Lipid nanoparticles for mRNA delivery

Nature Reviews Materials 6, 1078-1094

DOI: 10.1038/s41578-021-00358-0

Citation Report

#	Article	IF	CITATIONS
2	Challenges and Scientific Prospects of the Newest Generation of mRNA-Based Vaccines against SARS-CoV-2. Life, 2021, 11, 907.	2.4	20
3	Lipids: An Atomic Toolkit for the Endless Frontier. ACS Nano, 2021, 15, 15429-15445.	14.6	11
4	Nanoparticles Targeting Innate Immune Cells in Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 10009.	4.1	14
5	A Review on Current COVID-19 Vaccines and Evaluation of Particulate Vaccine Delivery Systems. Vaccines, 2021, 9, 1086.	4.4	19
6	Lipid Nanoparticle Technology for Delivering Biologically Active Fatty Acids and Monoglycerides. International Journal of Molecular Sciences, 2021, 22, 9664.	4.1	18
7	Virus-inspired nanosystems for drug delivery. Nanoscale, 2021, 13, 18912-18924.	5.6	15
8	Heterogeneous Longitudinal Antibody Responses to Covid-19 mRNA Vaccination. BMC Clinical Pathology, 2021, 14, 2632010X2110492.	1.7	9
9	The Role of Animal Research in Pandemic Responses. Comparative Medicine, 2021, 71, 359-368.	1.0	2
10	Bioinspired Silicification of mRNA-Loaded Polyion Complexes for Macrophage-Targeted mRNA Delivery. ACS Applied Bio Materials, 2021, 4, 7790-7799.	4.6	7
11	A Perspective on Nanotechnology and COVID-19 Vaccine Research and Production in South Africa. Viruses, 2021, 13, 2095.	3.3	5
12	Ultrasonic particles: An approach for targeted gene delivery. Advanced Drug Delivery Reviews, 2021, 179, 113998.	13.7	20
13	Overcoming transport barriers to immunotherapy. Drug Delivery and Translational Research, $2021, 11, 2273-2275.$	5.8	1
14	Near Infrared Fluorescent Nanostructure Design for Organic/Inorganic Hybrid System. Biomedicines, 2021, 9, 1583.	3.2	6
15	Principles for designing an optimal mRNA lipid nanoparticle vaccine. Current Opinion in Biotechnology, 2022, 73, 329-336.	6.6	102
17	Current Advances in Lipid and Polymeric Antimicrobial Peptide Delivery Systems and Coatings for the Prevention and Treatment of Bacterial Infections. Pharmaceutics, 2021, 13, 1840.	4. 5	36
18	The Interactions between Nanoparticles and the Innate Immune System from a Nanotechnologist Perspective. Nanomaterials, 2021, 11, 2991.	4.1	30
19	Delivery of CRISPR-Cas9 system for screening and editing RNA binding proteins in cancer. Advanced Drug Delivery Reviews, 2022, 180, 114042.	13.7	20
20	https://onco-hema.healthbooktimes.org/article/29047-mrna-vaccines-against-infectious-diseases-and-cancer?auth Healthbook TIMES Oncology Hematology, 2021, , .	ı_token=C -0.1	SXnDwFXw-1

#	Article	IF	Citations
21	Role of Ionizable Lipids in SARS-CoV-2 Vaccines As Revealed by Molecular Dynamics Simulations: From Membrane Structure to Interaction with mRNA Fragments. Journal of Physical Chemistry Letters, 2021, 12, 11199-11205.	4.6	26
22	Lipid Nanoparticle–mRNA Formulations for Therapeutic Applications. Accounts of Chemical Research, 2021, 54, 4283-4293.	15.6	87
23	Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials, 2022, 280, 121247.	11.4	35
24	Brief on Recent Application of Liposomal Vaccines for Lower Respiratory Tract Viral Infections: From Influenza to COVID-19 Vaccines. Pharmaceuticals, 2021, 14, 1173.	3.8	18
25	Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm. Acta Pharmaceutica Sinica B, 2022, 12, 2950-2962.	12.0	33
26	New Applications of Lipid and Polymer-Based Nanoparticles for Nucleic Acids Delivery. Pharmaceutics, 2021, 13, 2053.	4.5	14
27	Mucosal Vaccination Against Periodontal Disease: Current Status and Opportunities. Frontiers in Immunology, 2021, 12, 768397.	4.8	14
28	Antibacterial and antiviral high-performance nanosystems to mitigate new SARS-CoV-2 variants of concern. Current Opinion in Biomedical Engineering, 2022, 21, 100363.	3.4	41
29	Chemistry of Lipid Nanoparticles for RNA Delivery. Accounts of Chemical Research, 2022, 55, 2-12.	15.6	230
30	Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharmaceutica Sinica B, 2022, 12, 2206-2223.	12.0	52
31	CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells. Advanced Drug Delivery Reviews, 2022, 181, 114087.	13.7	18
32	Clinical translation of nanomedicines: Challenges, opportunities, and keys. Advanced Drug Delivery Reviews, 2022, 181, 114083.	13.7	91
33	Functional biomaterials. APL Bioengineering, 2022, 6, 010401.	6.2	4
34	Polymersomes as a potential platform for cancer immunotherapy. Materials Today Advances, 2022, 13, 100203.	5.2	13
35	Potential implications of lipid nanoparticles in the pathogenesis of myocarditis associated with the use of mRNA vaccines against SARS-CoV-2. Metabolism Open, 2022, 13, 100159.	2.9	30
36	The Nanoparticle-Enabled Success of COVID-19 mRNA Vaccines and the Promise of Microneedle Platforms for Pandemic Vaccine Response. DNA and Cell Biology, 2022, 41, 25-29.	1.9	9
37	COVID-19 and Spanish Flu, the Representative Pandemics of the 21st and 20th Centuries. Journal of Disaster Research, 2022, 17, 65-72.	0.7	1
38	Transgenic Model Systems Have Revolutionized the Study of Disease. DNA and Cell Biology, 2022, 41, 49-52.	1.9	O

3

#	ARTICLE	IF	CITATIONS
39	Photothermally triggered melting and perfusion: responsive colloidosomes for cytosolic delivery of membrane-impermeable drugs in tumor therapy. Journal of Materials Chemistry B, 2022, , .	5.8	1
40	Cancer vaccines as a targeted immunotherapy approach for breast cancer: an update of clinical evidence. Expert Review of Vaccines, 2022, 21, 337-353.	4.4	9
42	The tiny big world of solid lipid nanoparticles and nanostructured lipid carriers: an updated review. Journal of Microencapsulation, 2022, 39, 72-94.	2.8	18
43	Lipid-Based Nanocarriers in Renal RNA Therapy. Biomedicines, 2022, 10, 283.	3.2	9
44	Zeolitic Imidazolate Framework Nanoencapsulation of CpG for Stabilization and Enhancement of Immunoadjuvancy. ACS Applied Nano Materials, 2022, 5, 13697-13704.	5.0	14
45	Mining LTR-retrotransposon genes for mRNA delivery. Trends in Pharmacological Sciences, 2022, , .	8.7	0
47	From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines. Nano-Micro Letters, 2022, 14, 41.	27.0	26
48	Polymer Micelles vs Polymer–Lipid Hybrid Vesicles: A Comparison Using RAW 264.7 Cells. Biomacromolecules, 2022, 23, 1052-1064.	5.4	3
49	RNA cancer nanomedicine: nanotechnology-mediated RNA therapy. Nanoscale, 2022, 14, 4448-4455.	5.6	28
50	Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application. Pharmaceutics, 2022, 14, 141.	4.5	35
51	The Interplay Between Epigenetic Regulation and CD8+ T Cell Differentiation/Exhaustion for T Cell Immunotherapy. Frontiers in Cell and Developmental Biology, 2021, 9, 783227.	3.7	11
52	Delivery Strategies for mRNA Vaccines. Pharmaceutical Medicine, 2022, 36, 11-20.	1.9	49
53	Recent advances of biomaterials in stem cell therapies. Nanotechnology, 2022, 33, 132501.	2.6	5
54	Rational design of antiâ€inflammatory lipid nanoparticles for mRNA delivery. Journal of Biomedical Materials Research - Part A, 2022, 110, 1101-1108.	4.0	23
55	Nextâ€Generation Nonviral Vectors for mRNA Vaccine Delivery. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	5
56	Strategies for fighting pandemic virus infections: Integration of virology and drug delivery. Journal of Controlled Release, 2022, 343, 361-378.	9.9	11
57	In situ T-cell transfection by anti-CD3-conjugated lipid nanoparticles leads to T-cell activation, migration, and phenotypic shift. Biomaterials, 2022, 281, 121339.	11.4	36
58	Opportunities and Challenges for mRNA Delivery Nanoplatforms. Journal of Physical Chemistry Letters, 2022, 13, 1314-1322.	4.6	11

