Stimuli-responsive switchable halide perovskites: Takin

Joule 5, 2027-2046

DOI: 10.1016/j.joule.2021.07.008

Citation Report

#	Article	IF	CITATIONS
1	Multiresponsive Cyclometalated Crown Ether Bearing a Platinum(II) Metal Center. Inorganic Chemistry, 2022, 61, 2999-3006.	4.0	12
2	Reversible Photochromism in ⟓110⟩ Oriented Layered Halide Perovskite. ACS Nano, 2022, 16, 2942-2952.	14.6	23
3	Reversible Methanolation of Metal Halide Perovskites. Journal of the American Chemical Society, 2022, 144, 667-672.	13.7	23
4	Super-hydrophobic Cs4PbBr6@PDB composites with water-driven photoluminescence enhancement and dehydration recovery. Chemical Engineering Journal, 2022, 436, 135077.	12.7	10
5	Super-Hydrophobic Cs4pbbr6@Pdb Composites with Water-Driven Photoluminescence Enhancement and Dehydration Recovery. SSRN Electronic Journal, 0, , .	0.4	0
6	The construction of a two-dimensional organic–inorganic hybrid double perovskite ferroelastic with a high <i>T</i> _c and narrow band gap. Chemical Science, 2022, 13, 4794-4800.	7.4	46
7	Nearâ€Infraredâ€Activated Thermochromic Perovskite Smart Windows. Advanced Science, 2022, 9, e2106090.	11.2	37
8	Polarized Laser Switching with Giant Contrast in MOFâ€Based Mixedâ€Matrix Membrane. Advanced Science, 2022, 9, e2200953.	11.2	12
9	Luminescent Organicâ€Inorganic Hybrid Metal Halides: An Emerging Class of Stimuliâ€Responsive Materials. Chemistry - A European Journal, 2022, 28, .	3.3	28
10	Multifunctional and Transformative Metaphotonics with Emerging Materials. Chemical Reviews, 2022, 122, 15414-15449.	47.7	23
11	Tunable Photovoltaics: Adapting Solar Cell Technologies to Versatile Applications. Advanced Energy Materials, 2022, 12, .	19.5	27
12	Electrospun perovskite nano-network for flexible, near-room temperature, environmentally friendly and ultrastable light regulation. Journal of Materials Science and Technology, 2022, 130, 35-43.	10.7	3
13	Reversible phase transition for switchable second harmonic generation in 2D perovskite microwires. SmartMat, 2022, 3, 657-667.	10.7	8
14	Raman spectroscopy in layered hybrid organic-inorganic metal halide perovskites. JPhys Materials, 2022, 5, 034004.	4.2	7
15	Homochiral Chemistry Strategy To Trigger Dielectric Switching and Second-Harmonic Generation Response on Spirocyclic Derivatives. Inorganic Chemistry, 2022, 61, 10872-10879.	4.0	5
16	Chlorine Substitution in Spirocyclic Derivatives Triggers SHG Response in Noncentrosymmetric Crystal. Chemistry - an Asian Journal, 2022, 17, .	3.3	12
17	Kinetically Controlled Structural Transitions in Layered Halide-Based Perovskites: An Approach to Modulate Spin Splitting. Journal of the American Chemical Society, 2022, 144, 15223-15235.	13.7	11
18	Operando Imaging of Crystallinity-Dependent Multicolor Thermochromic Processes for Single Hydrated Hybrid Perovskite Particles. Journal of Physical Chemistry Letters, 2022, 13, 9195-9200.	4.6	1

#	Article	IF	CITATIONS
19	Switchable Dielectric Two-Dimensional Lead-Free Perovskite with Reversible Thermochromic Response. Journal of Physical Chemistry C, 2022, 126, 16437-16446.	3.1	11
20	Optical Memory, Switching, and Neuromorphic Functionality in Metal Halide Perovskite Materials and Devices. Advanced Materials, 2023, 35, .	21.0	12
21	Rationalizing the Effect of Polymer-Controlled Growth of Perovskite Single Crystals on Optoelectronic Properties. ACS Omega, 2022, 7, 36535-36542.	3.5	2
22	Regulation strategy of white emission from organic–inorganic hybrid metal halide perovskites. Inorganic Chemistry Frontiers, 2022, 10, 13-36.	6.0	18
23	Factors influencing self-trapped exciton emission of low-dimensional metal halides. Materials Advances, 2023, 4, 355-373.	5.4	13
24	Photothermally induced, reversible phase transition in methylammonium lead triiodide. Matter, 2023, 6, 460-474.	10.0	3
25	Nicotinic acid bromide: a simple organic salt optical-electrical ferroelastic with high <i>T</i> _c . Chemical Communications, 2023, 59, 4644-4647.	4.1	2
26	Formamidinium Lead Iodide Perovskite Thin Films Formed by Two-Step Sequential Method: Solvent–Morphology Relationship. Materials, 2023, 16, 1049.	2.9	1
27	Down-converting luminescent optoelectronics and their applications. APL Photonics, 2023, 8, .	5.7	6
28	Strain-Driven Solid–Solid Crystal Conversion in Chiral Hybrid <i>Pseudo</i> Perovskites with Paramagnetic-to-Ferromagnetic Transition. Journal of the American Chemical Society, 2023, 145, 3569-3576.	13.7	6
29	Leveraging Low-Energy Structural Thermodynamics in Halide Perovskites. ACS Energy Letters, 2023, 8, 1705-1715.	17.4	8
30	A {Cu ₂ 1 ₃ ^{â^'} } _{â^ž} chain hybrid with two-step phase transition, switchable dielectrics, thermochromism and piezochromism. Dalton Transactions, 0, , .	3.3	1
31	Hydrochromic Perovskite System with Reversible Blueâ€Green Color for Advanced Antiâ€Counterfeiting. Small, 2023, 19, .	10.0	10
32	Stabilization of photoactive phases for perovskite photovoltaics. Nature Reviews Chemistry, 2023, 7, 462-479.	30.2	31
33	Quasiâ€2D Lead–Tin Perovskite Memory Devices Fabricated by Blade Coating. Small Methods, 2024, 8, .	8.6	1
34	On the Mechanism of Solvents Catalyzed Structural Transformation in Metal Halide Perovskites. Advanced Materials, 2023, 35, .	21.0	5
35	Highâ€Temperature, Reversible, and Robust Thermochromic Fluorescence Based on Rb ₂ MnBr ₄ (H ₂ O) ₂ for Antiâ€Counterfeiting. Advanced Materials, 2023, 35, .	21.0	11
36	Ion Migration as a New Paradigm to Boost Selfâ€Driven Perovskite Narrowband Photodetectors. Advanced Optical Materials, 2023, 11, .	7.3	3

