Technological Innovations in Photochemistry for Organ High-Throughput Experimentation, Scale-up, and Phot

Chemical Reviews 122, 2752-2906

DOI: 10.1021/acs.chemrev.1c00332

Citation Report

#	Article	IF	CITATIONS
1	Photocatalytic Câ^'H Azolation of Arenes Using Heterogeneous Carbon Nitride in Batch and Flow. ChemSusChem, 2021, 14, 5265-5270.	3.6	14
2	Forgotten and forbidden chemical reactions revitalised through continuous flow technology. Organic and Biomolecular Chemistry, 2021, 19, 7737-7753.	1.5	32
3	Development of an Offâ€Grid Solarâ€Powered Autonomous Chemical Miniâ€Plant for Producing Fine Chemicals. ChemSusChem, 2021, 14, 5417-5423.	3.6	13
4	The development of luminescent solar concentrator-based photomicroreactors: a cheap reactor enabling efficient solar-powered photochemistry. Photochemical and Photobiological Sciences, 2022, 21, 705-717.	1.6	16
5	Continuous Flow Synthesis of Anticancer Drugs. Molecules, 2021, 26, 6992.	1.7	5
6	Dynamically triggering photoreactions for high performance and efficiency. Current Opinion in Chemical Engineering, 2022, 36, 100789.	3.8	3
7	Continuous-Flow Hofmann Rearrangement Using Trichloroisocyanuric Acid for the Preparation of 2-Benzoxazolinone. Organic Process Research and Development, 2022, 26, 422-430.	1.3	12
8	Simple Fabrication of a Continuous-Flow Photocatalytic Reactor Using Dopamine-Assisted Immobilization onto a Fluoropolymer Tubing. Industrial & Engineering Chemistry Research, 2022, 61, 1322-1331.	1.8	5
9	Modeling and Simulation of Reaction Environment in Photoredox Catalysis: A Critical Review. Frontiers in Chemical Engineering, 2022, 3, .	1.3	1
10	Improved efficiency of photo-induced synthetic reactions enabled by advanced photo flow technologies. Photochemical and Photobiological Sciences, 2022, 21, 761-775.	1.6	4
11	Development of a high intensity parallel photoreactor for high throughput screening. Reaction Chemistry and Engineering, 2022, 7, 354-360.	1.9	18
12	Photobiocatalysis in Continuous Flow. Frontiers in Catalysis, 2022, 1, .	1.8	18
13	Understanding Ir(III) Photocatalyst Structure–Activity Relationships: A Highly Parallelized Study of Light-Driven Metal Reduction Processes. Journal of the American Chemical Society, 2022, 144, 1431-1444.	6.6	18
14	Photochemical Csp2–H bond thiocyanation and selenocyanation of activated arenes, batch and continuous-flow approaches. Photochemical and Photobiological Sciences, 2022, 21, 849-861.	1.6	8
15	A scalable light-diffusing photochemical reactor for continuous processing of photoredox reactions. Chemical Engineering Journal, 2022, 435, 134889.	6.6	6
16	Commercial-Scale Visible Light Trifluoromethylation of 2-Chlorothiophenol Using CF ₃ 1 Gas. Organic Process Research and Development, 2022, 26, 404-412.	1.3	21
17	Multiple wavelength (365–475Ânm) complete actinometric characterization of Corning® Lab Photo Reactor using azobenzene as a highly soluble, cheap and robust chemical actinometer. Photochemical and Photobiological Sciences, 2022, 21, 421-432.	1.6	4
18	Batch or flow chemistry? – a current industrial opinion on process selection. Current Opinion in Chemical Engineering, 2022, 36, 100798.	3.8	21

