Help from space: grant-free massive access for satellite

Digital Communications and Networks 8, 215-224 DOI: 10.1016/j.dcan.2021.07.008

Citation Report

#	Article	IF	CITATIONS
1	Dynamic pricing model for 5G/6G telecommunications. , 2021, , .		2
2	Performance Improvement of OFDMA Systems Through Wireless Communication Channels. Wireless Personal Communications, 0, , 1.	2.7	0
3	Joint CCI Mitigation and Power Control for MC-DS-CDMA in LEO Satellite Networks. IEEE Internet of Things Journal, 2022, 9, 17627-17639.	8.7	3
4	Let Us Work Together: Cooperative Beamforming for UAV Anti-Jamming in Space–Air–Ground Networks. IEEE Internet of Things Journal, 2022, 9, 15607-15617.	8.7	6
5	6G Communication Networks: Introduction, Vision, Challenges, and Future Directions. Wireless Personal Communications, 2022, 125, 1097-1123.	2.7	12
6	Software defined intelligent satellite-terrestrial integrated networks: Insights and challenges. Digital Communications and Networks, 2023, 9, 1331-1339.	5.0	5
7	Cooperative Game-Based Charging-Discharging Efficiency Optimization of Electric Vehicles in 6G-Enabled V2G. IEEE Transactions on Green Communications and Networking, 2023, 7, 1078-1089.	5.5	4
8	6G-Enabled Internet of Things: Vision, Techniques, and Open Issues. CMES - Computer Modeling in Engineering and Sciences, 2022, 133, 509-556.	1.1	4
9	Asynchronous Multi-User Detection for Code-Domain NOMA: Expectation Propagation Over 3D Factor-Graph. IEEE Transactions on Vehicular Technology, 2022, 71, 10770-10781.	6.3	4
10	Enhancing PAPR and Throughput for DFT-s-OFDM System Using FTN and IOTA Filtering. Sensors, 2022, 22, 4907.	3.8	0
11	Guaranteeing QoS for NOMA-Enabled URLLC Based on κ–μ Shadowed Fading Model. Sensors, 2022, 22, 5279.	3.8	1
12	Key Technologies, Applications and Trends of Internet of Things for Energy-Efficient 6G Wireless Communication in Smart Cities. Energies, 2022, 15, 5608.	3.1	14
13	Resource Allocation in Multi-Carrier Multiplexed NOMA Cooperative System. Sensors, 2022, 22, 6023.	3.8	1
14	A Survey and Ontology of Blockchain Consensus Algorithms for Resource-Constrained IoT Systems. Sensors, 2022, 22, 8188.	3.8	4
15	Towards a blockchain-SDN-based secure architecture for cloud computing in smart industrial IoT. Digital Communications and Networks, 2023, 9, 411-421.	5.0	29
16	A Novel Computation Offloading Under 6G LEO Satellite-UAV-based IoT. , 2022, , .		2
17	Machine Learning-Based Online Coverage Estimator (MLOE): Advancing Mobile Network Planning and Optimization. IEEE Access, 2023, 11, 3096-3109.	4.2	3
18	Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation Tools. and Future Directions. Energies. 2023. 16. 3465.	3.1	12

TION RED

#	Article	IF	CITATIONS
19	Sum Rate Optimization for Multiple Access in Multi-FD-UAV-Assisted NOMA-Enabled Backscatter Communication Network. Electronics (Switzerland), 2023, 12, 1873.	3.1	0
20	Time-Efficient Data Download for Emergency UAV: Joint Optimization of On-Board Computation and Communication Under Energy Constraint. IEEE Transactions on Vehicular Technology, 2023, 72, 13718-13722.	6.3	0
21	Secure beamforming designs for maximizing secrecy sum rate in MISO-NOMA networks. Digital Communications and Networks, 2023, , .	5.0	0
22	Deep-Reinforcement-Learning-Based NOMA-Aided Slotted ALOHA for LEO Satellite IoT Networks. IEEE Internet of Things Journal, 2023, 10, 17772-17784.	8.7	0
23	Performance enhancement of nonorthogonal multiple access systems by multiple UAVs and RISs. , 2023, 140, 104136.		0
24	Joint Optimization of Trajectory and Discrete Reflection Coefficients for UAV-Aided Backscatter Communication System with NOMA. Electronics (Switzerland), 2023, 12, 2029.	3.1	0
25	Deep Learning-Aided Modulation Recognition for Non-Orthogonal Signals. Sensors, 2023, 23, 5234.	3.8	0
26	Simulation Analysis ofÂtheÂOligopoly Game inÂTelecommunications Industry andÂtheÂDynamic Pricing forÂ5G/6G Services. Lecture Notes in Networks and Systems, 2023, , 694-704.	0.7	0
27	Multi-Connection to the Sky: Energy-Efficient Beamforming for Multi-Satellite Uplink Transmission With Lens Antenna Array. IEEE Transactions on Green Communications and Networking, 2023, 7, 1836-1848.	5.5	1
28	RISC-V Custom Instructions of Elementary Functions for IoT Endpoint Devices. IEEE Transactions on Computers, 2024, 73, 523-535.	3.4	0
29	Mega Constellation Networks are Reliable against Geographical Failure. , 2023, , .		0
30	Efficient computation for task offloading in 6G mobile computing systems. International Journal of Data Science and Analytics, 0, , .	4.1	0
31	Non-Terrestrial Networks for Energy-Efficient Connectivity of Remote IoT Devices in the 6G Era: A Survey. Sensors, 2024, 24, 1227.	3.8	0
32	Multi-dimensional resource allocation strategy for LEO satellite communication uplinks based on deep reinforcement learning. Journal of Cloud Computing: Advances, Systems and Applications, 2024, 13, .	3.9	0
33	IoT Communication Models and Modes of Connectivity. Internet of Things, 2024, , 21-36.	1.7	0

CITATION REPORT