Regioregular Narrowâ€Bandgap nâ€Type Polymers wit Efficient Allâ€Polymer Solar Cells

Advanced Materials 33, e2102635 DOI: 10.1002/adma.202102635

Citation Report

#	Article	IF	CITATIONS
1	A low-cost and green-solvent-processable hole-transport material enabled by a traditional bidentate ligand for highly efficient inverted perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 8930-8938.	2.7	8
2	A universal strategy via polymerizing non-fullerene small molecule acceptors enables efficient all-polymer solar cells withA>Â1Ayear excellent thermal stability. Chemical Engineering Journal, 2022, 430, 132711.	6.6	15
3	Highly crystalline acceptor materials based on benzodithiophene with different amount of fluorine substitution on alkoxyphenyl conjugated side chains for organic photovoltaics. Materials Reports Energy, 2021, 1, 100059.	1.7	2
4	n-Type Organic and Polymeric Semiconductors Based on Bithiophene Imide Derivatives. Accounts of Chemical Research, 2021, 54, 3804-3817.	7.6	96
5	The renaissance of polythiophene organic solar cells. Trends in Chemistry, 2021, 3, 1074-1087.	4.4	64
6	Optimization of solvent swelling for efficient organic solar cells via sequential deposition. Materials Reports Energy, 2021, 1, 100063.	1.7	5
7	Boosting the Efficiency of Non-fullerene Organic Solar Cells via a Simple Cathode Modification Method. ACS Applied Materials & amp; Interfaces, 2021, 13, 51078-51085.	4.0	19
8	Importance of Highâ€Electron Mobility in Polymer Acceptors for Efficient Allâ€Polymer Solar Cells: Combined Engineering of Backbone Building Unit and Regioregularity. Advanced Functional Materials, 2022, 32, 2108508.	7.8	41
9	To Fluorinate or Not to Fluorinate in Organic Solar Cells: Achieving a Higher PCE of 15.2% when the Donor Polymer is Halogenâ€Free. Advanced Energy Materials, 2021, 11, 2102648.	10.2	33
10	Ternary Blend Organic Solar Cells: Understanding the Morphology from Recent Progress. Advanced Materials, 2022, 34, e2107476.	11.1	100
11	Polymer Acceptors with Flexible Spacers Afford Efficient and Mechanically Robust Allâ€Polymer Solar Cells. Advanced Materials, 2022, 34, e2107361.	11.1	89
12	Exploring Inorganic Hole Collection Materials from Mixedâ€Metal Dawsonâ€Type Polyoxometalates for Efficient Organic Photovoltaic Devices. Solar Rrl, 2022, 6, 2100827.	3.1	6
13	Synergistic Engineering of Side Chains and Backbone Regioregularity of Polymer Acceptors for Highâ€Performance Allâ€Polymer Solar Cells with 15.1% Efficiency. Advanced Energy Materials, 2022, 12, 2103239.	10.2	46
14	Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter, 2022, 5, 725-734.	5.0	145
15	Polymerizing small molecular acceptors for efficient allâ€polymer solar cells. InformaÄnÃ-Materiály, 2022, 4, .	8.5	42
16	Layer-by-layer processed binary all-polymer solar cells with efficiency over 16% enabled by finely optimized morphology. Nano Energy, 2022, 93, 106858.	8.2	71
17	Accessing Highly Efficient Photothermal Conversion with Stable Open‧hell Aromatic Nitric Acid Radicals. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
18	Accessing Highly Efficient Photothermal Conversion with Stable Openâ€Shell Aromatic Nitric Acid Radicals. Angewandte Chemie, 0, , .	1.6	5

