Implementing building-level SARS-CoV-2 wastewater s

Science of the Total Environment 782, 146749 DOI: 10.1016/j.scitotenv.2021.146749

Citation Report

#	Article	IF	CITATIONS
1	Detection of SARS-CoV-2 in Wastewater at Residential College, Maine, USA, August–November 2020. Emerging Infectious Diseases, 2021, 27, 3111-3114.	4.3	13
2	Building-level wastewater surveillance using tampon swabs and RT-LAMP for rapid SARS-CoV-2 RNA detection. Environmental Science: Water Research and Technology, 2021, 8, 173-183.	2.4	31
3	Wastewater Surveillance for SARS-CoV-2 on College Campuses: Initial Efforts, Lessons Learned, and Research Needs. International Journal of Environmental Research and Public Health, 2021, 18, 4455.	2.6	107
10	Global occurrence of SARS-CoV-2 in environmental aquatic matrices and its implications for sanitation and vulnerabilities in Brazil and developing countries. International Journal of Environmental Health Research, 2022, 32, 2160-2199.	2.7	2
12	Wastewater-Based Epidemiology for Community Monitoring of SARS-CoV-2: Progress and Challenges. ACS Environmental Au, 2021, 1, 18-31.	7.0	33
14	A multicenter study investigating SARS-CoV-2 in tertiary-care hospital wastewater. viral burden correlates with increasing hospitalized cases as well as hospital-associated transmissions and outbreaks. Water Research, 2021, 201, 117369.	11.3	64
15	Wastewater Surveillance during Mass COVID-19 Vaccination on a College Campus. Environmental Science and Technology Letters, 2021, 8, 792-798.	8.7	45
16	Tools for interpretation of wastewater SARS-CoV-2 temporal and spatial trends demonstrated with data collected in the San Francisco Bay Area. Water Research X, 2021, 12, 100111.	6.1	67
17	The Urban Water Cycle as a Planning Tool to Monitor SARS-CoV-2: A Review of the Literature. Sustainability, 2021, 13, 9010.	3.2	4
18	Rapid, Large-Scale Wastewater Surveillance and Automated Reporting System Enable Early Detection of Nearly 85% of COVID-19 Cases on a University Campus. MSystems, 2021, 6, e0079321.	3.8	94
22	Wastewater surveillance of SARS-CoV-2 across 40 U.S. states from February to June 2020. Water Research, 2021, 202, 117400.	11.3	119
23	SARS-CoV-2 Wastewater Surveillance for Public Health Action. Emerging Infectious Diseases, 2021, 27, 1-8.	4.3	73
25	Critical Capability Needs for Reduction of Transmission of SARS-CoV-2 Indoors. Frontiers in Bioengineering and Biotechnology, 2021, 9, 641599.	4.1	1
26	Targeted wastewater surveillance of SARS-CoV-2 on a university campus for COVID-19 outbreak detection and mitigation. Environmental Research, 2021, 200, 111374.	7.5	126
27	Assessment of a Program for SARS-CoV-2 Screening and Environmental Monitoring in an Urban Public School District. JAMA Network Open, 2021, 4, e2126447.	5.9	44
28	Wastewater, waste, and water-based epidemiology (WWW-BE): A novel hypothesis and decision-support tool to unravel COVID-19 in low-income settings?. Science of the Total Environment, 2022, 806, 150680.	8.0	22
29	High-resolution within-sewer SARS-CoV-2 surveillance facilitates informed intervention. Water Research, 2021, 204, 117613.	11.3	38
30	Assessing sensitivity and reproducibility of RT-ddPCR and RT-qPCR for the quantification of SARS-CoV-2 in wastewater. Journal of Virological Methods, 2021, 297, 114230.	2.1	59

#	Article	IF	CITATIONS
31	SARS-CoV-2 concentrations in a wastewater collection system indicated potential COVID-19 hotspots at the zip code level. Science of the Total Environment, 2021, 800, 149480.	8.0	22