#	Article	IF	CITATIONS
19	A continuous flow generator of organic hypochlorites for the neutralization of chemical warfare agent simulants. Green Chemistry, 2022, 24, 3167-3179.	4.6	11
20	Asymmetric β-arylation of cyclopropanols enabled by photoredox and nickel dual catalysis. Chemical Science, 2022, 13, 3020-3026.	3.7	4
21	Continuous stirred-tank reactor cascade platform for self-optimization of reactions involving solids. Reaction Chemistry and Engineering, 2022, 7, 1315-1327.	1.9	22
22	Continuous-flow synthesis of alkyl zinc sulfinates for the direct photofunctionalization of heterocycles. Chemical Communications, 2022, 58, 4611-4614.	2.2	4
23	Synthesis efficiency of silver nanoparticles by light-emitting diode and microwave irradiation using starch as a reducing agent. Nanotechnology for Environmental Engineering, 2022, 7, 297-306.	2.0	0
24	Flow synthesis of oxadiazoles coupled with sequential in-line extraction and chromatography. Beilstein Journal of Organic Chemistry, 2022, 18, 232-239.	1.3	1
25	Exploring metallic and plastic 3D printed photochemical reactors for customizing chemical synthesis. Scientific Reports, 2022, 12, 3780.	1.6	5
26	Synthesis of Doped/Hybrid Carbon Dots and Their Biomedical Application. Nanomaterials, 2022, 12, 898.	1.9	22
27	Three-Dimensional Large-Scale Fused Silica Microfluidic Chips Enabled by Hybrid Laser Microfabrication for Continuous-Flow UV Photochemical Synthesis. Micromachines, 2022, 13, 543.	1.4	8
28	Automated synthesis and characterization techniques for solar fuel production. Nature Reviews Materials, 2022, 7, 251-253.	23.3	11
29	Unveiling the Synthetic Potential of Substituted Phenols as Fully Recyclable Organophotoredox Catalysts for the Iodosulfonylation of Olefins. ACS Catalysis, 2022, 12, 4290-4295.	5.5	20
30	Enantioselective Organophotocatalytic Telescoped Synthesis of a Chiral Privileged Active Pharmaceutical Ingredient. Chemistry - A European Journal, 2022, 28, .	1.7	12
31	Flow Chemistry: A Sustainable Voyage Through the Chemical Universe en Route to Smart Manufacturing. Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 45-72.	3.3	16
32	Scale-Up of a Heterogeneous Photocatalytic Degradation Using a Photochemical Rotor–Stator Spinning Disk Reactor. Organic Process Research and Development, 2022, 26, 1279-1288.	1.3	27
33	Photochemical Deracemization of a Medicinallyâ€Relevant Benzopyran using an Oscillatory Flow Reactor. Chemistry - A European Journal, 2022, 28, .	1.7	16
34	Orange-Light-Induced Photochemistry Gated by pH and Confined Environments. Journal of the American Chemical Society, 2022, 144, 6343-6348.	6.6	19
35	Flexible homogeneous hydroformylation: on-demand tuning of aldehyde branching with a cyclic fluorophosphite ligand. Journal of Catalysis, 2022, 409, 105-117.	3.1	12
36	Advances in C1-deuterated aldehyde synthesis. Coordination Chemistry Reviews, 2022, 463, 214525.	9.5	13

#	Article	IF	CITATIONS
37	Evaluation of self-sustaining cyanobacterial biofilms for technical applications. Biofilm, 2022, 4, 100073.	1.5	11
38	Recent Advances in C(sp ³)–C(sp ³) and C(sp ³)–C(sp ²) Bond Formation through Cathodic Reactions: Reductive and Convergent Paired Electrolyses. ACS Organic & Inorganic Au, 2022, 2, 126-147.	1.9	34
39	Accelerated and Scalable C(sp ³)–H Amination via Decatungstate Photocatalysis Using a Flow Photoreactor Equipped with High-Intensity LEDs. ACS Central Science, 2022, 8, 51-56.	5.3	35
40	Accelerating the Photocatalytic Atom Transfer Radical Addition Reaction Induced by Bi ₂ O ₃ with Amines: Experiment and Computation. ChemCatChem, 2022, 14, .	1.8	3
41	The Photochemical Activity of a Halogen-Bonded Complex Enables the Microfluidic Light-Driven Alkylation of Phenols. Organic Letters, 2022, 24, 2961-2966.	2.4	22
42	Continuous flow process for preparing budesonide. Journal of Flow Chemistry, 2022, , 1-10.	1.2	0
43	Dataâ€Ðriven Materials Innovation and Applications. Advanced Materials, 2022, 34, e2104113.	11.1	51
44	Continuous Roomâ€Temperature Hydrogen Release from Liquid Organic Carriers in a Photocatalytic Packedâ€Bed Flow Reactor. ChemSusChem, 2022, , .	3.6	3
45	Mediated Electron Transfer in Electrosynthesis: Concepts, Applications, and Recent Influences from Photoredox Catalysis. RSC Green Chemistry, 2022, , 119-153.	0.0	1
46	State of knowledge in photoredox-catalysed direct difluoromethylation. Organic Chemistry Frontiers, 2022, 9, 3598-3623.	2.3	39
47	Selective Photochemical Continuous Flow Benzylic Monochlorination. Organic Process Research and Development, 2022, 26, 1496-1505.	1.3	1
48	α-C–H Photoalkylation of a Glucose Derivative in Continuous Flow. Synthesis, 2022, 54, 4683-4689.	1.2	4
49	Synthetic Applications of Photocatalyzed Halogenâ€Radical Mediated Hydrogen Atom Transfer for Câ^'H Bond Functionalization. European Journal of Organic Chemistry, 2022, 2022, .	1.2	36
50	Enhanced flow electrochemistry for cyclohexane Conversion: From simulation to application. Journal of Catalysis, 2022, 410, 84-92.	3.1	8
51	A synergistic study on the synthesis of juglone via photooxidation in a UV–Vis LED based photomicroreactor. Chemical Engineering Journal, 2022, 445, 136663.	6.6	8
52	Trace amount of single-atom palladium-catalyzed selective hydrosilylation of allenes. Nano Research, 2022, 15, 7091-7098.	5.8	9
53	Dehydroalanine modification sees the light: a photochemical conjugate addition strategy. Trends in Chemistry, 2022, 4, 643-657.	4.4	21
54	Decomposition of lignin models enabled by copper-based photocatalysis under biphasic conditions. Green Chemistry, 2022, 24, 4414-4419.	4.6	4