#	Article	IF	CITATIONS
19	Regioregularity-control of conjugated polymers: from synthesis and properties, to photovoltaic device applications. Journal of Materials Chemistry A, 2022, 10, 2672-2696.	5.2	23
20	Ternary strategy enabling high-efficiency rigid and flexible organic solar cells with reduced non-radiative voltage loss. Energy and Environmental Science, 2022, 15, 1563-1572.	15.6	83
21	Effect of External Magnetic Field on Bulk Heterojunction Polymer Solar Cells. Macromolecular Rapid Communications, 2022, , 2100933.	2.0	2
22	The synergistic effects of central core size and end group engineering on performance of narrow bandgap nonfullerene acceptors. Chemical Engineering Journal, 2022, 435, 135020.	6.6	14
23	Highly efficient organic solar cells with superior deformability enabled by diluting the small molecule acceptor content. Journal of Materials Chemistry A, 2022, 10, 8293-8302.	5.2	10
24	Revisiting carbazole-based polymer donors for efficient and thermally stable polymer solar cells: structural utility of coplanar π-bridged spacers. Journal of Materials Chemistry A, 2022, 10, 9408-9418.	5.2	12
25	18.42% efficiency polymer solar cells enabled by terpolymer donors with optimal miscibility and energy levels. Journal of Materials Chemistry A, 2022, 10, 7878-7887.	5.2	34
27	A New PEDOT Derivative for Efficient Organic Solar Cell with a Fill Factor of 0.80. Advanced Energy Materials, 2022, 12, .	10.2	52
28	Meniscusâ€Assisted Coating with Optimized Active‣ayer Morphology toward Highly Efficient Allâ€Polymer Solar Cells. Advanced Materials, 2022, 34, e2108508.	11.1	26
29	Backbone Configuration and Electronic Property Tuning of Imideâ€Functionalized Ladderâ€Type Heteroarenesâ€Based Polymer Acceptors for Efficient Allâ€Polymer Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	12
30	Case Study of Metal Coordination to the Charge Transport and Thermal Stability of Porphyrin-Based Field-Effect Transistors. , 2022, 4, 548-553.		4
31	16.52% Efficiency Allâ€Polymer Solar Cells with High Tolerance of the Photoactive Layer Thickness. Advanced Materials, 2022, 34, e2108749.	11.1	63
32	Polymer Acceptors for Highâ€Performance Allâ€Polymer Solar Cells. Chemistry - A European Journal, 2022, 28, .	1.7	26
33	Effect of the Selective Halogenation of Small Molecule Acceptors on the Blend Morphology and Voltage Loss of Highâ€Performance Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	27
34	Isogenous Asymmetric–Symmetric Acceptors Enable Efficient Ternary Organic Solar Cells with Thin and 300Ânm Thick Active Layers Simultaneously. Advanced Functional Materials, 2022, 32, .	7.8	75
35	Sideâ€Chain Substituents on Benzotriazoleâ€Based Polymer Acceptors Affecting the Performance of Allâ€Polymer Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2200062.	2.0	12
36	Simultaneously Enhanced Efficiency and Mechanical Durability in Ternary Solar Cells Enabled by Lowâ€Cost Incompletely Separated Fullerenes. Macromolecular Rapid Communications, 2022, 43, e2200139.	2.0	14
37	Effects of fluorination position on all-polymer organic solar cells. Dyes and Pigments, 2022, 200, 110180.	2.0	10

#	Article	IF	CITATIONS
38	Fine‶uning Batch Factors of Polymer Acceptors Enables a Binary Allâ€Polymer Solar Cell with High Efficiency of 16.11%. Advanced Energy Materials, 2022, 12, .	10.2	52
39	<i>In situ</i> and <i>ex situ</i> investigations on ternary strategy and co-solvent effects towards high-efficiency organic solar cells. Energy and Environmental Science, 2022, 15, 2479-2488.	15.6	84
40	Heteroheptacene-based acceptors with thieno[3 <i>,</i> 2- <i>b</i>]pyrrole yield high-performance polymer solar cells. National Science Review, 2022, 9, .	4.6	67
41	Unraveling the Correlations between Mechanical Properties, Miscibility, and Film Microstructure in Allâ€Polymer Photovoltaic Cells. Advanced Functional Materials, 2022, 32, .	7.8	47
42	Over 16% efficiency all-polymer solar cells by sequential deposition. Science China Chemistry, 2022, 65, 1157-1163.	4.2	58
43	Nonfullerene acceptors based on perylene monoimides. Journal of Semiconductors, 2022, 43, 050203.	2.0	4
44	Non-Fullerene Acceptor Doped Block Copolymer for Efficient and Stable Organic Solar Cells. ACS Energy Letters, 2022, 7, 2196-2202.	8.8	34
45	Complex multilength-scale morphology in organic photovoltaics. Trends in Chemistry, 2022, 4, 699-713.	4.4	13
46	n-Type conjugated polymers comprising bithiophene imide and multifluorinated thiophene moieties synthesized by direct arylation polycondensation. Journal of Materials Chemistry C, 2022, 10, 13905-13912.	2.7	3
47	Realizing the efficiency-stability balance for all-polymer photovoltaic blends. Journal of Materials Chemistry C, 2022, 10, 9723-9729.	2.7	12
48	Intrinsicallyâ€Stretchable, Efficient Organic Solar Cells Achieved by Highâ€Molecularâ€Weight, Electroâ€Active Polymer Acceptor Additives. Advanced Energy Materials, 2022, 12, .	10.2	45
49	Isomerization of Asymmetric Ladderâ€Type Heteroheptaceneâ€Based Smallâ€Molecule Acceptors Improving Molecular Packing: Efficient Nonfullerene Organic Solar Cells with Excellent Fill Factors. Advanced Functional Materials, 2022, 32, .	7.8	20
50	Binary Blend Allâ€Polymer Solar Cells with a Record Efficiency of 17.41% Enabled by Programmed Fluorination Both on Donor and Acceptor Blocks. Advanced Science, 2022, 9, .	5.6	45
51	A Topâ€Down Strategy to Engineer ActiveLayer Morphology for Highly Efficient and Stable Allâ€Polymer Solar Cells. Advanced Materials, 2022, 34, .	11.1	41
52	Tailoring the Morphology's Microevolution for Binary All-Polymer Solar Cells Processed by Aromatic Hydrocarbon Solvent with 16.22% Efficiency. ACS Applied Materials & Interfaces, 2022, 14, 29956-29963.	4.0	17
53	Group 16 conjugated polymers based on furan, thiophene, selenophene, and tellurophene. Chemical Society Reviews, 2022, 51, 6442-6474.	18.7	34
54	Material Design and Device Fabrication Strategies for Stretchable Organic Solar Cells. Advanced Materials, 2022, 34, .	11.1	67
55	Advances in Green-Solvent-Processable All-Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 846-860.	2.0	6