32	Performance evaluation of virus concentration methods for implementing SARS-CoV-2 wastewater based epidemiology emphasizing quick data turnaround. Science of the Total Environment, 2021, 801, 149656.	8.0	37
33	On the Critical Role of Human Feces and Public Toilets in the Transmission of COVID-19: Evidence from China. Sustainable Cities and Society, 2021, 75, 103350.	10.4	19
34	Building knowledge of university campus population dynamics to enhance near-to-source sewage surveillance for SARS-CoV-2 detection. Science of the Total Environment, 2022, 806, 150406.	8.0	22
35	Wastewater surveillance to infer COVID-19 transmission: A systematic review. Science of the Total Environment, 2022, 804, 150060.	8.0	124
36	A szennyvÃz alapú epidemiológia jelentÅ'sége a COVID–19 járványban és azon túl. Scientia Et Securit 2021, 2, 30-37.	as. 0.2	0
37	SARS-CoV-2 RNA surveillance in large to small centralized wastewater treatment plants preceding the third COVID-19 resurgence in Bangkok, Thailand. Science of the Total Environment, 2022, 809, 151169.	8.0	37
38	SARSâ€CoVâ€2 and wastewater: What does it mean for nonâ€human primates?. American Journal of Primatology, 2022, 84, e23340.	1.7	5
39	A sensitive, simple, and low-cost method for COVID-19 wastewater surveillance at an institutional level. Science of the Total Environment, 2022, 807, 151047.	8.0	40
40	Averting an Outbreak of SARS-CoV-2 in a University Residence Hall through Wastewater Surveillance. Microbiology Spectrum, 2021, 9, e0079221.	3.0	47
41	A State-of-the-Art Scoping Review on SARS-CoV-2 in Sewage Focusing on the Potential of Wastewater Surveillance for the Monitoring of the COVID-19 Pandemic. Food and Environmental Virology, 2022, 14, 315-354.	3.4	47
42	Comparison of residential dormitory COVID-19 monitoring via weekly saliva testing and sewage monitoring. Science of the Total Environment, 2022, 814, 151947.	8.0	28
44	Wastewater network infrastructure in public health: Applications and learnings from the COVID-19 pandemic. PLOS Global Public Health, 2021, 1, e0000061.	1.6	23
45	Tracking the temporal variation of COVID-19 surges through wastewater-based epidemiology during the peak of the pandemic: A six-month long study in Charlotte, North Carolina. Science of the Total Environment, 2022, 814, 152503.	8.0	26
46	Coronavirus Disease 2019 Cases at Universities and Colleges in Seoul Metropolitan Area. Journal of Korean Medical Science, 2021, 36, e302.	2.5	0
47	Impact of Sampling Type, Frequency, and Scale of the Collection System on SARS-CoV-2 Quantification Fidelity. Environmental Science and Technology Letters, 2022, 9, 160-165.	8.7	18
49	Comparison of RT-qPCR and RT-dPCR Platforms for the Trace Detection of SARS-CoV-2 RNA in Wastewater. ACS ES&T Water, 2022, 2, 1871-1880.	4.6	51
50	Safe university: a guide for open academic institutions through the pandemic. Clinical Microbiology and Infection, 2022, 28, 634-636.	6.0	2

		CITATION REPORT		
#	Article		IF	CITATIONS
51	SARS-CoV-2 in wastewater: From detection to evaluation. Materials Today Advances, 2022, 13	, 100211.	5.2	15
52	A novel approach to concentrate human and animal viruses from wastewater using receptors-conjugated magnetic beads. Water Research, 2022, 212, 118112.		11.3	10
53	Metrics to relate COVID-19 wastewater data to clinical testing dynamics. Water Research, 202 118070.	.2, 212,	11.3	68
54	Early warning of a COVID-19 surge on a university campus based on wastewater surveillance for SARS-CoV-2 at residence halls. Science of the Total Environment, 2022, 821, 153291.	br	8.0	59