#	ARTICLE	IF	CITATIONS
55	Novel Naphthalimideâ€Based Selfâ€Assembly Systems with Different Terminal Groups for Sensitive Detection of Thionyl Chloride and Oxalyl Chloride in Two Modes. ChemistrySelect, 2022, 7, .	0.7	0
56	Modular allylation of C(sp ³)–H bonds by combining decatungstate photocatalysis and HWE olefination in flow. Chemical Science, 2022, 13, 7325-7331.	3.7	20
57	Solution-processable microporous polymer platform for heterogenization of diverse photoredox catalysts. Nature Communications, 2022, 13, .	5.8	11
58	Photoelectrochemical Oxidation of Glycerol to Dihydroxyacetone Over an Acid-Resistant Ta:BiVO ₄ Photoanode. ACS Sustainable Chemistry and Engineering, 2022, 10, 7586-7594.	3.2	24
59	Recent advances in visible-light-mediated functionalization of olefins and alkynes using copper catalysts. Chemical Communications, 2022, 58, 7850-7873.	2.2	14
60	Device for automated screening of irradiation wavelength and intensity – investigation of the wavelength dependence of photoreactions with an arylazo sulfone in continuous flow. Reaction Chemistry and Engineering, 0, , .	1.9	1
61	Homogeneous Organic Electron Donors in Nickel-Catalyzed Reductive Transformations. Journal of Organic Chemistry, 2022, 87, 7589-7609.	1.7	17
62	Vergleichende Evaluierung lichtgetriebener Katalyse: Ein Rahmenkonzept für das standardisierte Berichten von Daten**. Angewandte Chemie, 0, , .	1.6	0
63	Photocatalyzed Functionalization of Alkenoic Acids in 3Dâ€Printed Reactors. ChemSusChem, 2022, 15, .	3.6	7
64	An aqueous hydrotropic solution as environmentally benign reaction medium for organic transformations: a short review. Research on Chemical Intermediates, 2022, 48, 3223-3245.	1.3	3
65	Comparative Evaluation of Lightâ€Driven Catalysis: A Framework for Standardized Reporting of Data**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
66	Immobilized Eosin Y for the Photocatalytic Oxidation of Tetrahydroisoquinolines in Flow. ChemCatChem, 2022, 14, .	1.8	6
67	Direct Câ^'H Trifluoromethylation of (Hetero)Arenes in Water Enabled by Organic Photoredoxâ€Active Amphiphilic Nanoparticles. Chemistry - A European Journal, 2022, 28, .	1.7	10
68	Ionic liquid gel microspheres as an emerging platform for constructing liquid compartment microreactors. Green Chemistry, 2022, 24, 5952-5964.	4.6	2
69	Kilo-Scale Electrochemical Oxidation of a Thioether to a Sulfone: A Workflow for Scaling up Electrosynthesis. Organic Process Research and Development, 2022, 26, 2423-2437.	1.3	25
70	Recent advances in chemical fixation of CO2 based on flow chemistry. Chinese Chemical Letters, 2023, 34, 107782.	4.8	8
71	Ligandâ€ŧoâ€Metal Charge Transfer (LMCT) Photochemistry at 3dâ€Metal Complexes: An Emerging Tool for Sustainable Organic Synthesis. ChemCatChem, 2022, 14, .	1.8	82
72	Electrophotochemical Decarboxylative Azidation of Aliphatic Carboxylic Acids. ACS Catalysis, 2022, 12, 10661-10667.	5.5	26