#	ARTICLE	IF	CITATIONS
56	Planarized Polymer Acceptor Featuring High Electron Mobility for Efficient All-Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 968-978.	2.0	3
57	Revisiting the Dithienophthalimide Building Block: Improved Synthetic Method Yielding New Highâ€Performance Polymer Donors for Organic Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	6
58	Revisiting the Dithienophthalimide Building Block: Improved Synthetic Method Yielding New Highâ€Performance Polymer Donors for Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
59	Regioisomeric Polymer Semiconductors Based on Cyano-Functionalized Dialkoxybithiophenes: Structure–Property Relationship and Photovoltaic Performance. Transactions of Tianjin University, 0, , .	3.3	0
60	Fineâ€Tuned Morphology Based on Two Wellâ€Miscible Polymer Donors Enables Higher Openâ€Circuit Voltage and Enhanced Stability for Highly Efficient Ternary Allâ€Polymer Solar Cells. Macromolecular Rapid Communications, 2022, 43, .	2.0	2
61	Recent Progress of Y6â€Derived Asymmetric Fused Ring Electron Acceptors. Advanced Functional Materials, 2022, 32, .	7.8	114
62	Benzotriazoleâ€Based Nonfused Ring Acceptors for Efficient and Thermally Stable Organic Solar Cells. Macromolecular Rapid Communications, 2022, 43, .	2.0	7
63	Mechanically robust all-polymer solar cells enabled by polymerized small molecule acceptors featuring flexible siloxane-spacers. Journal of Materials Chemistry A, 2022, 10, 20312-20322.	5.2	11
64	Morphology Evolution via a Generic Solvent Additive Concept Enables Largeâ€Area Allâ€Polymer Solar Cells with Negligible PCE Loss. Macromolecular Materials and Engineering, 2022, 307, .	1.7	3
65	Renewed Prospects for Organic Photovoltaics. Chemical Reviews, 2022, 122, 14180-14274.	23.0	323
66	Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics. Advanced Energy Materials, 2022, 12, .	10.2	114
67	Effects of Flexible Conjugation-Break Spacers of Non-Conjugated Polymer Acceptors on Photovoltaic and Mechanical Properties of All-Polymer Solar Cells. Nano-Micro Letters, 2022, 14, .	14.4	21
68	Sequentially regular polymer acceptors featuring flexible spacers for high-performance and mechanically robust all-polymer solar cells. Energy and Environmental Science, 2022, 15, 4672-4685.	15.6	47
69	Asymmetric side-chain substitution enables a 3D network acceptor with hydrogen bond assisted crystal packing and enhanced electronic coupling for efficient organic solar cells. Energy and Environmental Science, 2022, 15, 4601-4611.	15.6	67
70	n-Type polymer electron acceptors for organic solar cells. Molecular Systems Design and Engineering, 2022, 7, 1364-1384.	1.7	7
71	All-polymer solar cells: materials and devices. Scientia Sinica Chimica, 2022, 52, 1948-2000.	0.2	2
72	Revisiting the Bithiophene <scp>Imideâ€Based</scp> Polymer Donors: Molecular Aggregation and Orientation Control Enabling New Polymer Donors for <scp>Highâ€Performance Allâ€Polymer</scp> Solar Cells ^{â€} . Chinese Journal of Chemistry, 2022, 40, 2900-2908.	2.6	13
73	Intrinsically Stretchable, Highly Efficient Organic Solar Cells Enabled by Polymer Donors Featuring Hydrogenâ€Bonding Spacers. Advanced Materials, 2022, 34, .	11.1	41