55	Comparison of high-frequency in-pipe SARS-CoV-2 wastewater-based surveillance to concurrer COVID-19 random clinical testing on a public U.S. university campus. Science of the Total Envi 2022, 820, 152877.	it ronment,	8.0	29
56	Comparison of virus concentration methods and RNA extraction methods for SARS-CoV-2 was surveillance. Science of the Total Environment, 2022, 824, 153687.	tewater	8.0	49
57	Sensitivity of wastewater-based epidemiology for detection of SARS-CoV-2 RNA in a low preval setting. Water Research, 2022, 211, 118032.	ence	11.3	33
58	Evaluation of process limit of detection and quantification variation of SARS-CoV-2 RT-qPCR ar RT-dPCR assays for wastewater surveillance. Water Research, 2022, 213, 118132.	ıd .	11.3	46
59	SARS-CoV-2 RNA is enriched by orders of magnitude in primary settled solids relative to liquid wastewater at publicly owned treatment works. Environmental Science: Water Research and Technology, 2022, 8, 757-770.		2.4	46
60	Biosensors for the detection of disease outbreaks through wastewater-based epidemiology. Tr Trends in Analytical Chemistry, 2022, 155, 116585.	AC -	11.4	24
61	Efficacy of SARS-CoV-2 wastewater surveillance for detection of COVID-19 at a residential privice college. FEMS Microbes, 2022, 3, .	ate	2.1	3
63	Wastewater surveillance for SARS-CoV-2 to support return to campus: Methodological considerations and data interpretation. Current Opinion in Environmental Science and Health, 27, 100362.	2022,	4.1	6
65	A wastewater-based epidemic model for SARS-CoV-2 with application to three Canadian cities. Epidemics, 2022, 39, 100560.		3.0	53
66	Coordination of SARS-CoV-2 wastewater and clinical testing of university students demonstratimportance of sampling duration and collection time. Science of the Total Environment, 2022, 154619.	tes the 830,	8.0	12
68	The devil is in the details: emerging insights on the relevance of wastewater surveillance for SARS-CoV-2 to public health. Journal of Water and Health, 2022, 20, 246-270.		2.6	23
71	Sewage surveillance for SARS-CoV-2: Molecular detection, quantification, and normalization fa Current Opinion in Environmental Science and Health, 2022, 28, 100363.	ctors.	4.1	17
72	Wastewater surveillance of SARS-CoV-2 mutational profiles at a university and its surrounding community reveals a 20G outbreak on campus. PLoS ONE, 2022, 17, e0266407.		2.5	9
73	Monitoring of SARS-CoV-2 in sewersheds with low COVID-19 cases using a passive sampling to Water Research, 2022, 218, 118481.	echnique.	11.3	26

#	Article	IF	CITATIONS
74	Diurnal Variability of SARS-CoV-2 RNA Concentrations in Hourly Grab Samples of Wastewater Influent during Low COVID-19 Incidence. ACS ES&T Water, 2022, 2, 2125-2133.	4.6	8
75	High Sensitivity and Specificity of Dormitory-Level Wastewater Surveillance for COVID-19 during Fall Semester 2020 at Syracuse University, New York. International Journal of Environmental Research and Public Health, 2022, 19, 4851.	2.6	12
76	Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology. Water Research, 2022, 218, 118451.	11.3	52
77	Wastewater and marine bioindicators surveillance to anticipate COVID-19 prevalence and to explore SARS-CoV-2 diversity by next generation sequencing: One-year study. Science of the Total Environment, 2022, 833, 155140.	8.0	13
78	Predictive values of time-dense SARS-CoV-2 wastewater analysis in university campus buildings. Science of the Total Environment, 2022, 835, 155401.	8.0	18
79	Comparative Analysis of RNA-Extraction Approaches and Associated Influences on RT-qPCR of the SARS-CoV-2 RNA in a University Residence Hall and Quarantine Location. ACS ES&T Water, 2022, 2, 1929-1943.	4.6	11