#	Article	IF	CITATIONS
73	Recent Advancements on Hydrodynamics and Mass Transfer Characteristics for CO ₂ Absorption in Microreactors. Industrial & Engineering Chemistry Research, 2022, 61, 12249-12268.	1.8	13
74	Variable Temperature LED–NMR: Rapid Insights into a Photocatalytic Mechanism from Reaction Progress Kinetic Analysis. Journal of Organic Chemistry, 2022, 87, 11776-11782.	1.7	8
75	Rapid and Replaceable Luminescent Coating for Silicon-Based Microreactors Enabling Energy-Efficient Solar Photochemistry. ACS Sustainable Chemistry and Engineering, 2022, 10, 10712-10717.	3.2	2
76	N–O Bond Activation by Energy Transfer Photocatalysis. Accounts of Chemical Research, 2022, 55, 2526-2541.	7.6	41
77	Synthesis of Thiomorpholine via a Telescoped Photochemical Thiol–Ene/Cyclization Sequence in Continuous Flow. Organic Process Research and Development, 2022, 26, 2532-2539.	1.3	8
78	Design of a Photocatalytic [2+2] Cycloaddition Reaction Using Redoxâ€Tag Strategy. Chemistry - A European Journal, 2022, 28, .	1.7	5
79	Visible-Light-Driven α-Hydroxymethylation of Ketones in a Continuous-Flow Microreactor. Synlett, 2023, 34, 86-92.	1.0	2
80	Scaling up multiphase photochemical reactions using translucent monoliths. Chemical Engineering and Processing: Process Intensification, 2022, 181, 109138.	1.8	5
81	Autonomous model-based experimental design for rapid reaction development. Reaction Chemistry and Engineering, 2022, 7, 2375-2384.	1.9	11
82	The assembly of integrated continuous flow platform for on-demand rosiglitazone and pioglitazone synthesis. Reaction Chemistry and Engineering, 2022, 7, 2084-2092.	1.9	6
83	Micro-photo-flow reactor system for fused N-heteroaryl scaffold synthesis and late-stage functionalization of pyrazolopyridines. Chemical Communications, 2022, 58, 11268-11271.	2.2	4
84	Heterogeneous metallaphotoredox catalysis in a continuous-flow packed-bed reactor. Beilstein Journal of Organic Chemistry, 0, 18, 1123-1130.	1.3	4
85	Visible-light-enabled multicomponent synthesis of trifluoromethylated 3-indolequinoxalin-2(1H)-ones without external photocatalysis. Green Synthesis and Catalysis, 2024, 5, 51-56.	3.7	0
86	A 3D printed photoreactor for investigating variable reaction geometry, wavelength, and fluid flow. Review of Scientific Instruments, 2022, 93, 084103.	0.6	2
87	Emerging Activation Modes and Techniques in Visible-Light-Photocatalyzed Organic Synthesis. Synthesis, 2023, 55, 193-231.	1.2	14
88	Design and Investigation of a Photocatalytic Setup for Efficient Biotransformations Within Recombinant Cyanobacteria in Continuous Flow. ChemSusChem, 2022, 15, .	3.6	5
89	The Merger of Benzophenone HAT Photocatalysis and Silyl Radical-Induced XAT Enables Both Nickel-Catalyzed Cross-Electrophile Coupling and 1,2-Dicarbofunctionalization of Olefins. ACS Catalysis, 2022, 12, 11216-11225.	5.5	24
90	Electrochemical Synthesis of <i>gem</i> â€Difluoro―and γâ€Fluoroâ€Allyl Boronates and Silanes. Chemistry - A European Journal, 2022, 28, .	1.7	20

#	Article	IF	CITATIONS
91	Multicomponent Direct Assembly of <i>N</i> -Heterospirocycles Facilitated by Visible-Light-Driven Photocatalysis. Journal of Organic Chemistry, 2022, 87, 13204-13223.	1.7	4
92	Mechanistic Understanding of Electrocatalytic Vinylcyclopropane Rearrangement. European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
93	Dual role of benzophenone enables a fast and scalable C-4 selective alkylation of pyridines in flow. Chemical Science, 2022, 13, 12527-12532.	3.7	7
94	Photoinduced arylation of chloroarenes in flow: synthesis of unsymmetrical biaryls. Organic and Biomolecular Chemistry, 2022, 20, 8212-8216.	1.5	1
95	Will the next generation of chemical plants be in miniaturized flow reactors?. Lab on A Chip, 2023, 23, 1349-1357.	3.1	13
96	Strategies for Transferring Photobiocatalysis to Continuous Flow Exemplified by Photodecarboxylation of Fatty Acids. ACS Catalysis, 2022, 12, 14040-14049.	5.5	17
97	Mild Photocatalytic Synthesis of Azimines. European Journal of Organic Chemistry, 0, , .	1.2	0
98	Photoelectrochemical asymmetric catalysis enables site- and enantioselective cyanation of benzylic C–H bonds. Nature Catalysis, 2022, 5, 943-951.	16.1	81
99	Membrane-based TBADT recovery as a strategy to increase the sustainability of continuous-flow photocatalytic HAT transformations. Nature Communications, 2022, 13, .	5.8	14
100	Coemissive luminescent nanoparticles combining aggregation-induced emission and quenching dyes prepared in continuous flow. Nature Communications, 2022, 13, .	5.8	11
101	Efficient Red-Light-Driven Hydrogen Evolution with an Anthraquinone Organic Dye. Journal of the American Chemical Society, 2022, 144, 19680-19684.	6.6	6
102	Asymmetric Photochemical [2 + 2]-Cycloaddition of Acyclic Vinylpyridines through Ternary Complex Formation and an Uncontrolled Sensitization Mechanism. Journal of the American Chemical Society, 2022, 144, 20109-20117.	6.6	8
103	Photoredox C _{sp} ³ â^'C _{sp} ² Reductive Crossâ€Couplings of Cereblon Ligands for PROTAC Linker Exploration in Batch and Flow. ChemCatChem, 2022, 14, .	1.8	9
104	<i>N</i> , <i>N</i> -Diisopropylethylamine-Mediated Electrochemical Reduction of Azobenzenes in Dichloromethane. Journal of Organic Chemistry, 0, , .	1.7	3
105	Precisely Tailoring Heterometallic Polyoxotitanium Clusters for the Efficient and Selective Photocatalytic Oxidation of Hydrocarbons. Angewandte Chemie, 2022, 134, .	1.6	2
106	Taming Highly Unstable Radical Anions and 1,4-Organodilithiums by Flow Microreactors: Controlled Reductive Dimerization of Styrenes. Jacs Au, 2022, 2, 2514-2521.	3.6	8
107	Precisely Tailoring Heterometallic Polyoxotitanium Clusters for the Efficient and Selective Photocatalytic Oxidation of Hydrocarbons. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
108	Photoelectrochemical Asymmetric Catalysis Enables Direct and Enantioselective Decarboxylative Cyanation. Journal of the American Chemical Society, 2022, 144, 20201-20206.	6.6	47