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
74	High performance polymerized small molecule acceptor by synergistic optimization on π-bridge linker and side chain. Nature Communications, 2022, 13, .	5.8	44
75	Regioisomerâ€Free Difluoroâ€Monochloro Terminalâ€based Hexaâ€Halogenated Acceptor with Optimized Crystal Packing for Efficient Binary Organic Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	6
76	Molecular engineering of Yâ€series acceptors for nonfullerene organic solar cells. SusMat, 2022, 2, 591-606.	7.8	21
77	Intrinsically Stretchable and Nonâ€Halogenated Solvent Processed Polymer Solar Cells Enabled by Hydrophilic Spacerâ€Incorporated Polymers. Advanced Energy Materials, 2022, 12, .	10.2	34
78	Regioisomerâ€Free Difluoroâ€Monochloro Terminalâ€based Hexaâ€Halogenated Acceptor with Optimized Crystal Packing for Efficient Binary Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	55
79	Status and prospects of ternary all-polymer organic solar cells. Materials Today Energy, 2022, , 101166.	2.5	7
80	Impact of isomers on the photovoltaic properties of polymerized small-molecule acceptors. , 2022, 1, 100008.		8
81	Simultaneous Optimization of Efficiency, Stretchability, and Stability in <scp>Allâ€Polymer</scp> Solar Cells via Aggregation Control ^{â€} . Chinese Journal of Chemistry, 2023, 41, 159-166.	2.6	29
82	Allâ€Polymer Solar Cells with 17% Efficiency Enabled by the "End apped―Ternary Strategy. Advanced Science, 2022, 9, .	5.6	17
83	Y-Series-Based Polymer Acceptors for High-Performance All-Polymer Solar Cells in Binary and Non-binary Systems. ACS Energy Letters, 2022, 7, 3835-3854.	8.8	25
84	Recent progress in lowâ€cost noncovalently fusedâ€ring electron acceptors for organic solar cells. Aggregate, 2022, 3, .	5.2	60
85	Regulation of Polymer Configurations Enables Green Solventâ€Processed Largeâ€Area Binary Allâ€Polymer Solar Cells With Breakthrough Performance and High Efficiency Stretchability Factor. Advanced Materials, 2023, 35, .	11.1	34
86	Highly Flexible Allâ€Polymer Solar Cells Processed without Postâ€Treatment Achieving 13.56% Efficiency. Solar Rrl, 2022, 6, .	3.1	4
87	Highly efficient and stable binary all-polymer solar cells enabled by sequential deposition processing tuned microstructures. Journal of Materials Chemistry C, 2022, 10, 17899-17906.	2.7	5
88	Linear Regulating of Polymer Acceptor Aggregation with Short Alkyl Chain Units Enhances Allâ€Polymer Solar Cells' Efficiency. Macromolecular Rapid Communications, 2023, 44, .	2.0	2
89	Constructing a Double-Cable Polymer Acceptor for Efficient All-Polymer Solar Cells with a Non-Radiative Recombination Energy Loss of 0.16 eV. Chemistry of Materials, 2022, 34, 9970-9981.	3.2	8
90	The high-performance organic solar cells with an improved efficiency and stability by incorporating environmental biomaterial astaxanthin. Electrochimica Acta, 2023, 439, 141684.	2.6	1
91	Composition-Tolerant Terpolymers for Efficient, Nonhalogenated Solvent-Processed Polymer Solar Cells. Macromolecules, 2022, 55, 10395-10404.	2.2	2

