with Tunable Band Gap. Nanotechnology, 0, , .	1.3	0
123	New materials and designs for 2D-based infrared photodetectors. Nano Research, 2023, 16, 3074-3103.	5.8	12
125	Vacancy-Regulated Charge Carrier Dynamics and Suppressed Nonradiative Recombination in Two-Dimensional ReX ₂ (X = S, Se). Journal of Physical Chemistry Letters, 2022, 13, 10656-10665.	2.1	5
126	Defect engineering of two-dimensional materials towards next-generation electronics and optoelectronics. Nano Research, 2023, 16, 3104-3124.	5.8	6
127	Dielectric Material Technologies for 2-D Semiconductor Transistor Scaling. IEEE Transactions on Electron Devices, 2023, 70, 1454-1473.	1.6	10

#	Article	IF	CITATIONS
128	Liquid-precursor-intermediated synthesis of atomically thin transition metal dichalcogenides. Materials Horizons, 2023, 10, 1105-1120.	6.4	2
129	A Simplified Method of the Assessment of Magnetic Anisotropy of Commonly Used Sapphire Substrates in SQUID Magnetometers. Materials, 2022, 15, 8532.	1.3	3
130	Interface Engineering and Device Applications of 2D Ultrathin Film/Ferroelectric Copolymer P(VDF‶rFE). , 2023, 2, .		9
131	2D rare-earth metal carbides (MXenes) Mo ₂ NdC ₂ T ₂ electronic structure and magnetic properties: A DFT + U study. Journal of Applied Physics, 2022, 132, 204301.	1.1	2
132	Two-dimensional layered materials and heterostructures for flexible electronics. Matter, 2022, 5, 4116-4132.	5.0	10
133	Flexible Highâ€Performance Photovoltaic Devices based on 2D MoS ₂ Diodes with Geometrically Asymmetric Contact Areas. Advanced Functional Materials, 2023, 33, .	7.8	12
134	Two-dimensional optoelectronic devices for silicon photonic integration. Journal of Materiomics, 2023, 9, 551-567.	2.8	3
135	2D Materials in the Display Industry: Status and Prospects. Advanced Materials, 2023, 35, .	11.1	3
136	Three-dimensional transistors and integration based on low-dimensional materials for the post-Moore's law era. Materials Today, 2022, , .	8.3	4
137	Ultrasensitive rapid cytokine sensors based on asymmetric geometry two-dimensional MoS2 diodes. Nature Communications, 2022, 13, .	5.8	11
138	Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nature Electronics, 0, , .	13.1	8
139	Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction. Nature Nanotechnology, 2023, 18, 55-63.	15.6	45
140	Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature, 2023, 614, 88-94.	13.7	36
141	Critical Role of Surface Termination of Sapphire Substrates in Crystallographic Epitaxial Growth of MoS ₂ Using Inorganic Molecular Precursors. ACS Nano, 2023, 17, 1196-1205.	7.3	10
142	Approaching the quantum limit in two-dimensional semiconductor contacts. Nature, 2023, 613, 274-279.	13.7	100
143	Emerging MoS2 Wafer-Scale Technique for Integrated Circuits. Nano-Micro Letters, 2023, 15, .	14.4	37
144	Modifying the Power and Performance of 2-Dimensional MoS ₂ Field Effect Transistors. Research, 2023, 6, .	2.8	9
145	Epitaxial Growth of High-Quality Monolayer MoS ₂ Single Crystals on Low-Symmetry Vicinal Au(101) Facets with Different Miller Indices. ACS Nano, 2023, 17, 312-321.	7.3	8