3

#	ARTICLE	IF	CITATIONS
37	Mixed Ionicâ€Electronic Conduction Enables Halideâ€Perovskite Electroluminescent Photodetector. Laser and Photonics Reviews, 2023, 17, .	8.7	2
38	A thermally induced fluorescence enhancement strategy for efficient all-inorganic rubidium manganese halide. Inorganic Chemistry Frontiers, 2023, 10, 4221-4229.	6.0	1
39	Can we make color switchable photovoltaic windows?. Chemical Science, 2023, 14, 7828-7841.	7.4	1
40	Narrowâ€Bandgap Mixed 0D/1D Bismuth Bromide Perovskite Hydrate Enabled by Aromatic Ditertiary Ammonium Spacer. Advanced Optical Materials, 0, , .	7.3	0
41	Fabrication and Characterization of 2D Layered Perovskites with a Gradient Band Gap. ACS Applied Materials & Samp; Interfaces, 2023, 15, 36706-36715.	8.0	0
42	Variable halide perovskites: diversification of anti-counterfeiting applications. Materials Chemistry Frontiers, 2023, 7, 6085-6106.	5.9	5
43	Hypso- or bathochromic phosphorescent mechanochromic mononuclear Cu(I) complexes with a bis (2-diphenylphosphinophenyl) ether auxiliary ligand. Dalton Transactions, 0, , .	3.3	0
44	Multichromism in Halide Perovskites. Advanced Optical Materials, 0, , .	7.3	0
45	Remarkable Thermochromism in the Double Perovskite Cs ₂ NaFeCl ₆ . Advanced Optical Materials, 0, , .	7.3	2
46	Coordination Trap Induced Structural and Luminescent Property Transformation of Low Dimensional Organicâ€Inorganic Hybrid Perovskites. Advanced Optical Materials, 2024, 12, .	7.3	2
47	[Gd3+–Ho3+-Dy3+]:CsPbl2.2Br0.8: Lanthanide impelled stabilization of perovskite material for sustainable energy harvesting, generation, and charge storage. Sustainable Energy Technologies and Assessments, 2023, 60, 103566.	2.7	0
48	Amine Gasâ€Induced Reversible Optical Bleaching of Bismuthâ€Based Leadâ€Free Perovskite Thin Films. Advanced Science, 0, , .	11.2	0
50	Mask-inspired moisture-transmitting and durable thermochromic perovskite smart windows. Nature Communications, 2024, 15 , .	12.8	0
51	Advanced Laser Nanofabrication Technologies for Perovskite Photonics. Advanced Optical Materials, 2024, 12, .	7.3	0
52	Multi-stimuli-responsive luminescence enabled by crown ether anchored chiral antimony halide phosphors. Chemical Science, 2024, 15, 3530-3538.	7.4	0
53	Formation and stabilization of metastable halide perovskite phases for photovoltaics. Cell Reports Physical Science, 2024, 5, 101825.	5.6	0
54	Mechanofluorochromism and photopatterning properties of triphenylamine based acylhydrazone derivatives with aggregation-induced emission. Optical Materials, 2024, 149, 114992.	3.6	0
55	Multi-Stimuli-Responsive photoluminescence of cesium manganese bromide by temperature and solvent-induced structural phase transitions. Chemical Engineering Journal, 2024, 485, 149741.	12.7	0

ARTICLE IF CITATIONS

56 Solvent-Templated Methylammonium-Based Ruddlesden–Popper Perovskites with Short Interlayer Distances. Journal of the American Chemical Society, 2024, 146, 6706-6720. 13.7 0