#	Article	IF	CITATIONS
109	KuQuinone as a Highly Stable and Reusable Organic Photocatalyst in Selective Oxidation of Thioethers to Sulfoxides. Journal of Organic Chemistry, 2022, 87, 14016-14025.	1.7	12
110	Excited-State Copper-Catalyzed [4 + 1] Annulation Reaction Enables Modular Synthesis of α,β-Unsaturated-γ-Lactams. Journal of the American Chemical Society, 2022, 144, 20884-20894.	6.6	11
111	A review on photo-, electro- and photoelectro- catalytic strategies for selective oxidation of alcohols. Journal of Energy Chemistry, 2023, 77, 80-118.	7.1	42
112	Design and simulation of a uniform irradiance photochemical platform. Reaction Chemistry and Engineering, 2023, 8, 416-423.	1.9	2
113	Consecutive photochemical reactions enabled by a dual flow reactor coil strategy. Chemical Communications, 2022, 58, 13274-13277.	2.2	2
114	Synthesis of Fentanyl under Continuous Photoflow Conditions. Organic Letters, 2022, 24, 8331-8336.	2.4	3
115	Light-empowered contra-thermodynamic stereochemical editing. Nature Reviews Chemistry, 2023, 7, 35-50.	13.8	33
116	Visible Lightâ€Mediated Cyclisation Reaction for the Synthesis of Highly‣ubstituted Tetrahydroquinolines and Quinolines Angewandte Chemie, 0, , .	1.6	0
117	Visible Lightâ€Mediated Cyclisation Reaction for the Synthesis of Highly‣ubstituted Tetrahydroquinolines and Quinolines. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
118	Flow Photo-On-Demand Phosgenation Reactions with Chloroform. Organic Process Research and Development, 2022, 26, 3336-3344.	1.3	7
119	High-Throughput Photochemistry Using Droplet Microfluidics. ACS Symposium Series, 0, , 131-143.	0.5	0
120	Development of Advanced High Throughput Experimentation Platforms for Photocatalytic Reactions. ACS Symposium Series, 0, , 145-165.	0.5	2
121	Pushing Photochemistry into Water: Acceleration of the Diâ€Ï€â€Methane Rearrangement and the PaternA³â€Büchi Reaction "Onâ€Water― Chemistry - A European Journal, 2023, 29, .	1.7	3
122	Solar Panel Technologies for Light-to-Chemical Conversion. Accounts of Chemical Research, 2022, 55, 3376-3386.	7.6	20
123	Sensitizer-controlled photochemical reactivity <i>via</i> upconversion of red light. Chemical Science, 2022, 14, 149-161.	3.7	26
124	Photochemistry electrified: pushing the boundaries of radical-based organic synthesis. Photochemistry, 2022, , 321-345.	0.2	2
125	Photoelectrocatalytic Site- and Enantioselective Cyanation of Benzylic C—H Bonds. Chinese Journal of Organic Chemistry, 2022, 42, 3903.	0.6	0
126	Diverse continuous photooxygenation reactions of (+) and (â^')-α-pinenes to the corresponding pinocarvones or <i>trans</i> -pinocarveols. Reaction Chemistry and Engineering, 2023, 8, 790-797.	1.9	1