#	ARTICLE	IF	Citations
59	Intracellular Co-delivery of native antibody and siRNA for combination therapy by using biodegradable silica nanocapsules. Biomaterials, 2022, 281, 121376.	11.4	16
60	In Vitro Inhibition of Replication of Dengue Virus Serotypes 1–4 by siRNAs Bound to Non-Toxic Liposomes. Viruses, 2022, 14, 339.	3.3	2
61	Regulating trained immunity with nanomedicine. Nature Reviews Materials, 2022, 7, 465-481.	48.7	45
62	Recent advances in lipid nanoparticles for delivery of nucleic acid, mRNA, and gene editing-based therapeutics. Drug Metabolism and Pharmacokinetics, 2022, 44, 100450.	2.2	33
63	Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. Journal of Controlled Release, 2022, 343, 564-583.	9.9	21
64	Advanced Materials for SARSâ€CoVâ€2 Vaccines. Advanced Materials, 2022, 34, e2107781.	21.0	25
65	Nucleic Acids and Their Analogues for Biomedical Applications. Biosensors, 2022, 12, 93.	4.7	26
66	Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Molecular Therapy, 2022, 30, 1941-1951.	8.2	98
67	Multivalency-Induced Shape Deformation of Nanoscale Lipid Vesicles: Size-Dependent Membrane Bending Effects. Journal of Physical Chemistry Letters, 2022, 13, 1480-1488.	4.6	5
68	SARS-CoV-2–Specific Vaccine Candidates; the Contribution of Structural Vaccinology. Vaccines, 2022, 10, 236.	4.4	14
69	Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell, 2022, 40, 255-276.	16.8	45
70	Host immunity and vaccine development against Dengue virus. , 2022, , .		3
71	Nanomaterials to improve cancer immunotherapy based on ex vivo engineered T cells and NK cells. Journal of Controlled Release, 2022, 343, 379-391.	9.9	12
72	Machine Learning for Designing Next-Generation mRNA Therapeutics. Accounts of Chemical Research, 2022, 55, 24-34.	15.6	25
73	SARS-CoV-2: Emergence of New Variants and Effectiveness of Vaccines. Frontiers in Cellular and Infection Microbiology, 2021, 11, 777212.	3.9	29
74	A brief review of mRNA therapeutics and delivery for bone tissue engineering. RSC Advances, 2022, 12, 8889-8900.	3.6	5
75	Recent advances in biomaterial-boosted adoptive cell therapy. Chemical Society Reviews, 2022, 51, 1766-1794.	38.1	29
76	Metallodrugs in cancer nanomedicine. Chemical Society Reviews, 2022, 51, 2544-2582.	38.1	70

#	ARTICLE	IF	Citations
77	Next generation self-replicating RNA vectors for vaccines and immunotherapies. Cancer Gene Therapy, 2023, 30, 785-793.	4.6	9
78	Human Mesenchymal Stem Cells as a Carrier for a Cell-Mediated Drug Delivery. Frontiers in Bioengineering and Biotechnology, 2022, 10, 796111.	4.1	14
79	Heart regeneration: 20 years of progress and renewed optimism. Developmental Cell, 2022, 57, 424-439.	7.0	28
80	mRNA Vaccine Development for Emerging Animal and Zoonotic Diseases. Viruses, 2022, 14, 401.	3.3	30
82	Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS Applied Bio Materials, 2022, 5, 971-1012.	4.6	133
83	Nonviral Delivery Systems of mRNA Vaccines for Cancer Gene Therapy. Pharmaceutics, 2022, 14, 512.	4.5	19
84	Peptides as molecular Trojan horses. Nature Chemistry, 2022, 14, 250-252.	13.6	2
85	Heterogeneous Synthetic Vesicles toward Artificial Cells: Engineering Structure and Composition of Membranes for Multimodal Functionalities. Biomacromolecules, 2022, 23, 1505-1518.	5.4	20
86	Role of drug delivery technologies in the success of COVID-19 vaccines: a perspective. Drug Delivery and Translational Research, 2022, 12, 2581-2588.	5.8	17
87	Polyester materials for mRNA delivery. Exploration of Targeted Anti-tumor Therapy, 0, , 117-127.	0.8	2
88	Messenger RNA vaccines for cancer immunotherapy: progress promotes promise. Journal of Clinical Investigation, 2022, 132, .	8.2	27
89	Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer. BioTech, 2022, 11, 6.	2.6	14
90	Microfluidic Platforms for the Production of Nanoparticles at Flow Rates Larger Than One Liter Per Hour. Advanced Materials Technologies, 2022, 7, .	5.8	6
91	Modification of Lipid-Based Nanoparticles: An Efficient Delivery System for Nucleic Acid-Based Immunotherapy. Molecules, 2022, 27, 1943.	3.8	22
92	Insights into the immune responses of SARS-CoV-2 in relation to COVID-19 vaccines. Journal of Microbiology, 2022, 60, 308-320.	2.8	6
93	Multiâ€Mode Antibacterial Strategies Enabled by Geneâ€Transfection and Immunomodulatory Nanoparticles in 3Dâ€Printed Scaffolds for Synergistic Exogenous and Endogenous Treatment of Infections. Advanced Materials, 2022, 34, e2200096.	21.0	24
94	Milk exosomes in nutrition and drug delivery. American Journal of Physiology - Cell Physiology, 2022, 322, C865-C874.	4.6	17
95	The Use of Medicinal Plant Extract in Hand Sanitizer and Spray to Combat Against Covid-19. Biosciences, Biotechnology Research Asia, 2022, 19, 183-189.	0.5	0

#	Article	IF	CITATIONS
96	DNA methylation–independent long-term epigenetic silencing with dCRISPR/Cas9 fusion proteins. Life Science Alliance, 2022, 5, e202101321.	2.8	3
97	SARS-CoV-2 mRNA Vaccination and Graves' Disease: A Report of 12 Cases and Review of the Literature. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2324-e2330.	3.6	33
98	Matrix stiffness regulates lipid nanoparticle-mRNA delivery in cell-laden hydrogels. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102550.	3.3	5
99	α-Synuclein at the Presynaptic Axon Terminal as a Double-Edged Sword. Biomolecules, 2022, 12, 507.	4.0	4
100	Advanced Biomaterials for Cell‧pecific Modulation and Restore of Cancer Immunotherapy. Advanced Science, 2022, 9, e2200027.	11.2	26
101	Advances in Nanoparticles for Effective Delivery of RNA Therapeutics. Biochip Journal, 2022, 16, 128-145.	4.9	23
102	Recent advancements in lipid–mRNA nanoparticles as a treatment option for cancer immunotherapy. Journal of Pharmaceutical Investigation, 2022, 52, 415-426.	5. 3	21
103	Nanomaterials: The New Antimicrobial Magic Bullet. ACS Infectious Diseases, 2022, 8, 693-712.	3.8	28
104	Recent Advances in Delivery Systems for Genetic and Other Novel Vaccines. Advanced Materials, 2022, 34, e2107946.	21.0	10
105	The Unexpected Importance of the Primary Structure of the Hydrophobic Part of One-Component lonizable Amphiphilic Janus Dendrimers in Targeted mRNA Delivery Activity. Journal of the American Chemical Society, 2022, 144, 4746-4753.	13.7	43
106	High-throughput synthesis and characterization of next-generation lipid nanoparticles for enhanced <i>in vivo</i> performance. Nanomedicine, 2022, 17, 573-576.	3.3	2
107	Lipid Nanoparticles: Key Facilitators of mRNA Vaccine Development. Biosciences, Biotechnology Research Asia, 2022, 19, 199-213.	0.5	1
108	Exosomes as bio-inspired nanocarriers for RNA delivery: preparation and applications. Journal of Translational Medicine, 2022, 20, 125.	4.4	53
109	Retention and Fouling during Nanoparticle Filtration: Implications for Membrane Purification of Biotherapeutics. Membranes, 2022, 12, 299.	3.0	2
110	Liposomal siRNA Formulations for the Treatment of Herpes Simplex Virus-1: In Vitro Characterization of Physicochemical Properties and Activity, and In Vivo Biodistribution and Toxicity Studies. Pharmaceutics, 2022, 14, 633.	4.5	5
111	Squeezing Out Interfacial Solvation: The Role of Hydrogen-Bonding in the Structural and Orientational Freedom of Molecular Self-Assembly. Journal of Physical Chemistry Letters, 2022, 13, 2273-2280.	4.6	7
112	Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Exploration, 2022, 2, .	11.0	30
113	Biosafety assessment of delivery systems for clinical nucleic acid therapeutics. Biosafety and Health, 2022, 4, 105-117.	2.7	15