#	Article	IF	CITATIONS
92	Tailoring Co-crystallization over Microphase Separation in Conjugated Block Copolymers via Rational Film Processing for Field-Effect Transistors. Macromolecules, 2022, 55, 10405-10414.	2.2	5
93	Efficient and Nonhalogenated Solvent-Processed Organic Solar Cells Enabled by Conjugated Donor–Acceptor Block Copolymers Containing the Same Benzodithiophene Unit. ACS Applied Materials & Interfaces, 2022, 14, 57070-57081.	4.0	7
94	Ternary Allâ€Polymer Solar Cells with Efficiency up to 18.14% Employing a Twoâ€Step Sequential Deposition. Advanced Materials, 2023, 35, .	11.1	33
95	Improved Molecular Ordering in a Ternary Blend Enables Allâ€Polymer Solar Cells over 18% Efficiency. Advanced Materials, 2023, 35, .	11.1	45
96	Limiting phase separation <i>via</i> halogen-free solvent slot-die processing enables highly efficient and eco-friendly all-polymer solar cells. Journal of Materials Chemistry A, 2023, 11, 3028-3037.	5.2	5
97	Stable block copolymer single-material organic solar cells: progress and perspective. Energy and Environmental Science, 2023, 16, 723-744.	15.6	18
98	17% efficiency for linear-shaped ADA-type nonfullerene acceptors enabled by 3D reticulated molecular packing. Nano Energy, 2023, 107, 108116.	8.2	11
99	An efficient polymer acceptor with fluorinated linkers enables all polymer solar cells with an efficiency of 15.7%. Journal of Materials Chemistry A, 2023, 11, 5584-5592.	5.2	4
100	Dimerized small-molecule acceptors enable efficient and stable organic solar cells. Joule, 2023, 7, 416-430.	11.7	65
101	Linker Engineering of Dimerized Small Molecule Acceptors for Highly Efficient and Stable Organic Solar Cells. ACS Energy Letters, 2023, 8, 1344-1353.	8.8	45
102	Unveiling the Morphological and Physical Mechanism of Burnâ€in Loss Alleviation by Ternary Matrix Toward Stable and Efficient Allâ€Polymer Solar Cells. Advanced Materials, 2023, 35, .	11.1	52
103	Air-stable ternary organic solar cells achieved by using fullerene additives in non-fullerene acceptor-polymer donor blends. Journal of Materials Chemistry C, 2023, 11, 8074-8083.	2.7	5
104	Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization. Nature Communications, 2023, 14, .	5.8	35
105	Synthesis of angular-shaped naphthodithiophenediimide and its donor–acceptor copolymers as nonvolatile polymer additives for organic solar cells. Journal of Materials Chemistry A, 2023, 11, 7572-7583.	5.2	11
106	Modulation of Dielectric Constant and Photovoltaic Properties of 2,1,3â€benzothiadiazoleâ€based Alternating Copolymers by Adding Fluorine Atoms to the Backbone of Polymers. ChemistrySelect, 2023, 8, .	0.7	2
107	Poly(dimethylsiloxane)â€≺i>blockâ€PM6 Polymer Donors for Highâ€Performance and Mechanically Robust Polymer Solar Cells. Advanced Materials, 2023, 35, .	11.1	25
108	Isomeric Small Molecule Donor with Terminal Branching Position Directly Attached to the Backbone Enables Efficient Allâ€Smallâ€Molecule Organic Solar Cells with Excellent Stability. Advanced Functional Materials, 2023, 33, .	7.8	11
109	Over 18% efficiency ternary all-polymer solar cells with high photocurrent and fill factor. Matter, 2023, 6, 1542-1554.	5.0	13

CITATION REPORT

#	Article	IF	CITATIONS
110	Layerâ€byâ€Layerâ€Processed Ternary Allâ€Polymer Organic Solar Cells with 17.74% Efficiency Enabled by Introducing a Designed Narrowâ€Bandgap Guest Polymer Acceptor. Solar Rrl, 2023, 7, .	3.1	3
111	Electron-Transporting Conjugated Polymers from Novel Aromatic Five-Membered Diimides: Naphtho[1,2- <i>b</i> :4,3- <i>b</i> ′]-dithiophene and -Diselenophene Diimides. Macromolecules, 2023, 56, 2990-3003.	2.2	8
112	Incorporation of the Benzobisthiadiazole Unit Leads to Open-Shell Conjugated Polymers with n-Type Charge Transport Properties. Macromolecules, 2023, 56, 2980-2989.	2.2	4
113	Interdiffused thermoplastic urethane-PEDOT:PSS bilayers with superior adhesion properties for high-performance and intrinsically-stretchable organic solar cells. Journal of Materials Chemistry A, 2023, 11, 12846-12855.	5.2	1
118	Regioregular polymerized small-molecule acceptors for high-performance all-polymer solar cells. Journal of Materials Chemistry C, 2023, 11, 9082-9092.	2.7	7
126	Polymerized A-DA'D-A type small-molecule acceptors for high performance all-polymer solar cells: progress and perspective. Science China Chemistry, 2023, 66, 2513-2531.	4.2	5