#	Article	IF	CITATIONS
127	A versatile non-fouling multi-step flow reactor platform: demonstration for partial oxidation synthesis of iron oxide nanoparticles. Lab on A Chip, 2022, 23, 115-124.	3.1	4
128	Chemoselective borylation of bromoiodoarene in continuous flow: synthesis of bromoarylboronic acids. Journal of Flow Chemistry, 2023, 13, 21-29.	1.2	2
129	Overcoming Photochemical Limitations in Metallaphotoredox Catalysis: Red-Light-Driven C–N Cross-Coupling. Journal of the American Chemical Society, 2022, 144, 22409-22415.	6.6	24
130	Photochemical Synthesis of Pyrazolines from Tetrazoles in Flow. SynOpen, 0, , .	0.8	1
131	Development of Carbazole-Cored Organo-Photocatalyst for Visible Light-Driven Reductive Pinacol/Imino-Pinacol Coupling. Organic Letters, 2022, 24, 9001-9006.	2.4	14
132	TBADTâ€Mediated C Bond Formation Exploiting Aryl Aldehydes in a Photochemical Flow Reactor. ChemCatChem, 2023, 15, .	1.8	5
133	Development of an Automated Platform for C(sp ³)â^'C(sp ³) Bond Formation via XAT Chemistry. ChemCatChem, 2023, 15, .	1.8	4
134	Visibleâ€Lightâ€Driven Hydrophosphorylation of Azobenzenes Enabled by <i>trans</i> â€ŧoâ€ <i>cis</i> Photoisomerization. Advanced Synthesis and Catalysis, 2022, 364, 4275-4280.	2.1	6
135	Microreactor Technology: Identifying Focus Fields and Emerging Trends by Using CiteSpace II. ChemPlusChem, 2023, 88, .	1.3	2
136	Insight for the photochemical reaction of 4-aryl-4H-pyran: Experimental and theoretical studies. Tetrahedron, 2022, , 133212.	1.0	Ο
137	Photoinduced Ligandâ€ŧoâ€Metal Charge Transfer of Carboxylates: Decarboxylative Functionalizations, Lactonizations, and Rearrangements. Advanced Synthesis and Catalysis, 2022, 364, 4189-4230.	2.1	21
138	A practical perspective for chromatic orthogonality for implementing in photolithography. Scientific Reports, 2023, 13, .	1.6	1
139	Process Intensification and Increased Safety for the On-Demand Continuous Flow Synthesis of Dithiothreitol, a Crucial Component in Polymerase Chain Reaction Testing Kits. Organic Process Research and Development, 2023, 27, 227-232.	1.3	2
140	The Rational Design of Reducing Organophotoredox Catalysts Unlocks Proton-Coupled Electron-Transfer and Atom Transfer Radical Polymerization Mechanisms. Journal of the American Chemical Society, 2023, 145, 1835-1846.	6.6	19
141	Mechanisms and Synthetic Strategies in Visible Lightâ€Driven [2+2]â€Heterocycloadditions. Angewandte Chemie - International Edition, 2023, 62, .	7.2	22
142	Direct synthesis of unprotected aryl C-glycosides by photoredox Ni-catalysed cross-coupling. , 2023, 2, 251-260.		10
143	Modern Photocatalytic Strategies in Natural Product Synthesis. Progress in the Chemistry of Organic Natural Products, 2023, , 1-104.	0.8	0
144	Mechanisms and Synthetic Strategies in Visible Lightâ€Driven [2+2]â€Heterocycloadditions. Angewandte Chemie, 2023, 135, .	1.6	Ο