#	Article	IF	CITATIONS
114	Merging data curation and machine learning to improve nanomedicines. Advanced Drug Delivery Reviews, 2022, 183, 114172.	13.7	34
115	Protein Cages: From Fundamentals to Advanced Applications. Chemical Reviews, 2022, 122, 9145-9197.	47.7	54
116	Sclerotic skin disease development following COVID-19 vaccination. JAAD Case Reports, 2022, 22, 74-77.	0.8	6
117	Case Report: Precision COVID-19 Immunization Strategy to Overcome Individual Fragility: A Case of Generalized Lipodystrophy Type 4. Frontiers in Immunology, 2022, 13, 869042.	4.8	1
118	A polyphenol-assisted IL-10 mRNA delivery system for ulcerative colitis. Acta Pharmaceutica Sinica B, 2022, 12, 3367-3382.	12.0	15
119	What's Next after Lipid Nanoparticles? A Perspective on Enablers of Nucleic Acid Therapeutics. Bioconjugate Chemistry, 2022, 33, 1996-2007.	3.6	7
120	Circulating microRNAs in Medicine. International Journal of Molecular Sciences, 2022, 23, 3996.	4.1	30
121	Clays as Vehicles for Drug Photostability. Pharmaceutics, 2022, 14, 796.	4.5	8
122	Delivery Systems of Plasmid DNA and Messenger RNA for Advanced Therapies. Pharmaceutics, 2022, 14, 810.	4.5	4
123	Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. Journal of Controlled Release, 2022, 344, 80-96.	9.9	92
124	Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools. Advanced Drug Delivery Reviews, 2022, 183, 114161.	13.7	21
125	Membrane-active diacylglycerol-terminated thermoresponsive polymers: RAFT synthesis and biocompatibility evaluation. European Polymer Journal, 2022, 169, 111154.	5.4	3
126	Delivery of mRNA for regulating functions of immune cells. Journal of Controlled Release, 2022, 345, 494-511.	9.9	28
127	Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids. Advanced Drug Delivery Reviews, 2022, 184, 114197.	13.7	29
128	Can pulmonary RNA delivery improve our pandemic preparedness?. Journal of Controlled Release, 2022, 345, 549-556.	9.9	5
129	The role of the cell surface glycocalyx in drug delivery to and through the endothelium. Advanced Drug Delivery Reviews, 2022, 184, 114195.	13.7	12
130	Nano-immunotherapeutic strategies for targeted RNA delivery: Emphasizing the role of monocyte/macrophages as nanovehicles to treat glioblastoma multiforme. Journal of Drug Delivery Science and Technology, 2022, 71, 103288.	3.0	5
131	Regulatory guidelines and preclinical tools to study the biodistribution of RNA therapeutics. Advanced Drug Delivery Reviews, 2022, 184, 114236.	13.7	16

#	Article	IF	CITATIONS
132	Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. Journal of Controlled Release, 2022, 345, 306-313.	9.9	70
133	Cell-Penetrating Peptides: Emerging Tools for mRNA Delivery. Pharmaceutics, 2022, 14, 78.	4.5	49
134	Phosphonodithioester–Amine Coupling as a Key Reaction Step for the Design of Cationic Amphiphiles Used for Gene Delivery. Molecules, 2021, 26, 7507.	3.8	1
135	Melting and Re-Freezing Leads to Irreversible Changes in the Morphology and Molecular-Level Dynamics of Pfizer-BioNTech COVID-19 Vaccine. Medicina (Lithuania), 2021, 57, 1343.	2.0	2
136	Biophysical Characterization of Viral and Lipid-Based Vectors for Vaccines and Therapeutics with Light Scattering and Calorimetric Techniques. Vaccines, 2022, 10, 49.	4.4	9
137	mRNA Therapeutic Modalities Design, Formulation and Manufacturing under Pharma 4.0 Principles. Biomedicines, 2022, 10, 50.	3.2	30
138	Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics, 2021, 13, 2091.	4.5	19
139	Fatballs foster fabulous follicles. Immunity, 2021, 54, 2695-2697.	14.3	0
140	Engineered Nanoparticulate Vaccines to Combat Recurring and Pandemic Influenza Threats. Advanced NanoBiomed Research, 2022, 2, .	3.6	2
141	Optically computed phase microscopy for quantitative dynamic imaging of label-free cells and nanoparticles. Biomedical Optics Express, 2022, 13, 514.	2.9	3
142	Micro- and Nanocapsules Based on Artificial Peptides. Molecules, 2022, 27, 1373.	3.8	2
143	Lipid nanoparticles with ionizable lipids: Statistical aspects. Physical Review E, 2022, 105, 044405.	2.1	2
144	Subcellular delivery of lipid nanoparticles to endoplasmic reticulum and mitochondria. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1803.	6.1	5
145	Nanodelivery of nucleic acids. Nature Reviews Methods Primers, 2022, 2, .	21.2	146
146	Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food and Chemical Toxicology, 2022, 164, 113008.	3.6	70
147	Advances in COVID-19 mRNA vaccine development. Signal Transduction and Targeted Therapy, 2022, 7, 94.	17.1	177
148	Uniting Disciplines to Develop Therapeutics: Targeted mRNA Lipid Nanoparticles Reprogram the Immune System <i>In Vivo</i> to Treat Heart Disease. DNA and Cell Biology, 2022, 41, 539-543.	1.9	2
149	Optimized mobilization of MHC class I- and II- restricted immunity by dendritic cell vaccine potentiates cancer therapy. Theranostics, 2022, 12, 3488-3502.	10.0	7

#	Article	IF	Citations
150	Answering to social issues – Delivery of mRNA vaccines and therapeutics. Drug Delivery System, 2022, 37, 25-34.	0.0	0
151	Nanostructured particles assembled from natural building blocks for advanced therapies. Chemical Society Reviews, 2022, 51, 4287-4336.	38.1	64
152	Lung specific homing of diphenyleneiodonium chloride improves pulmonary fibrosis by inhibiting macrophage M2 metabolic program. Journal of Advanced Research, 2023, 44, 213-225.	9.5	6
153	Immune cells in cardiac repair and regeneration. Development (Cambridge), 2022, 149, .	2.5	16
154	Quality by Design for enabling RNA platform production processes. Trends in Biotechnology, 2022, 40, 1213-1228.	9.3	36
155	Universal Flu mRNA Vaccine: Promises, Prospects, and Problems. Vaccines, 2022, 10, 709.	4.4	7
156	Exploration of Lipid-Based Nanocarriers as Drug Delivery Systems in Diabetic Foot Ulcer. Molecular Pharmaceutics, 2022, 19, 1977-1998.	4.6	13
157	Multimodality imaging of <scp>nanoparticleâ€based</scp> vaccines: Shedding light on immunology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, , e1807.	6.1	1
158	In vivo fate and intracellular trafficking of vaccine delivery systems. Advanced Drug Delivery Reviews, 2022, 186, 114325.	13.7	26
159	Amphiphilic Dendrimer Vectors for RNA Delivery: State-of-the-Art and Future Perspective. Accounts of Materials Research, 2022, 3, 484-497.	11.7	19
160	Identification by Bioinformatics Analysis of Potential Key Genes Related to the Progression and Prognosis of Gastric Cancer. Frontiers in Oncology, 2022, 12, .	2.8	3
161	Oral mRNA Vaccines Against Infectious Diseases- A Bacterial Perspective [Invited]. Frontiers in Immunology, 2022, 13, 884862.	4.8	10
162	Lipoplexes and polyplexes as nucleic acids delivery nanosystems: The current state and future considerations. Expert Opinion on Drug Delivery, 2022, 19, 577-594.	5.0	4
163	Dendritic–Linear Copolymer and Dendron Lipid Nanoparticles for Drug and Gene Delivery. Bioconjugate Chemistry, 2022, , .	3.6	3
164	The dynamic, motile and deformative properties of RNA nanoparticles facilitate the third milestone of drug development. Advanced Drug Delivery Reviews, 2022, 186, 114316.	13.7	17
165	Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity, 2022, 55, 749-780.	14.3	66
166	The potential of RNA-based therapy for kidney diseases. Pediatric Nephrology, 2023, 38, 327-344.	1.7	14
167	Advances in the delivery of COVID-19 vaccines. , 0, 2, 5.		0