80	Detection, Quantification, and Simplified Wastewater Surveillance Model of SARS-CoV-2 RNA in the Tijuana River. ACS ES&T Water, 2022, 2, 2134-2143.	4.6	11
81	Making waves: Wastewater surveillance of SARS-CoV-2 in an endemic future. Water Research, 2022, 219, 118535.	11.3	37
82	Elucidating the role of environmental management of forests, air quality, solid waste and wastewater on the dissemination of SARS-CoV-2. , 2022, 3, 100006.		4
83	Wastewater Surveillance of SARS-CoV-2 at a Canadian University Campus and the Impact of Wastewater Characteristics on Viral RNA Detection. ACS ES&T Water, 2022, 2, 2034-2046.	4.6	7
84	SARS-CoV-2 RNA and N Antigen Quantification via Wastewater at the Campus Level, Building Cluster Level, and Individual-Building Level. ACS ES&T Water, 2022, 2, 2025-2033.	4.6	14
85	Development and Validation of a Simplified Method for Analysis of SARS-CoV-2 RNA in University Dormitories. ACS ES&T Water, 2022, 2, 1984-1991.	4.6	9
86	Relationships between SARS-CoV-2 in Wastewater and COVID-19 Clinical Cases and Hospitalizations, with and without Normalization against Indicators of Human Waste. ACS ES&T Water, 2022, 2, 1992-2003.	4.6	51
87	Comparison of Electronegative Filtration to Magnetic Bead-Based Concentration and V2G-qPCR to RT-qPCR for Quantifying Viral SARS-CoV-2 RNA from Wastewater. ACS ES&T Water, 2022, 2, 2004-2013.	4.6	15
88	High Prevalence of Both Previous Infection with SARS-CoV-2 and Persistent Symptoms. Journal of the American Board of Family Medicine, 2022, 35, 570-578.	1.5	6
89	Real-time allelic assays of SARS-CoV-2 variants to enhance sewage surveillance. Water Research, 2022, 220, 118686.	11.3	17
90	Wastewater surveillance of SARS-CoV-2 in dormitories as a part of comprehensive university campus COVID-19 monitoring. Environmental Research, 2022, 212, 113580.	7.5	20
93	Case Study: Impact of Diurnal Variations and Stormwater Dilution on SARS-CoV-2 RNA Signal Intensity at Neighborhood Scale Wastewater Pumping Stations. ACS ES&T Water, 2022, 2, 1964-1975.	4.6	4

#	Article	IF	CITATIONS
94	Monitoring occurrence of SARS-CoV-2 in school populations: A wastewater-based approach. PLoS ONE, 2022, 17, e0270168.	2.5	37
96	A hands-free stool sampling system for monitoring intestinal health and disease. Scientific Reports, 2022, 12, .	3.3	3
97	Building-Level Wastewater Surveillance for SARS-CoV-2 in Occupied University Dormitories as an Outbreak Forecasting Tool: One Year Case Study. ACS ES&T Water, 2022, 2, 2094-2104.	4.6	10
98	Predicting COVID-19 Infected Individuals in a Defined Population from Wastewater RNA Data. ACS ES&T Water, 2022, 2, 2225-2232.	4.6	5
99	Monitoring the evolution of SARS-CoV-2 on a Spanish university campus through wastewater analysis: A pilot project for the reopening strategy. Science of the Total Environment, 2022, 845, 157370.	8.0	12
100	Sensitive detection of SARS-CoV-2 molecular markers in urban community sewersheds using automated viral RNA purification and digital droplet PCR. Science of the Total Environment, 2022, 847, 157547.	8.0	7
102	Comparative Assessment of Filtration- and Precipitation-Based Methods for the Concentration of SARS-CoV-2 and Other Viruses from Wastewater. Microbiology Spectrum, 2022, 10, .	3.0	17
103	Monitoring human arboviral diseases through wastewater surveillance: Challenges, progress and future opportunities. Water Research, 2022, 223, 118904.	11.3	26
104	Optimal allocation and operation of sewer monitoring sites for wastewater-based disease surveillance: A methodological proposal. Journal of Environmental Management, 2022, 320, 115806.	7.8	2