#	Article	IF	CITATIONS
146	Nucleation and coalescence of tungsten disulfide layers grown by metalorganic chemical vapor deposition. Journal of Crystal Growth, 2023, 608, 127111.	0.7	1
147	Heterogeneous Integration of Atomicallyâ€Thin Indium Tungsten Oxide Transistors for Lowâ€Power 3D Monolithic Complementary Inverter. Advanced Science, 0, , 2205481.	5.6	2
148	Van der Waals Layer Transfer of 2D Materials for Monolithic 3D Electronic System Integration: Review and Outlook. ACS Nano, 2023, 17, 1831-1844.	7.3	22
149	Ab Initio Computational Screening and Performance Assessment of van der Waals and Semimetallic Contacts to Monolayer WSe ₂ P-Type Field-Effect Transistors. IEEE Transactions on Electron Devices, 2023, 70, 2090-2097.	1.6	8
150	Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chemical Society Reviews, 2023, 52, 1650-1671.	18.7	24
151	Lateral WSe ₂ Homojunction through Metal Contact Doping: Excellent Selfâ€powered Photovoltaic Photodetector. Advanced Functional Materials, 2023, 33, .	7.8	6
152	Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chemical Reviews, 2023, 123, 3329-3442.	23.0	23
153	Iodine-assisted ultrafast growth of high-quality monolayer MoS ₂ with sulfur-terminated edges. , 2023, 2, 20230009.		4
154	Resolidified Chalcogen Precursors for Highâ€Quality 2D Semiconductor Growth. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
155	Multifunctional Optoelectronic Synapses Based on Arrayed MoS ₂ Monolayers Emulating Human Association Memory. Advanced Science, 2023, 10, .	5.6	10
156	Micrometer-size crystalline monolayer MoS2 domains obtained by sulfurization of molybdenum oxide ultrathin films. Microelectronic Engineering, 2023, 274, 111967.	1.1	1
157	Epitaxy of multilayer-stacking MoS2 crystal microstructures by chemical vapor deposition. Applied Surface Science, 2023, 622, 156944.	3.1	0
158	Two-dimensional MXene with multidimensional carbonaceous matrix: A platform for general-purpose functional materials. Progress in Materials Science, 2023, 135, 101105.	16.0	43
159	Controlled synthesis of continuous MoS2 films via space-confined vapor deposition. Chemical Physics, 2023, 571, 111923.	0.9	2
160	Gate-tunable self-driven photodetector based on asymmetric monolayer WSe2 channel. Applied Surface Science, 2023, 616, 156444.	3.1	4
161	Unidirectional domain growth of hexagonal boron nitride thin films. Applied Materials Today, 2023, 30, 101734.	2.3	5
162	Crystalline Complex Oxide Membrane: Sub-1 nm CET Dielectrics for 2D Transistors. , 2022, , .		2
163	Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides. Nature Communications, 2023, 14, .	5.8	19

#	Article	IF	CITATIONS
164	Terminal Atom ontrolled Etching of 2Dâ€TMDs. Advanced Materials, 2023, 35, .	11.1	9
165	Monolithic 3D integration of back-end compatible 2D material FET on Si FinFET. Npj 2D Materials and Applications, 2023, 7, .	3.9	11
166	Recrystallization of MBEâ€Grown MoS ₂ Monolayers Induced by Annealing in a Chemical Vapor Deposition Furnace. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	1.2	3
167	Operating Principle and Device Configuration Driven Mechanisms in Lowâ€Dimensional Materials for Neuromorphics. Advanced Intelligent Systems, 2023, 5, .	3.3	0
168	Interisland-Distance-Mediated Growth of Centimeter-Scale Two-Dimensional Magnetic Fe ₃ O ₄ Arrays with Unidirectional Domain Orientations. Nano Letters, 2023, 23, 1758-1766.	4.5	11
169	CVD growth of large-area monolayer WS2 film on sapphire through tuning substrate environment and its application for high-sensitive strain sensor. , 2023, 18, .		3
170	A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials. Nature Communications, 2023, 14, .	5.8	10
171	Toward self-organizing low-dimensional organic–inorganic hybrid perovskites: Machine learning-driven co-navigation of chemical and compositional spaces. MRS Bulletin, 2023, 48, 164-172.	1.7	3
172	2D Material Infrared Photonics and Plasmonics. ACS Nano, 2023, 17, 4134-4179.	7.3	30
173	The interface of in-situ grown single-layer epitaxial MoS ₂ on SrTiO ₃ (001) and (111). Journal of Physics Condensed Matter, 2023, 35, 194001.	0.7	1
174	Direct CVD Synthesis of MoS ₂ Monolayers on Glass by Carbothermal Reduction. Journal of Physical Chemistry C, 2023, 127, 4689-4695.	1.5	3
175	Perforated Carbon Nanotube Film Assisted Growth of Uniform Monolayer MoS ₂ . Small, 2023, 19, .	5.2	2
176	Dual Catalytic and Selfâ€Assembled Growth of Twoâ€Dimensional Transition Metal Dichalcogenides Through Simultaneous Predeposition Process. Small, 2023, 19, .	5.2	3
177	äºŒç»´ææ–™èŒfå¾·åŽå™ïä»¶ä,界é¢çš"é€å°"电åæ~¾å¾®è¡ï徕 Chinese Science Bulletin, 2023, , .	0.4	1
178	Semimetal–Monolayer Transition Metal Dichalcogenides Photodetectors for Waferâ€5cale Broadband Photonics. Advanced Photonics Research, 2023, 4, .	1.7	0
179	Tungsten Oxide Mediated Quasi-van der Waals Epitaxy of WS ₂ on Sapphire. ACS Nano, 2023, 17, 5399-5411.	7.3	8
180	Switchable and Reversible p ⁺ /n ⁺ Doping in 2D Semiconductors by Ionic 2D Minerals. Advanced Functional Materials, 2023, 33, .	7.8	3
181	Bridging Synthesis and Controllable Doping of Monolayer 4 in. Length Transitionâ€Metal Dichalcogenides Single Crystals with High Electron Mobility. Advanced Materials, 2023, 35, .	11.1	8