#	ARTICLE	IF	CITATIONS
168	Synthesis of mesoporous antimicrobial herbal nanomaterial-carrier for silver nanoparticles and antimicrobial sensing. Food and Chemical Toxicology, 2022, 165, 113077.	3.6	9
169	mRNA based vaccines as an alternative to conventional vaccine approaches. Open Journal of Environmental Biology, 2022, 7, 001-005.	0.2	0
170	Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chemical Letters, 2023, 34, 107518.	9.0	124
171	Messenger RNA as a personalized therapy: The moment of truth for rare metabolic diseases. International Review of Cell and Molecular Biology, 2022, , .	3.2	5
172	è"è"纳米颗粒(LNP)-mRNA体内递é€ç³»ç»Ÿåœ"CAR-T细胞ä¸çš"ç"究进展. Zhejiang Da Xue Xue Bac 2022, , .) Yi Xue Ba	n = Journal of
173	Exciting Times for Lipid Nanoparticles: How Canadian Discoveries Are Enabling Gene Therapies. Molecular Pharmaceutics, 2022, 19, 1663-1668.	4.6	11
174	RNA in Cancer Immunotherapy: Unlocking the Potential of the Immune System. Clinical Cancer Research, 2022, 28, 3929-3939.	7.0	7
175	Convalescent serum-derived exosomes: Attractive niche as COVID-19 diagnostic tool and vehicle for mRNA delivery. Experimental Biology and Medicine, 2022, 247, 1244-1252.	2.4	15
178	Rational Design of Bisphosphonate Lipid-like Materials for mRNA Delivery to the Bone Microenvironment. Journal of the American Chemical Society, 2022, 144, 9926-9937.	13.7	46
180	Dynamics of intracellular clusters of nanoparticles. Cancer Nanotechnology, 2022, 13, .	3.7	8
182	Precision medicine: InÂvivo CAR therapy as a showcase for receptor-targeted vector platforms. Molecular Therapy, 2022, 30, 2401-2415.	8.2	28
183	Present and future of lipid nanoparticle-mRNA technology in phenylketonuria disease treatment. International Review of Cell and Molecular Biology, 2022, , 159-174.	3.2	2
184	Lipid nanoparticle steric stabilization roadmap. Advances in Biomembranes and Lipid Self-Assembly, 2022, , 41-75.	0.6	2
186	Comparison of DLin-MC3-DMA and ALC-0315 for siRNA Delivery to Hepatocytes and Hepatic Stellate Cells. Molecular Pharmaceutics, 2022, 19, 2175-2182.	4.6	24
188	Reactive Oxygen Species (ROS) Activated Liposomal Cell Delivery using a Boronate aged Guanidine Lipid. Chemistry - A European Journal, 0, , .	3.3	5
190	RUNX1 Inhibition Using Lipid Nanoparticle-Mediated Silencing RNA Delivery as an Effective Treatment for Acute Leukemias. Experimental Hematology, 2022, 112-113, 1-8.	0.4	3
191	Engineering of Extracellular Vesicles for Small Molecule-Regulated Cargo Loading and Cytoplasmic Delivery of Bioactive Proteins. Molecular Pharmaceutics, 2022, 19, 2495-2505.	4.6	10
193	Emerging concepts in designing next-generation multifunctional nanomedicine for cancer treatment. Bioscience Reports, 2022, 42, .	2.4	13

#	Article	IF	CITATIONS
194	Nanomedicine for the Delivery of RNA in Cancer. Cancers, 2022, 14, 2677.	3.7	5
196	Synthesis of Lysophosphatidylcholine and Mixed Phosphatidylcholine. Journal of Organic Chemistry, 2022, 87, 8194-8197.	3.2	7
197	The roles of polymers in mRNA delivery. Matter, 2022, 5, 1670-1699.	10.0	20
198	Mucosomes: Intrinsically Mucoadhesive Glycosylated Mucin Nanoparticles as Multiâ€Drug Delivery Platform. Advanced Healthcare Materials, 2022, 11, .	7.6	9
199	Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. Cells, 2022, 11, 1843.	4.1	12
200	Messenger ribonucleic acid vaccines against infectious diseases: current concepts and future prospects. Current Opinion in Immunology, 2022, 77, 102214.	5 . 5	7
201	Adverse events following COVID-19 vaccination: A systematic review and meta-analysis. International Immunopharmacology, 2022, 109, 108906.	3.8	43
202	Advances in mRNA vaccines. International Review of Cell and Molecular Biology, 2022, , 295-316.	3.2	9
203	Current Status and Challenges of Analytical Methods for Evaluation of Size and Surface Modification of Nanoparticle-Based Drug Formulations. AAPS PharmSciTech, 2022, 23, .	3.3	25
204	The Landscape of Noncoding RNA in Pulmonary Hypertension. Biomolecules, 2022, 12, 796.	4.0	8
205	Understanding the Role and Impact of Poly (Ethylene Glycol) (PEG) on Nanoparticle Formulation: Implications for COVID-19 Vaccines. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	30
206	The Potential of Cell-Penetrating Peptides for mRNA Delivery to Cancer Cells. Pharmaceutics, 2022, 14, 1271.	4.5	23
207	COVID-19 vaccination and cardiac dysfunction. World Journal of Cardiology, 2022, 14, 343-354.	1.5	3
208	Lipid Nanoparticle Technologies for Nucleic Acid Delivery: A Nanoarchitectonics Perspective. Advanced Functional Materials, 2022, 32, .	14.9	36
209	One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells, 2022, 11, 1868.	4.1	12
210	Computational Insights into the Role of Cholesterol in Inverted Hexagonal Phase Stabilization and Endosomal Drug Release. Langmuir, 2022, 38, 7462-7471.	3.5	11
211	Protein-liposome interactions: the impact of surface charge and fluidisation effect on protein binding. Journal of Liposome Research, 2023, 33, 77-88.	3.3	4
212	Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS Nano, 2022, 16, 9994-10041.	14.6	62

#	Article	IF	CITATIONS
213	Spectroscopy-Based Local Modeling Method for High-Throughput Quantification of Nucleic Acid Loading in Lipid Nanoparticles. Analytical Chemistry, 2022, 94, 9081-9090.	6.5	3
214	Comparison of Physicochemical Properties of LipoParticles as mRNA Carrier Prepared by Automated Microfluidic System and Bulk Method. Pharmaceutics, 2022, 14, 1297.	4.5	2
215	A Biopharmaceutical Perspective on Higher-Order Structure and Thermal Stability of mRNA Vaccines. Molecular Pharmaceutics, 2022, 19, 2022-2031.	4.6	24
216	mRNA vaccine boosting enhances antibody responses against SARS-CoV-2 Omicron variant in individuals with antibody deficiency syndromes. Cell Reports Medicine, 2022, 3, 100653.	6.5	10
217	A facile phototheranostic nanoplatform integrating NIR-II fluorescence/PA bimodal imaging and image-guided surgery/PTT combinational therapy for improved antitumor efficacy. Journal of Materials Science and Technology, 2022, 130, 208-218.	10.7	6
218	mRNA delivery technologies: Toward clinical translation. International Review of Cell and Molecular Biology, 2022, , 207-293.	3.2	5
219	Ionizable Lipid Nanoparticle-Mediated Delivery of Plasmid DNA in Cardiomyocytes. International Journal of Nanomedicine, 0, Volume 17, 2865-2881.	6.7	16
220	Modulating T-cell activation with antisense oligonucleotides targeting lymphocyte cytosolic protein 2. Journal of Autoimmunity, 2022, 131, 102857.	6.5	6
221	The start-ups taking nanoneedles into the clinic. Nature Nanotechnology, 0, , .	31.5	6
222	Lipid-Based Nanocarrier Systems for Drug Delivery: Advances and Applications. Pharmaceutical Fronts, 2022, 04, e43-e60.	0.8	2
224	Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs. CNS Drugs, 2022, 36, 739-770.	5.9	18
225	Engineered Riboswitch Nanocarriers as a Possible Disease-Modifying Treatment for Metabolic Disorders. ACS Nano, 2022, 16, 11733-11741.	14.6	3
226	The legacy of mRNA engineering: A lineup of pioneers for the Nobel Prize. Molecular Therapy - Nucleic Acids, 2022, 29, 272-284.	5.1	7
227	Tumor-Associated Enzyme-Activatable Spherical Nucleic Acids. ACS Nano, 2022, 16, 10931-10942.	14.6	9
228	Advances in Infectious Disease Vaccine Adjuvants. Vaccines, 2022, 10, 1120.	4.4	32
229	Nonclinical safety evaluation of a novel ionizable lipid for mRNA delivery. Toxicology and Applied Pharmacology, 2022, 451, 116143.	2.8	4
230	Effects of Different Lengths of a Nucleic Acid Binding Region and Bound Nucleic Acids on the Phase Behavior and Purification Process of HBcAg Virus-Like Particles. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	3
231	Filling the Gap with Long <i>n</i> -Alkanes: Incorporation of C20 and C30 into Phospholipid Membranes. Langmuir, 2022, 38, 8595-8606.	3.5	2