105	Critical review of technologies for the on-site treatment of hospital wastewater: From conventional to combined advanced processes. Journal of Environmental Management, 2022, 320, 115769.	7.8	33
106	Sewage surveillance of SARS-CoV-2 at student campus residences in the Western Cape, South Africa. Science of the Total Environment, 2022, 851, 158028.	8.0	9
107	Surveillance of SARS-CoV-2 in nine neighborhood sewersheds in Detroit Tri-County area, United States: Assessing per capita SARS-CoV-2 estimations and COVID-19 incidence. Science of the Total Environment, 2022, 851, 158350.	8.0	6
108	Building-level wastewater surveillance of SARS-CoV-2 is associated with transmission and variant trends in a university setting. Environmental Research, 2022, 215, 114277.	7.5	11
109	Application of neighborhood-scale wastewater-based epidemiology in low COVID-19 incidence situations. Science of the Total Environment, 2022, 852, 158448.	8.0	12
110	Long-term passive wastewater surveillance of SARS-CoV-2 for seven university dormitories in comparison to municipal surveillance. Science of the Total Environment, 2022, 852, 158421.	8.0	9
111	Correlation between SARS-CoV-2 RNA concentration in wastewater and COVID-19 cases in community: A systematic review and meta-analysis. Journal of Hazardous Materials, 2023, 441, 129848.	12.4	38
112	Citywide wastewater SARS-CoV-2 levels strongly correlated with multiple disease surveillance indicators and outcomes over three COVID-19 waves. Science of the Total Environment, 2023, 855, 158967.	8.0	25
113	Effectiveness of building-level sewage surveillance during both community-spread and sporadic-infection phases of SARS-CoV-2 in a university campus population. FEMS Microbes, 2022, 3, .	2.1	6

#	Article	IF	CITATIONS
114	Wastewater-based epidemiology (WBE) for SARS-CoV-2 – A review focussing on the significance of the sewer network using a Dublin city catchment case study. Water Science and Technology, 2022, 86, 1402-1425.	2.5	7
115	Quantifying the Relationship between SARS-CoV-2 Wastewater Concentrations and Building-Level COVID-19 Prevalence at an Isolation Residence: A Passive Sampling Approach. International Journal of Environmental Research and Public Health, 2022, 19, 11245.	2.6	9
116	Wastewater surveillance in smaller college communities may aid future public health initiatives. PLoS ONE, 2022, 17, e0270385.	2.5	3
118	Predicting COVID-19 cases using SARS-CoV-2 RNA in air, surface swab and wastewater samples. Science of the Total Environment, 2023, 857, 159188.	8.0	20
119	An opinion on Wastewater-Based Epidemiological Monitoring (WBEM) with Clinical Diagnostic Test (CDT) for detecting high-prevalence areas of community COVID-19 infections. Current Opinion in Environmental Science and Health, 2023, 31, 100396.	4.1	20
120	Implementing Wastewater Surveillance for SARS oVâ€2 on a University Campus: Lessons Learned. Water Environment Research, 0, , .	2.7	5
121	One health genomic surveillance and response to a university-based outbreak of the SARS-CoV-2 Delta AY.25 lineage, Arizona, 2021. PLoS ONE, 2022, 17, e0272830.	2.5	2
122	Detection of SARS-CoV-2 RNA in wastewater and comparison to COVID-19 cases in two sewersheds, North Carolina, USA. Science of the Total Environment, 2023, 858, 159996.	8.0	6
123	Effect of SARS-CoV-2 digital droplet RT-PCR assay sensitivity on COVID-19 wastewater based epidemiology. , 2022, 1, e0000066.		1
125	When case reporting becomes untenable: Can sewer networks tell us where COVID-19 transmission occurs?. Water Research, 2023, 229, 119516.	11.3	2