#	Article	IF	CITATIONS
145	Generation of 1,2-Difluorobenzene via a Photochemical Fluorodediazoniation Step in a Continuous Flow Mode. Organic Process Research and Development, 2023, 27, 322-330.	1.3	5
146	Extending Photocatalyst Activity through Choice of Electron Donor. Journal of Organic Chemistry, 2023, 88, 6445-6453.	1.7	5
147	Polyetheretherketone fiber-supported TBD as an efficient fibrous superbase catalyst for organic conversions in continuous-flow processing. Journal of Catalysis, 2023, 418, 110-120.	3.1	2
148	Visible-Light Mediated Carbamoylation of Nitrones under a Continuous Flow Regime. Journal of Organic Chemistry, 2023, 88, 6407-6419.	1.7	5
149	Photoinduced Halogen-Atom Transfer by <i>N</i> -Heterocyclic Carbene-Ligated Boryl Radicals for C(sp ³)–C(sp ³) Bond Formation. Journal of the American Chemical Society, 2023, 145, 991-999.	6.6	19
150	Multivariate curve resolution for kinetic modeling and scale-up prediction. Journal of Flow Chemistry, 0, , .	1.2	0
151	Elements-Continuous-Flow Platform for Coupling Reactions and Anti-viral Daclatasvir API Synthesis. Synthesis, 2024, 56, 657-667.	1.2	0
152	Flow photochemical Giese reaction via silane-mediated activation of alkyl bromides. Tetrahedron Letters, 2023, 117, 154380.	0.7	0
153	Carbene-controlled regioselectivity in photochemical cascades. Organic and Biomolecular Chemistry, 2023, 21, 2930-2934.	1.5	2
154	Supramolecular Coordination Cages for Artificial Photosynthesis and Synthetic Photocatalysis. Chemical Reviews, 2023, 123, 5225-5261.	23.0	56
155	Photocatalytic Late-Stage C–H Functionalization. Chemical Reviews, 2023, 123, 4237-4352.	23.0	112
156	Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules, 2023, 28, 1283.	1.7	5
157	Towards Antibiotic Synthesis in Continuous-Flow Processes. Molecules, 2023, 28, 1421.	1.7	1
158	Derivatized Benzothiazoles as Two-Photon-Absorbing Organic Photosensitizers Active under Near Infrared Light Irradiation. Journal of the American Chemical Society, 2023, 145, 3535-3542.	6.6	28
159	Development of a fully automated continuous, integrated production system for all reaction processes of ibuprofen. Reaction Chemistry and Engineering, 0, , .	1.9	0
160	A field guide to flow chemistry for synthetic organic chemists. Chemical Science, 2023, 14, 4230-4247.	3.7	67
161	Temperature-Controlled Photoreactors and ChemBeads as Key Technologies for Robust and Practical Photochemical HTE. Organic Process Research and Development, 2023, 27, 798-810.	1.3	5
162	Regulating liquid film disturbance via disk configurations for photochemical process intensification in a spinning disk reactor. Chemical Engineering Science, 2023, 273, 118641.	1.9	2

c	E A 751	ON	REPO	DT
				ו גוו

#	Article	IF	CITATIONS
163	Emerging reaction technologies in pharmaceutical development: Challenges and opportunities in electrochemistry, photochemistry, and biocatalysis. Chemical Engineering Research and Design, 2023, 192, 622-637.	2.7	10
164	Enantioselective Catalytic Addition of Nâ€Acyl Radicals: In Batch and In Flow Organophotoredox αâ€Amination of Aldehydes. European Journal of Organic Chemistry, 2023, 26, .	1.2	2
165	Hybrid laser microfabrication of three-dimensional large-scale fused silica microfluidic chips. , 2023, ,		0
166	Flow photochemistry — from microreactors to large-scale processing. Current Opinion in Chemical Engineering, 2023, 39, 100897.	3.8	5
167	Highâ€Throughput Experimentation as an Accessible Technology for Academic Organic Chemists in Europe and Beyond**. Chemistry Methods, 2023, 3, .	1.8	1
168	Continuous-Flow Technology for Chemical Rearrangements: A Powerful Tool to Generate Pharmaceutically Relevant Compounds. ACS Medicinal Chemistry Letters, 2023, 14, 326-337.	1.3	6
169	More Chips to Nitroolefins: Decatungstate Photocatalysed Hydroalkylation Under Batch and Flow Conditions. Advanced Synthesis and Catalysis, 2023, 365, 722-727.	2.1	3
170	Advances in Electrochemical Systems for Detection of Antiâ€Androgens in Water Bodies. ChemistrySelect, 2023, 8, .	0.7	1
171	A Brief Introduction to Chemical Reaction Optimization. Chemical Reviews, 2023, 123, 3089-3126.	23.0	58
172	Latest Advances in Highly Efficient Dye-Based Photoinitiating Systems for Radical Polymerization. Polymers, 2023, 15, 1148.	2.0	3
173	Decatungstateâ€Photocatalyzed Functionalization of αâ€Imino Esters for the Preparation of Unnatural αâ€Amino Acid Derivatives. ChemCatChem, 2023, 15, .	1.8	1
174	Electrochemical dual α,β-C(sp ³)–H functionalization of cyclic <i>N</i> -aryl amines. Green Chemistry, 2023, 25, 2681-2689.	4.6	8
175	Antimicrobial Evaluation of New Pyrazoles, Indazoles and Pyrazolines Prepared in Continuous Flow Mode. International Journal of Molecular Sciences, 2023, 24, 5319.	1.8	2
176	Scale-Up of Photochemical Reactions: Transitioning from Lab Scale to Industrial Production. Annual Review of Chemical and Biomolecular Engineering, 2023, 14, 283-300.	3.3	25
177	Rapid plugged flow synthesis of nucleoside analogues via Suzuki-Miyaura coupling and heck Alkenylation of 5-Iodo-2'-deoxyuridine (or cytidine). Journal of Flow Chemistry, 2023, 13, 293-310.	1.2	3
179	FOMSy: 3D-printed flexible open-source microfluidic system and flow synthesis of PET-tracer. Journal of Flow Chemistry, 2023, 13, 247-256.	1.2	3
180	A Modular Tubular Flow System with Replaceable Photocatalyst Membranes for Scalable Coupling and Hydrogenation. Angewandte Chemie - International Edition, 0, , .	7.2	1
181	A Modular Tubular Flow System with Replaceable Photocatalyst Membranes for Scalable Coupling and Hydrogenation. Angewandte Chemie, 2023, 135, .	1.6	0