#	Article	IF	CITATIONS
233	Dependence of the Core–Shell Structure on the Lipid Composition of Nanostructured Lipid Carriers: Implications for Drug Carrier Design. ACS Applied Nano Materials, 2022, 5, 9958-9969.	5.0	7
234	Galactomannan-Decorated Lipidic Nanocarrier for Gene Supplementation Therapy in Fabry Disease. Nanomaterials, 2022, 12, 2339.	4.1	1
235	The Big Potential of Small Particles: Lipid-Based Nanoparticles and Exosomes in Vaccination. Vaccines, 2022, 10, 1119.	4.4	4
236	Harnessing cGAS‧TING Pathway for Cancer Immunotherapy: From Bench to Clinic. Advanced Therapeutics, 2022, 5, .	3.2	2
237	The Pivotal Role of Chemical Modifications in mRNA Therapeutics. Frontiers in Cell and Developmental Biology, $0,10,10$	3.7	15
238	Frame-Guided Assembly of Amphiphiles. Accounts of Chemical Research, 2022, 55, 1938-1948.	15.6	15
239	Lipid nanoparticles in the development of mRNA vaccines for COVID-19. Journal of Drug Delivery Science and Technology, 2022, 74, 103553.	3.0	44
240	The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Advanced Drug Delivery Reviews, 2022, 188, 114416.	13.7	192
241	Lipidâ€Polymer Hybrid "Particle―nâ€Particle―Nanostructure Gene Delivery Platform Explored for Lyophilizable DNA and mRNA COVID―19 Vaccines. Advanced Functional Materials, 2022, 32, .	14.9	16
242	Novel development of cationic surfactant-based mucoadhesive nanovaccine for direct immersion vaccination against Francisella noatunensis subsp. orientalis in red tilapia (Oreochromis sp.). Fish and Shellfish Immunology, 2022, 127, 1051-1060.	3.6	7
243	Doxorubicin-conjugated siRNA lipid nanoparticles for combination cancer therapy. Acta Pharmaceutica Sinica B, 2023, 13, 1429-1437.	12.0	13
244	Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science, 2022, 377, .	12.6	72
245	mRNA Vaccines Against SARSâ€CoVâ€2 Variants Delivered by Lipid Nanoparticles Based on Novel Ionizable Lipids. Advanced Functional Materials, 2022, 32, .	14.9	31
246	The Future of Tissue-Targeted Lipid Nanoparticle-Mediated Nucleic Acid Delivery. Pharmaceuticals, 2022, 15, 897.	3.8	25
247	Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to enhance and prolong gene expression. Nature Communications, 2022, 13, .	12.8	25
248	Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. Advanced Science, 2022, 9, .	11.2	19
249	Poly(lipoic acid)-based nanoparticles as a new therapeutic tool for delivering active molecules. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 45, 102593.	3.3	3
250	Effectiveness of SARS-CoV-2 Vaccines for Short- and Long-Term Immunity: A General Overview for the Pandemic Contrast. International Journal of Molecular Sciences, 2022, 23, 8485.	4.1	6

#	ARTICLE	IF	CITATIONS
251	Think like a Virus: Toward Improving Nanovaccine Development against SARS-CoV-2. Viruses, 2022, 14, 1553.	3.3	9
252	Nanocarriers: A novel strategy for the delivery of CRISPR/Cas systems. Frontiers in Chemistry, 0, 10, .	3.6	12
253	Acid-Directed Electrostatic Self-Assembly Generates Charge-Reversible Bacteria for Enhanced Tumor Targeting and Low Tissue Trapping. ACS Applied Materials & Samp; Interfaces, 2022, 14, 36411-36424.	8.0	5
254	Material Design for Next-Generation mRNA Vaccines Using Lipid Nanoparticles. Polymer Reviews, 2023, 63, 394-436.	10.9	5
255	Vaccines against SARS-CoV-2 variants and future pandemics. Expert Review of Vaccines, 2022, 21, 1363-1376.	4.4	6
256	Potential of mRNA vaccines to become versatile cancer vaccines. World Journal of Clinical Oncology, 2022, 13, 663-674.	2.3	1
257	Liposomes as Multifunctional Nano-Carriers for Medicinal Natural Products. Frontiers in Chemistry, 0, 10, .	3.6	22
258	Immunostimulatory Polymers as Adjuvants, Immunotherapies, and Delivery Systems. Macromolecules, 2022, 55, 6913-6937.	4.8	20
259	A Combinatorial Library of Biodegradable Lipid Nanoparticles Preferentially Deliver mRNA into Tumor Cells to Block Mutant RAS Signaling. Advanced Functional Materials, 2022, 32, .	14.9	15
260	mRNA vaccines in the prevention and treatment of diseases. MedComm, 2022, 3, .	7.2	14
261	Application of lipid-based nanoparticles in cancer immunotherapy. Frontiers in Immunology, 0, 13, .	4.8	10
262	Immunogenicity, effectiveness, safety and psychological impact of COVID-19 mRNA vaccines. Human Immunology, 2022, 83, 755-767.	2.4	10
263	Assessing the suitability of long non-coding RNAs as therapeutic targets and biomarkers in SARS-CoV-2 infection. Frontiers in Molecular Biosciences, 0, 9, .	3.5	6
264	Synthesis and Characterization of Ceramide-Containing Liposomes as Membrane Models for Different T Cell Subpopulations. Journal of Functional Biomaterials, 2022, 13, 111.	4.4	1
265	Preparation, Structural Characterization of Anti-Cancer Drugs-Mediated Self-Assembly from the Pluronic Copolymers through Synchrotron SAXS Investigation. Materials, 2022, 15, 5387.	2.9	5
266	Pressureâ€dependent fouling behavior during sterile filtration of mRNAâ€containing lipid nanoparticles. Biotechnology and Bioengineering, 2022, 119, 3221-3229.	3.3	6
267	A rapid and quantitative reversed-phase HPLC-DAD/ELSD method for lipids involved in nanoparticle formulations. Journal of Pharmaceutical and Biomedical Analysis, 2022, 220, 115011.	2.8	6
268	Using bioinformatics approaches to identify survival-related oncomiRs as potential targets of miRNA-based treatments for lung adenocarcinoma. Computational and Structural Biotechnology Journal, 2022, 20, 4626-4635.	4.1	0

#	Article	IF	CITATIONS
270	Conjugation of the 9-kDa Isoform of Granulysin with Liposomes Potentiates Its Cytotoxicity. International Journal of Molecular Sciences, 2022, 23, 8705.	4.1	1
272	Arginine Supplementation Targeting Tumor-Killing Immune Cells Reconstructs the Tumor Microenvironment and Enhances the Antitumor Immune Response. ACS Nano, 2022, 16, 12964-12978.	14.6	21
273	Oral delivery of IL-22 mRNA-loaded lipid nanoparticles targeting the injured intestinal mucosa: A novel therapeutic solution to treat ulcerative colitis. Biomaterials, 2022, 288, 121707.	11.4	25
274	Development of 5-FU-modified tumor suppressor microRNAs as a platform for novel microRNA-based cancer therapeutics. Molecular Therapy, 2022, 30, 3450-3461.	8.2	6
275	Protein Cages Engineered for Interaction-Driven Selective Encapsulation of Biomolecules. ACS Applied Materials & Samp; Interfaces, 2022, 14, 35357-35365.	8.0	1
276	Soft materials evolution and revolution. Nature Materials, 2022, 21, 986-988.	27.5	8
277	Lipid nanoparticle-mediated CRISPR/Cas9 gene editing and metabolic engineering for anticancer immunotherapy. Asian Journal of Pharmaceutical Sciences, 2022, 17, 641-652.	9.1	12
278	Emerging trends of research on mRNA vaccines: A co-citation analysis. Human Vaccines and Immunotherapeutics, 2022, 18, .	3.3	1
279	Helper-Polymer Based Five-Element Nanoparticles (FNPs) for Lung-Specific mRNA Delivery with Long-Term Stability after Lyophilization. Nano Letters, 2022, 22, 6580-6589.	9.1	11
280	Formulation Strategies to Enable Delivery of Therapeutic Peptides across Cell Membranes. ACS Symposium Series, 0, , 223-254.	0.5	0
281	Harnessing nucleic acid technologies for human health on earth and in space. Life Sciences in Space Research, 2022, 35, 113-126.	2.3	2
282	Vaccine adjuvants to engage the cross-presentation pathway. Frontiers in Immunology, 0, 13 , .	4.8	33
283	Lipid nanoparticle-mediated lymph node–targeting delivery of mRNA cancer vaccine elicits robust CD8 ⁺ T cell response. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	111
284	Monitoring Anti-PEG Antibodies Level upon Repeated Lipid Nanoparticle-Based COVID-19 Vaccine Administration. International Journal of Molecular Sciences, 2022, 23, 8838.	4.1	31
285	The Delivery of mRNA Vaccines for Therapeutics. Life, 2022, 12, 1254.	2.4	23
286	Monitoring lipid phase transition temperatures using fluorescent probes and temperature-dependent fluorescence spectroscopy. Dyes and Pigments, 2022, 206, 110621.	3.7	2
287	Designer phospholipids – structural retrieval, chemo-/bio- synthesis and isotopic labeling. Biotechnology Advances, 2022, 60, 108025.	11.7	8
288	Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coordination Chemistry Reviews, 2022, 472, 214788.	18.8	7