126	Wastewater Surveillance for SARS-CoV-2 RNA in Canada. Facets, 2022, 7, 1493-1597.	2.4	5
128	Retrospective Analysis of Wastewater-Based Epidemiology of SARS-CoV-2 in Residences on a Large College Campus: Relationships between Wastewater Outcomes and COVID-19 Cases across Two Semesters with Different COVID-19 Mitigation Policies. ACS ES&T Water, 2023, 3, 16-29.	4.6	3
130	Leveraging an established neighbourhood-level, open access wastewater monitoring network to address public health priorities: a population-based study. Lancet Microbe, The, 2023, 4, e29-e37.	7.3	12
131	Contextualizing Wastewater-Based surveillance in the COVID-19 vaccination era. Environment International, 2023, 171, 107718.	10.0	5
133	COVID-19 surveillance in wastewater: An epidemiological tool for the monitoring of SARS-CoV-2. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	13
134	Wastewater surveillance of SARS-CoV-2 and chemical markers in campus dormitories in an evolving COVID â^ 19 pandemic. Journal of Hazardous Materials, 2023, 446, 130690.	12.4	16
135	Degradation rates influence the ability of composite samples to represent 24-hourly means of SARS-CoV-2 and other microbiological target measures in wastewater. Science of the Total Environment, 2023, 867, 161423.	8.0	9
137	Co-incidence of BA.1 and BA.2 at the start of Singapore's Omicron wave revealed by Community and University Campus wastewater surveillance. Science of the Total Environment, 2023, 875, 162611.	8.0	9

#	Article	IF	CITATIONS
138	SARS-CoV-2 wastewater-based epidemiology in an enclosed compound: A 2.5-year survey to identify factors contributing to local community dissemination. Science of the Total Environment, 2023, 875, 162466.	8.0	2
139	Wastewater surveillance of SARS-CoV-2 and influenza in preK-12 schools shows school, community, and citywide infections. Water Research, 2023, 231, 119648.	11.3	23
140	SARS-CoV-2 concentration in wastewater consistently predicts trends in COVID-19 case counts by at least two days across multiple WWTP scales. Environmental Advances, 2023, 11, 100347.	4.8	5
141	Highly socially vulnerable communities exhibit disproportionately increased viral loads as measured in community wastewater. Environmental Research, 2023, 222, 115351.	7.5	2
142	Early detection of local SARS-CoV-2 outbreaks by wastewater surveillance: a feasibility study. Epidemiology and Infection, 2023, 151, .	2.1	7
143	Whole campus wastewater surveillance of SARS-CoV-2 for COVID-19 outbreak management. Water Science and Technology, 2023, 87, 910-923.	2.5	2
145	SARS-CoV-2 raw wastewater surveillance from student residences on an urban university campus. Frontiers in Microbiology, 0, 14, .	3.5	7
146	Contribution of wastewater-based epidemiology to SARS-CoV-2 screening in Brazil and the United States. Journal of Water and Health, 2023, 21, 343-353.	2.6	0
147	Detection of Covid-19 Outbreaks Using Built Environment Testing for SARS-CoV-2. , 2023, 2, .		4
148	Optimization of sewage sampling for wastewater-based epidemiology through stochastic modeling. Journal of Engineering and Applied Science, 2023, 70, .	2.0	0
150	The spatial and temporal distribution of SARS-CoV-2 from the built environment of COVID-19 patient rooms: A multicentre prospective study. PLoS ONE, 2023, 18, e0282489.	2.5	3
151	Wastewater monitoring of SARS-CoV-2 RNA at K-12 schools: comparison to pooled clinical testing data. PeerJ, 0, 11, e15079.	2.0	3
152	Building-Level Detection Threshold of SARS-CoV-2 in Wastewater. Microbiology Spectrum, 2023, 11, .	3.0	8