		CITATION REPORT		
#	Article		IF	CITATIONS
183	2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature, 2023,	616, 66-72.	13.7	42
184	Growth of single-crystal black phosphorus and its alloy films through sustained feedsto Nature Materials, 2023, 22, 717-724.	ock release.	13.3	24
185	An in-memory computing architecture based on a duplex two-dimensional material strusitu machine learning. Nature Nanotechnology, 2023, 18, 493-500.	ucture for in	15.6	28
186	Growth and applications of two-dimensional single crystals. 2D Materials, 2023, 10, 03	32001.	2.0	4
187	Resolidified Chalcogen Precursors for Highâ€Quality 2D Semiconductor Growth. Ange 0, , .	wandte Chemie,	1.6	0
188	Nonâ€Invasive Photodelamination of van der Waals Semiconductors for Highâ€Perfor Advanced Materials, 0, , .	mance Electronics.	11.1	1
189	Highly Reproducible Epitaxial Growth of Waferâ€Scale Singleâ€Crystal Monolayer MoS Sapphire. Small Methods, 2023, 7, .	<pre>s₂ on</pre>	4.6	9
190	Ultrahigh photoresponse in strain- and domain-engineered large-scale MoS _{2films. Journal of Materials Chemistry A, 0, , .}	ıb> monolayer	5.2	0
191	Halide vapor phase epitaxy of monolayer molybdenum diselenide single crystals. , 2023	3, 2, 20220055.		2
192	Development of in situ characterization of two-dimensional materials grown on insulat with spectroscopic photoemission and low energy electron microscopy. Journal of Elec Spectroscopy and Related Phenomena, 2023, 264, 147318.	tor substrates tron	0.8	0
195	Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. ACS N 9694-9747.	ano, 2023, 17,	7.3	21
204	Controllable growth of two-dimensional quantum materials. Science China: Physics, M Astronomy, 2023, 66, .	echanics and	2.0	2
215	A Researcher's Perspective on Unconventional Lab-to-Fab for 2D Semiconductor D 2023, 17, 12955-12970.	evices. ACS Nano,	7.3	2
228	Controlled growth of vertically stacked In2Se3/WSe2 heterostructures for ultrahigh re photodetector. Nano Research, 2024, 17, 1856-1863.	sponsivity	5.8	2
247	p-Type Two-Dimensional Semiconductors: From Materials Preparation to Electronic Ap Nano-Micro Letters, 2023, 15, .	plications.	14.4	2
257	Wafer-scale epitaxy of transition-metal dichalcogenides with continuous single-crystall engineered defect density. MRS Bulletin, 0, , .	inity and	1.7	1
260	Sublimation-based wafer-scale monolayer WS ₂ formation <i>via</i> self-lof few-layer WS ₂ . Nanoscale Horizons, 2023, 9, 132-142.	imited thinning	4.1	1
262	Working Dynamics in Low-dimensional Material-based Neuromorphic Devices. , 2023,	, 458-497.		0

#	Article	IF	CITATIONS
266	Silicon-processes-compatible contact engineering for two-dimensional materials integrated circuits. Nano Research, 2023, 16, 12471-12490.	5.8	1
270	Vapour-phase deposition of two-dimensional layered chalcogenides. Nature Reviews Materials, 2023, 8, 799-821.	23.3	1
279	Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions. Frontiers of Physics, 2024, 19, .	2.4	0
282	Physical properties for biomaterials docking with bones and articular cartilage. AIP Conference Proceedings, 2023, , .	0.3	0
319	Wafer-scale transfer of two-dimensional materials with UV tape. Nature Electronics, 2024, 7, 96-97.	13.1	0
323	The Roadmap of 2D Materials and Devices Toward Chips. Nano-Micro Letters, 2024, 16, .	14.4	0