#	Article	IF	CITATIONS
289	The Proteolytic Landscape of Ovarian Cancer: Applications in Nanomedicine. International Journal of Molecular Sciences, 2022, 23, 9981.	4.1	2
290	Thin filament cardiomyopathies: A review of genetics, disease mechanisms, and emerging therapeutics. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	11
291	Towards novel nano-based vaccine platforms for SARS-CoV-2 and its variants of concern: Advances, challenges and limitations. Journal of Drug Delivery Science and Technology, 2022, 76, 103762.	3.0	0
292	Clinical advances and ongoing trials of mRNA vaccines for cancer treatment. Lancet Oncology, The, 2022, 23, e450-e458.	10.7	140
293	A microfluidic serial dilutor (MSD): Design optimization and application to tuning of liposome nanoparticle preparation. Chemical Engineering Science, 2022, 263, 118080.	3.8	1
294	Intracellular delivery of messenger RNA to macrophages with surfactant-derived lipid nanoparticles. Materials Today Advances, 2022, 16, 100295.	5.2	3
295	Fabrication of active targeting lipid nanoparticles: Challenges and perspectives. Materials Today Advances, 2022, 16, 100299.	5.2	24
296	Lipid mimetics: A versatile toolbox for lipid biology and beyond. Current Opinion in Chemical Biology, 2022, 71, 102209.	6.1	4
297	Current knowledge on the tissue distribution of mRNA nanocarriers for therapeutic protein expression. Biomaterials Science, 2022, 10, 6077-6115.	5.4	3
298	RGD peptide-based lipids for targeted mRNA delivery and gene editing applications. RSC Advances, 2022, 12, 25397-25404.	3.6	9
299	Advanced drug delivery systems involving lysosomal storage disorders for Fabry disease. , 2022, , 301-315.		0
300	Design of Personalized Neoantigen RNA Vaccines Against Cancer Based on Next-Generation Sequencing Data. Methods in Molecular Biology, 2022, , 165-185.	0.9	3
301	COVID-19 mRNA Vaccines. , 2022, , 769-802.		0
302	Lipid Nanoparticle-Mediated Delivery of Therapeutic and Prophylactic mRNA: Immune Activation by Ionizable Cationic Lipids. RNA Technologies, 2022, , 237-255.	0.3	1
303	Packaging of DNA origami in viral capsids: towards synthetic viruses. Nanoscale, 2022, 14, 11535-11542.	5.6	2
304	Animal Model-Based Studies to Evaluate the Lipid-Based Drug Delivery Nanocarriers for Cancer Treatment. , 2022, , 1-21.		0
305	Synthetic mRNA Gene Therapies and Hepatotropic Non-viral Vectors for the Treatment of Chronic HBV Infections. RNA Technologies, 2022, , 157-179.	0.3	0
306	Hemiacetal-linked pH-sensitive PEG-lipids for non-viral gene delivery. New Journal of Chemistry, 2022, 46, 15414-15422.	2.8	1

#	Article	IF	Citations
307	Biomaterials in Their Role in Creating New Approaches for the Delivery of Drugs, Proteins, Nucleic Acids, and Mammalian Cells in Safety Pharmacology. , 2022, , 1-27.		0
308	Cationic polymer synergizing with a disulfide-containing enhancer achieved efficient nucleic acid and protein delivery. Biomaterials Science, 2022, 10, 6230-6243.	5.4	9
309	Effects of the structure of lipid-based agents in their complexation with a single stranded mRNA fragment: a computational study. Soft Matter, 2022, 18, 6229-6245.	2.7	0
310	Roadmap to the Development of mRNA Therapeutics: From Molecule Design and Delivery Strategies to Manufacturing, Quality Control, and Regulatory Considerations. RNA Technologies, 2022, , 1-16.	0.3	1
311	Applications and challenges of biomaterial mediated mRNA delivery. Exploration of Targeted Anti-tumor Therapy, 0, , 428-444.	0.8	5
312	Lipid Nanoparticles for mRNA Delivery to Enhance Cancer Immunotherapy. Molecules, 2022, 27, 5607.	3.8	12
313	Anti-Inflammatory Therapy for Temporomandibular Joint Osteoarthritis Using mRNA Medicine Encoding Interleukin-1 Receptor Antagonist. Pharmaceutics, 2022, 14, 1785.	4.5	5
314	RNA therapeutics: updates and future potential. Science China Life Sciences, 2023, 66, 12-30.	4.9	31
315	Advanced Formulations/Drug Delivery Systems for Subcutaneous Delivery of Protein-Based Biotherapeutics. Journal of Pharmaceutical Sciences, 2022, 111, 2968-2982.	3.3	6
316	Delivering the CRISPR/Cas9 system for engineering gene therapies: Recent cargo and delivery approaches for clinical translation. Frontiers in Bioengineering and Biotechnology, $0,10,10$	4.1	9
317	Nonviral Delivery of CRISPR/Cas Systems in mRNA Format. Advanced NanoBiomed Research, 2022, 2, .	3.6	8
318	Lipid-based nanocarrier mediated CRISPR/Cas9 delivery for cancer therapy. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 398-418.	3.5	14
319	Efficiency of magnetic immobilization for recombinant <i>Pichia pastoris</i> cells harvesting over consecutive production cycles. Separation Science and Technology, 2023, 58, 420-434.	2.5	2
320	Psychotropic drugs interaction with the lipid nanoparticle of COVID-19 mRNA therapeutics. Frontiers in Pharmacology, 0, 13, .	3.5	0
321	mRNA nanomedicine: Design and recent applications. Exploration, 2022, 2, .	11.0	37
322	Leveraging Biological Buffers for Efficient Messenger RNA Delivery via Lipid Nanoparticles. Molecular Pharmaceutics, 2022, 19, 4275-4285.	4.6	10
323	Lipid Nanoparticles as Delivery Vehicles for Inhaled Therapeutics. Biomedicines, 2022, 10, 2179.	3.2	34
324	Nanocarriers with Multiple Cargo Loadâ€"A Comprehensive Preparation Guideline Using Orthogonal Strategies. Macromolecular Rapid Communications, 2023, 44, .	3.9	5

#	Article	IF	CITATIONS
325	Small non-coding RNA therapeutics for cardiovascular disease. European Heart Journal, 2022, 43, 4548-4561.	2.2	24
326	Polymer nanocarriers for targeted local delivery of agents in treating brain tumors. Nanotechnology, 2023, 34, 072001.	2.6	3
328	Nanomaterialsâ∈Mediated Coâ∈Stimulation of Tollâ∈Like Receptors and CD40 for Antitumor Immunity. Advanced Materials, 2022, 34, .	21.0	19
329	Design and <i>iin silico</i> analysis of mRNA vaccine construct against <i>Salmonella</i> Journal of Biomolecular Structure and Dynamics, 2023, 41, 7248-7264.	3.5	0
330	Formulation of Lipid-Free Polymeric Mesoscale Nanoparticles Encapsulating mRNA. Pharmaceutical Research, 2022, 39, 2699-2707.	3.5	1
331	Development of amino acid-modified biodegradable lipid nanoparticles for siRNA delivery. Acta Biomaterialia, 2022, 154, 374-384.	8.3	6
332	A critical overview of current progress for COVID-19: development of vaccines, antiviralÂdrugs, and therapeutic antibodies. Journal of Biomedical Science, 2022, 29, .	7.0	64
333	The Race to Develop the Pfizer-BioNTech COVID-19 Vaccine: From the Pharmaceutical Scientists' Perspective. Journal of Pharmaceutical Sciences, 2023, 112, 640-647.	3.3	9
334	Fluorinated vectors for gene delivery. Expert Opinion on Drug Delivery, 2022, 19, 1435-1448.	5.0	4
335	Engineered red blood cells (activating antigen carriers) drive potent T cell responses and tumor regression in mice. Frontiers in Immunology, 0, 13 , .	4.8	2
336	Nonviral nanoparticle gene delivery into the <scp>CNS</scp> for neurological disorders and brain cancer applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 0, , .	6.1	4
337	Characterization of lipid-based nanomedicines at the single-particle level. Fundamental Research, 2023, 3, 488-504.	3.3	8
338	An efficient approach for SARS-CoV-2 monoclonal antibody production via modified mRNA-LNP immunization. International Journal of Pharmaceutics, 2022, 627, 122256.	5.2	8
339	Nanomaterial-assisted CRISPR gene-engineering – A hallmark for triple-negative breast cancer therapeutics advancement. Materials Today Bio, 2022, 16, 100450.	5.5	7
340	Programmable RNA sensing for cell monitoring and manipulation. Nature, 2022, 610, 713-721.	27.8	37
341	Nanovaccines to combat virusâ€related diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	3
342	Nanoparticles (NPs)-mediated systemic mRNA delivery to reverse trastuzumab resistance for effective breast cancer therapy. Acta Pharmaceutica Sinica B, 2023, 13, 955-966.	12.0	6
343	Non-viral inducible caspase 9 mRNA delivery using lipid nanoparticles against breast cancer: An inÂvitro study. Biochemical and Biophysical Research Communications, 2022, 635, 144-153.	2.1	2