#	Article	IF	CITATIONS
182	Recent Advances in the Multistep Continuous Preparation of Apis and Fine Chemicals. Current Topics in Medicinal Chemistry, 2023, 23, .	1.0	1
183	Crowding effect of institutional openness based on the big data algorithm on the efficiency of new energy technology innovation. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	6
184	Multicomponent synthesis of di-aryl dithiocarbamates <i>via</i> electron donor–acceptor photoactivation with thianthrenium salts. Green Chemistry, 2023, 25, 3852-3856.	4.6	5
185	Photo-Flow Technology for Chemical Rearrangements: A Powerful Tool to Generate Pharmaceutically Relevant Compounds. ACS Medicinal Chemistry Letters, 2023, 14, 672-680.	1.3	1
186	Photocatalysis as an Effective Tool for Upcycling Polymers into Valueâ€Added Molecules. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
187	Photocatalysis as an Effective Tool for Upcycling Polymers into Valueâ€Added Molecules. Angewandte Chemie, 2023, 135, .	1.6	1
188	Machine learning integrated photocatalysis: progress and challenges. Chemical Communications, 2023, 59, 5795-5806.	2.2	11
189	Kinetic study in an automatic continuousâ€flow photochemical platform with machine learning. AICHE Journal, 2023, 69, .	1.8	Ο
204	Moderne Radikal- und Redoxchemie. , 2023, , 859-879.		0
213	Resurgence and advancement of photochemical hydrogen atom transfer processes in selective alkane functionalizations. Chemical Science, 2023, 14, 6841-6859.	3.7	13
224	3D printed reactors and Kessil lamp holders for flow photochemistry: design and system standardization. Journal of Flow Chemistry, 2023, 13, 435-442.	1.2	3
232	Development of Photoredox Cross-Electrophile Coupling of Strained Heterocycles with Aryl Bromides Using High-Throughput Experimentation for Library Construction. Organic Letters, 0, , .	2.4	2
233	ACCELERATING DRUG DISCOVERY BY HIGH-THROUGHPUT EXPERIMENTATION. Medicinal Chemistry Reviews, 0, , 443-463.	0.1	0
234	Combining Computational Fluid Dynamics, Photon Fate Simulation and Machine Learning to Optimize Continuous-Flow Photocatalytic Systems. Reaction Chemistry and Engineering, 0, , .	1.9	1
242	Metal and metal oxide nanoparticles for photoelectrochemical bioanalysis. , 2023, , 191-206.		0
243	Diastereoselectivity in Photochemistry. , 2023, , .		0
252	Synthesize in a Smart Way: A Brief Introduction to Intelligence and Automation in Organic Synthesis. Challenges and Advances in Computational Chemistry and Physics, 2023, , 227-275.	0.6	0
264	Editorial: Novel technologies for sustainable and energy-efficient flow photochemistry. Frontiers in Chemistry, 0, 11, .	1.8	0

#	Article	IF	Citations
266	Development and application of decatungstate catalyzed C–H ¹⁸ F- and ¹⁹ F-fluorination, fluoroalkylation and beyond. Chemical Science, 2023, 14, 12883-12897.	3.7	1
269	Recent advances in photochemical and electrochemical strategies for the synthesis of sulfonyl fluorides. Organic Chemistry Frontiers, 2023, 11, 217-235.	2.3	2
271	Continuous Flow Generation of Highly Reactive Organometallic Intermediates: A Recent Update. Journal of Flow Chemistry, 0, , .	1.2	1
280	Five-membered ring systems with O and N atoms. Progress in Heterocyclic Chemistry, 2023, , 351-382.	0.5	0
282	Graphitic carbon nitride (g-C ₃ N ₄) as an emerging photocatalyst for sustainable environmental applications: a comprehensive review. , 2024, 2, 265-287.		3
294	Application of stop-flow micro-tubing reactor system in organic reaction development. Journal of Flow Chemistry, 2024, 14, 97-107.	1.2	0
301	The Kornblum DeLaMare rearrangement in natural product synthesis: 25 years of innovation. Natural Product Reports, 0, , .	5.2	0
304	In flow only. , 2024, 3, 133-133.		0
310	Photochemical Synthesis of Fine Chemicals. , 2024, , .		0
320	Chiral Auxiliaries in Continuous Flow Processes. , 2024, , .		0