153	Wastewater surveillance could serve as a pandemic early warning system for <scp>COVID</scp> â€19 and beyond. Wiley Interdisciplinary Reviews: Water, 2023, 10, .	6.5	6
154	Monkeypox viral nucleic acids detected using both DNA and RNA extraction workflows. Science of the Total Environment, 2023, 890, 164289.	8.0	8
155	Broadening Wastewater Monitoring of SARS-CoV-2 RNA. Handbook of Environmental Chemistry, 2023, ,	0.4	0
156	Actionable wastewater surveillance: application to a university residence hall during the transition between Delta and Omicron resurgences of COVID-19. Frontiers in Public Health, 0, 11, .	2.7	3
159	COVID-19 monitoring with sparse sampling of sewered and non-sewered wastewater in urban and rural communities. IScience, 2023, 26, 107019.	4.1	8

#	Article	IF	CITATIONS
161	Wastewater-based surveillance can be used to model COVID-19-associated workforce absenteeism. Science of the Total Environment, 2023, 900, 165172.	8.0	3
162	Surveillance of SARS-CoV-2 in Wastewater at the Population Level: Insights into the Implementation of Non-invasive Targeted Monitoring in Singapore and the USA. Handbook of Environmental Chemistry, 2023, , .	0.4	1
163	SARS-CoV-2 wastewater monitoring in rural and small metropolitan communities in Central Michigan. Science of the Total Environment, 2023, 894, 165013.	8.0	6
164	Comparison of Nanotrap® Microbiome A Particles, membrane filtration, and skim milk workflows for SARS-CoV-2 concentration in wastewater. Frontiers in Microbiology, 0, 14, .	3.5	1
165	Wastewater Surveillance for SARS-CoV-2 at Long-Term Care Facilities: Mixed Methods Evaluation. JMIR Public Health and Surveillance, 0, 9, e44657.	2.6	2
166	Analysis of sampling strategies for pulse loads of SARS-CoV-2: implications for wastewater-based epidemiology. Water Science and Technology, 0, , .	2.5	0
168	Wastewater-based epidemiology: Evidence mapping toward identifying emerging areas of research. , 2023, , 1-32.		0
170	Campus node-based wastewater surveillance enables COVID-19 case localization and confirms lower SARS-CoV-2 burden relative to the surrounding community. Water Research, 2023, 244, 120469.	11.3	4
171	Wastewater surveillance of the most common circulating respiratory viruses in Athens: The impact of COVID-19 on their seasonality. Science of the Total Environment, 2023, 900, 166136.	8.0	2
172	Wastewater monitoring of a community COVID-19 outbreak in a Spanish municipality. , 0, 2, .		0
173	Correlative Analysis of Wastewater Trends with Clinical Cases and Hospitalizations through Five Dominant Variant Waves of COVID-19. ACS ES&T Water, 2023, 3, 2849-2862.	4.6	1
174	Structured Ethical Review for Wastewater-Based Testing in Support of Public Health. Environmental Science & Technology, 2023, 57, 12969-12980.	10.0	5
175	Expansion and diversification of wastewater-based epidemiology strategies in pandemic conditions to serve immediate public health goals. , 2023, , 219-236.		0
176	Targeted community wastewater surveillance for SARS-CoV-2 and Mpox virus during a festival mass-gathering event. Science of the Total Environment, 2024, 906, 167443.	8.0	1
177	Estimating COVID-19 cases on a university campus based on Wastewater Surveillance using machine learning regression models. Science of the Total Environment, 2024, 906, 167709.	8.0	1
178	Zooming in to the neighborhood level: A year-long wastewater-based epidemiology monitoring campaign for COVID-19 in small intraurban catchments. Science of the Total Environment, 2023, , 167811.	8.0	0
179	Detection of SARS-CoV-2 RNA in wastewater from dormitory buildings in a university campus: comparison with individual testing results. Water Science and Technology, 2023, 88, 2364-2377.	2.5	0