#	Article	IF	Citations
344	Spotlight on Photoactivatable Liposomes beyond Drug Delivery: An Enabler of Multitargeting of Molecular Pathways. Bioconjugate Chemistry, 2022, 33, 2041-2064.	3.6	6
346	IGT mediated Nanog siRNA delivery in prostate cancer cells improves chemosensitization of Epirubicin in vitro. Bioorganic and Medicinal Chemistry Letters, 2022, 76, 129017.	2.2	0
347	Intratumoral delivered novel circular mRNA encoding cytokines for immune modulation and cancer therapy. Molecular Therapy - Nucleic Acids, 2022, 30, 184-197.	5.1	19
348	<i>In vivo</i> assessment of triazine lipid nanoparticles as transfection agents for plasmid DNA. Biomaterials Science, 2022, 10, 6968-6979.	5.4	3
349	Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of <i>in vivo</i> imaging. Theranostics, 2022, 12, 7509-7531.	10.0	43
350	Light-responsive RNA delivery. Drug Delivery System, 2022, 37, 229-236.	0.0	0
351	A Novel Piggyback Strategy for mRNA Delivery Exploiting Adenovirus Entry Biology. Viruses, 2022, 14, 2169.	3.3	0
352	Membrane-Specific Binding of 4 nm Lipid Nanoparticles Mediated by an Entropy-Driven Interaction Mechanism. ACS Nano, 2022, 16, 18090-18100.	14.6	11
353	Episomes and Transposasesâ€"Utilities to Maintain Transgene Expression from Nonviral Vectors. Genes, 2022, 13, 1872.	2.4	0
355	Lipid-mRNA nanoparticles landscape for cancer therapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	5
356	Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nature Protocols, 2023, 18, 265-291.	12.0	89
357	Nanotechnology-Driven Delivery Systems in Inoculation Therapies. Methods in Molecular Biology, 2023, , 39-57.	0.9	0
358	Development of lipid nanoparticles and liposomes reference materials (II): cytotoxic profiles. Scientific Reports, 2022, 12, .	3.3	9
359	Lipid nanomaterials-based RNA therapy and cancer treatment. Acta Pharmaceutica Sinica B, 2023, 13, 903-915.	12.0	14
360	NACDDB: Nucleic Acid Circular Dichroism Database. Nucleic Acids Research, 2023, 51, D226-D231.	14. 5	9
361	Enzyme-Catalyzed One-Step Synthesis of Ionizable Cationic Lipids for Lipid Nanoparticle-Based mRNA COVID-19 Vaccines. ACS Nano, 2022, 16, 18936-18950.	14.6	22
362	Design Strategies for and Stability of mRNA–Lipid Nanoparticle COVID-19 Vaccines. Polymers, 2022, 14, 4195.	4.5	13
363	Recent advances in surface modification of micro- and nano-scale biomaterials with biological membranes and biomolecules. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	10

#	Article	IF	CITATIONS
364	Delivery of RNAs to Specific Organs by Lipid Nanoparticles for Gene Therapy. Pharmaceutics, 2022, 14, 2129.	4.5	15
365	Nucleic Acid Delivery to the Vascular Endothelium. Molecular Pharmaceutics, 2022, 19, 4466-4486.	4.6	2
366	Hydroxyl-Rich Hydrophilic Endocytosis-Promoting Peptide with No Positive Charge. Journal of the American Chemical Society, 2022, 144, 20288-20297.	13.7	8
367	An OX40L mRNA vaccine inhibits the growth of hepatocellular carcinoma. Frontiers in Oncology, 0, 12, .	2.8	10
368	Micro and nanotechnologies: The little formulations that could. Bioengineering and Translational Medicine, 2023, 8, .	7.1	9
369	Nanomaterials in diagnostics, imaging and delivery: Applications from COVID-19 to cancer. MRS Communications, 2022, 12, 1119-1139.	1.8	8
371	Stimuliâ€accelerated polymeric drug delivery systems. Polymer International, 2023, 72, 5-19.	3.1	8
372	Immediate protein expression from exogenous mRNAs in embryonic brain. Scientific Reports, 2022, 12, .	3.3	0
373	Advancing mRNA technologies for the rapies and vaccines: An African context. Frontiers in Immunology, 0 , 13 , .	4.8	3
374	Discrete Libraries of Amphiphilic Poly(ethylene glycol) Graft Copolymers: Synthesis, Assembly, and Bioactivity. Journal of the American Chemical Society, 2022, 144, 19466-19474.	13.7	13
375	Cholesterol-Conjugated siRNA Silencing <i>Tnf</i> for the Treatment of Liver Macrophage-Mediated Acute Inflammation in Nonalcoholic Fatty Liver Disease. Nucleic Acid Therapeutics, 2023, 33, 35-44.	3.6	2
376	Efficacy increase of lipid nanoparticles $\langle i \rangle$ in vivo $\langle i \rangle$ by inclusion of bis (monoacylglycerol) phosphate. Nanomedicine, 0, , .	3.3	0
377	Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications. Nanomaterials, 2022, 12, 3855.	4.1	14
378	Probing the Separation Distance between Biological Nanoparticles and Cell Membrane Mimics Using Neutron Reflectometry with Sub-Nanometer Accuracy. Journal of the American Chemical Society, 2022, 144, 20726-20738.	13.7	5
379	Digital micelles of encoded polymeric amphiphiles for direct sequence reading and ex vivo label-free quantification. Nature Chemistry, 2023, 15, 257-270.	13.6	31
380	Lipid nanoparticles for antisense oligonucleotide gene interference into brain border-associated macrophages. Frontiers in Molecular Biosciences, 0, 9, .	3.5	2
381	Application of Nanotechnology in COVID-19 Infection: Findings and Limitations. Journal of Nanotheranostics, 2022, 3, 203-232.	3.1	1
382	Editorial: Nanotechnology for natural products. Frontiers in Chemistry, 0, 10, .	3.6	0

#	Article	IF	CITATIONS
383	Programmable self-regulated molecular buffers for precise sustained drug delivery. Nature Communications, $2022, 13, \ldots$	12.8	5
384	Nanomedicine for advanced cancer immunotherapy. Journal of Controlled Release, 2022, 351, 1017-1037.	9.9	7
385	On predicting heterogeneity in nanoparticle dosage. Mathematical Biosciences, 2022, 354, 108928.	1.9	2
386	An Integrated Polymeric mRNA Vaccine without Inflammation Side Effects for Cellular Immunity Mediated Cancer Therapy. Advanced Materials, 2023, 35, .	21.0	21
387	Nanoparticle-assisted targeting of the tumour microenvironment. OpenNano, 2022, 8, 100097.	4.8	2
388	Nucleic acid therapies for CNS diseases: Pathophysiology, targets, barriers, and delivery strategies. Journal of Controlled Release, 2022, 352, 121-145.	9.9	10
389	mRNA vaccines for COVID-19. , 2023, , 611-624.		0
390	Perspective Chapter: Liposome Mediated Delivery of Immunotherapeutics for Cancer., 0,,.		0
391	Stabilizing RNA Nanovaccines with Transformable Hyaluronan Dynamic Hydrogel for Durable Cancer Immunotherapy. Advanced Functional Materials, 2023, 33, .	14.9	17
392	Activation energy and force fields during topological transitions of fluid lipid vesicles. Communications Physics, 2022, 5, .	5.3	5
393	Prime editing for precise and highly versatile genome manipulation. Nature Reviews Genetics, 2023, 24, 161-177.	16.3	134
394	A tetrahedral framework nucleic acid based multifunctional nanocapsule for tumor prophylactic mRNA vaccination. Chinese Chemical Letters, 2023, 34, 107987.	9.0	5
395	An Enzymatically Gated Catalytic Hairpin Assembly Delivered by Lipid Nanoparticles for the Tumorâ€Specific Activation of Signal Amplification in miRNA Imaging. Angewandte Chemie, 2022, 134, .	2.0	0
396	Surface Design Options in Polymer- and Lipid-Based siRNA Nanoparticles Using Antibodies. International Journal of Molecular Sciences, 2022, 23, 13929.	4.1	3
397	Surface Decoration of Peptide Nanoparticles Enables Efficient Therapy toward Osteoporosis and Diabetes. Advanced Functional Materials, 0, , 2210627.	14.9	1
398	Microfluidic Platform Enabling Efficient On-Device Preparation of Lipid Nanoparticles for Formulation Screening., 2023, 1, 278-286.		1
399	Advances in mRNA nanomedicines for malignant brain tumor therapy. Smart Materials in Medicine, 2022, , .	6.7	3
400	The landscape of mRNA nanomedicine. Nature Medicine, 2022, 28, 2273-2287.	30.7	152