181	Portable, single nucleotide polymorphism-specific duplex assay for virus surveillance in wastewater. Science of the Total Environment, 2024, 912, 168701.	8.0	1

#	Article	IF	CITATIONS
182	Evaluating various composite sampling modes for detecting pathogenic SARS-CoV-2 virus in raw sewage. Frontiers in Microbiology, 0, 14, .	3.5	1
183	Wastewater analysis of Mpox virus in a city with low prevalence of Mpox disease: an environmental surveillance study. The Lancet Regional Health Americas, 2023, 28, 100639.	2.6	1
184	Implementing an adaptive, two-tiered SARS-CoV-2 wastewater surveillance program on a university campus using passive sampling. Science of the Total Environment, 2024, 912, 168998.	8.0	0
185	Comparison of gene targets and sampling regimes for SARS-CoV-2 quantification for wastewater epidemiology in UK prisons. Journal of Water and Health, 2024, 22, 64-76.	2.6	1
186	Beyond linear regression: Modeling COVID-19 clinical cases with wastewater surveillance of SARS-CoV-2 for the city of Athens and Ohio University campus. Science of the Total Environment, 2023, , 169028.	8.0	0
188	Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clinical Microbiology Reviews, 0, , .	13.6	1
189	A comprehensive, open-source data model for wastewater-based epidemiology. Water Science and Technology, 2024, 89, 1-19.	2.5	0
190	Chronic shedding of a SARS-CoV-2 Alpha variant in wastewater. BMC Genomics, 2024, 25, .	2.8	1
191	Polyethylenimine mediated recovery of SARS-CoV-2 and total viral RNA: Impact of aqueous conditions on behaviour and recovery. Water Research, 2024, 253, 121207.	11.3	0
192	Application and challenge of wastewater-based epidemiology for the COVID-19 epidemic control in countries at different developing levels. Journal of Water Process Engineering, 2024, 58, 104911.	5.6	0
193	Nursing home wastewater surveillance for early warning of SARS-CoV-2-positive occupants—Insights from a pilot project at 8 facilities. American Journal of Infection Control, 2024, , .	2.3	0
194	Identifying spatiotemporal trends of SARS-CoV-2 RNA in wastewater: from the perspective of upstream and downstream wastewater-based epidemiology (WBE). Environmental Science and Pollution Research, 2024, 31, 11576-11590.	5.3	0
195	Influences of 23 different equations used to calculate gene copies of SARS-CoV-2 during wastewater-based epidemiology. Science of the Total Environment, 2024, 917, 170345.	8.0	0
197	Wastewater based surveillance can be used to reduce clinical testing intensity on a university campus. Science of the Total Environment, 2024, 918, 170452.	8.0	0
198	Advances in wastewater analysis revealing the co-circulating viral trends of noroviruses and Omicron subvariants. Science of the Total Environment, 2024, 920, 170887.	8.0	0
199	Detection of SARS-CoV-2 and Omicron variant RNA in wastewater samples from Manila, Philippines. Science of the Total Environment, 2024, 919, 170921.	8.0	0
201	Long-term monitoring of SARS-CoV-2 variants in wastewater using a coordinated workflow of droplet digital PCR and nanopore sequencing. Water Research, 2024, 254, 121338.	11.3	0
202	Online trend estimation and detection of trend deviations in sub-sewershed time series of SARS-CoV-2 RNA measured in wastewater. Scientific Reports, 2024, 14, .	3.3	0

#	Article	IF	Citations
203	Amplitude multiplexed wastewater surveillance for campus health: tracking SARS-CoV-2, influenza A, and norovirus. Environmental Science: Water Research and Technology, 0, , .	2.4	0