#	Article	IF	CITATIONS
401	Biophysical interactions of mixed lipid-polymer nanoparticles incorporating curcumin: Potential as antibacterial agent., 2023, 144, 213200.		5
402	Bone-Targeted Dual Functional Lipid-coated Drug Delivery System for Osteosarcoma Therapy. Pharmaceutical Research, 2023, 40, 231-243.	3.5	3
403	Recent Advances of Calcium Carbonate Nanoparticles for Biomedical Applications. Bioengineering, 2022, 9, 691.	3.5	18
404	In vivo gene immunotherapy for cancer. Science Translational Medicine, 2022, 14, .	12.4	5
405	Liposomes and liposome-like nanoparticles: From anti-fungal infection to the COVID-19 pandemic treatment. Asian Journal of Pharmaceutical Sciences, 2022, 17, 817-837.	9.1	18
406	Recent Progress and Trends in X-ray-Induced Photodynamic Therapy with Low Radiation Doses. ACS Nano, 2022, 16, 19691-19721.	14.6	27
407	An Enzymatically Gated Catalytic Hairpin Assembly Delivered by Lipid Nanoparticles for the Tumorâ€Specific Activation of Signal Amplification in miRNA Imaging. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
408	Altering the mRNA-1273 dosing interval impacts the kinetics, quality, and magnitude of immune responses in mice. Frontiers in Immunology, 0, 13 , .	4.8	3
409	A Triazoliumâ€Anchored Selfâ€Immolative Linker Enables Selfâ€Assemblyâ€Driven siRNA Binding and Esteraseâ€Induced Release. Chemistry - A European Journal, 2023, 29, .	3.3	4
410	Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. Journal of Controlled Release, 2022, 352, 970-993.	9.9	19
411	Gene Therapy Strategies Targeting Aging-Related Diseases. , 2022, .		5
412	Exploring the theoretical foundation of molecular assembly: current status and opportunities. Scientia Sinica Chimica, 2023, 53, 145-173.	0.4	2
413	Nanoparticle-Based Delivery Systems for Vaccines. Vaccines, 2022, 10, 1946.	4.4	42
414	A few RNA success stories., 2023,, 759-779.		0
415	Recent advances in regenerative biomaterials. Regenerative Biomaterials, 2022, 9, .	5.6	54
416	Biomolecules for Molecular Robot Structures. , 2022, , 1-9.		0
417	Reversible covalent nanoassemblies for augmented nuclear drug translocation in drug resistance tumor. Journal of Controlled Release, 2023, 353, 186-195.	9.9	1
418	Optimization of storage conditions for lipid nanoparticle-formulated self-replicating RNA vaccines. Journal of Controlled Release, 2023, 353, 241-253.	9.9	20

#	Article	IF	CITATIONS
419	siRNA delivery to lymphatic endothelial cells via ApoE-mediated uptake by lipid nanoparticles. Journal of Controlled Release, 2023, 353, 125-133.	9.9	3
420	A PEG-lipid-free COVID-19 mRNA vaccine triggers robust immune responses in mice. Materials Horizons, 2023, 10, 466-472.	12.2	4
421	Lysosomal-mediated drug release and activation for cancer therapy and immunotherapy. Advanced Drug Delivery Reviews, 2023, 192, 114624.	13.7	10
422	Fluoroalkane modified cationic polymers for personalized mRNA cancer vaccines. Chemical Engineering Journal, 2023, 456, 140930.	12.7	14
423	Self-homing nanocarriers for mRNA delivery to the activated hepatic stellate cells in liver fibrosis. Journal of Controlled Release, 2023, 353, 685-698.	9.9	14
424	Nanoformulations targeting immune cells for cancer therapy: mRNA therapeutics. Bioactive Materials, 2023, 23, 438-470.	15.6	13
425	Development of the mRNA vaccines to prevent COVID-19. Journal of Applied Biotechnology & Bioengineering, 2022, 9, 109-111.	0.1	0
426	Reducible amino acid based cationic lipids with a naphthalimide moiety as non-viral gene vehicles. Journal of Chemical Research, 2022, 46, 174751982211458.	1.3	1
427	siRNA Functionalized Lipid Nanoparticles (LNPs) in Management of Diseases. Pharmaceutics, 2022, 14, 2520.	4.5	15
428	Cellular nanomechanics derived from pattern-dependent focal adhesion and cytoskeleton to balance gene transfection of malignant osteosarcoma. Journal of Nanobiotechnology, 2022, 20, .	9.1	3
429	EGFR-Targeted Cellular Delivery of Therapeutic Nucleic Acids Mediated by Boron Clusters. International Journal of Molecular Sciences, 2022, 23, 14793.	4.1	4
430	Biogas digestate as a sustainable phytosterol source for biotechnological cascade valorization. Microbial Biotechnology, 2023, 16, 337-349.	4.2	4
431	Lipid carriers for mRNA delivery. Acta Pharmaceutica Sinica B, 2023, 13, 4105-4126.	12.0	13
432	Enhancing the Effect of Nucleic Acid Vaccines in the Treatment of HPV-Related Cancers: An Overview of Delivery Systems. Pathogens, 2022, 11, 1444.	2.8	10
433	Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Archives of Pharmacal Research, 2022, 45, 865-893.	6.3	11
434	Sensitive Interrogation of Enhancer Activity in Living Cells on a Nanoelectroporation-Probing Platform. ACS Sensors, 2022, 7, 3671-3681.	7.8	4
435	Ferric-loaded lipid nanoparticles inducing ferroptosis-like cell death forÂantibacterial wound healing. Drug Delivery, 2023, 30, 1-8.	5.7	3
436	A tale of nucleic acid–ionizable lipid nanoparticles: Design and manufacturing technology and advancement. Expert Opinion on Drug Delivery, 2023, 20, 75-91.	5.0	6

#	ARTICLE	IF	CITATIONS
437	Manganese-coordinated mRNA vaccines with enhanced mRNA expression and immunogenicity induce robust immune responses against SARS-CoV-2 variants. Science Advances, 2022, 8, .	10.3	24
438	Advances in Lipidâ€Based Codelivery Systems for Cancer and Inflammatory Diseases. Advanced Healthcare Materials, 2023, 12, .	7.6	5
439	Phase Imaging of Phosphatidylcholine Bilayer Membranes by Prodan Fluorescence. Membranes, 2022, 12, 1219.	3.0	0
440	Messenger RNA in lipid nanoparticles rescues HEK 293 cells from lipid-induced mitochondrial dysfunction as studied by real time pulse chase NMR, RTPC-NMR, spectroscopy. Scientific Reports, 2022, 12, .	3.3	2
441	A grazing incidence diffraction setup for Langmuir trough experiments at the high-resolution diffraction beamline P08 at PETRA III. Journal of Physics: Conference Series, 2022, 2380, 012047.	0.4	2
442	Lipid Nanoparticles and Liposomes for Bone Diseases Treatment. Biomedicines, 2022, 10, 3158.	3.2	5
443	Quality by Design Approach in Liposomal Formulations: Robust Product Development. Molecules, 2023, 28, 10.	3.8	7
444	Delivering mRNA to Secondary Lymphoid Tissues by Phosphatidylserine‣oaded Lipid Nanoparticles. Advanced Healthcare Materials, 2023, 12, .	7.6	10
445	Cell-Derived Vesicles for mRNA Delivery. Pharmaceutics, 2022, 14, 2699.	4.5	3
446	Translational Nanomedicines Across Human Reproductive Organs Modeling on Microfluidic Chips: State-of-the-Art and Future Prospects. ACS Biomaterials Science and Engineering, 2023, 9, 62-84.	5.2	4
447	Antitumor Activity of Antiâ€miRâ€21 Delivered through Lipid Nanoparticles. Advanced Healthcare Materials, 0, , 2202412.	7.6	2
448	Lipid-Based Delivery Systems in Development of Genetic and Subunit Vaccines. Molecular Biotechnology, 2023, 65, 669-698.	2.4	6
449	MicroRNAs in T Cell-Immunotherapy. International Journal of Molecular Sciences, 2023, 24, 250.	4.1	3
450	Formulation and Evaluation of Polymerâ€Based Nanoparticles for Intravitreal Geneâ€Delivery Applications. Current Protocols, 2022, 2, .	2.9	0
451	Plasmid DNA cationic non-viral vector complexes induce cytotoxicity-associated PD-L1 expression up-regulation in cancer cells in vitro. International Journal of Pharmaceutics, 2023, 631, 122481.	5.2	2
452	Excipient-Free Ionizable Polyester Nanoparticles for Lung-Selective and Innate Immune Cell Plasmid DNA and mRNA Transfection. ACS Applied Materials & DNA and mRNA Transfection. ACS Applied Materials & DNA and mRNA Transfection.	8.0	4
453	mRNA vaccines for cancer immunotherapy. Frontiers in Immunology, 0, 13, .	4.8	33
454	Unraveling How Cholesterol Affects Multivalency-Induced Membrane Deformation of Sub-100 nm Lipid Vesicles. Langmuir, 2022, 38, 15950-15959.	3.5	3

#	Article	IF	CITATIONS
455	Encapsulation of Gold-Based Anticancer Agents in Protease-Degradable Peptide Nanofilaments Enhances Their Potency. Journal of the American Chemical Society, 2023, 145, 234-246.	13.7	15
456	mRNA-Based Vaccines and Therapeutics for COVID-19 and Future Pandemics. Vaccines, 2022, 10, 2150.	4.4	25
457	Complexation of Oligo- and Polynucleotides with Methoxyphenyl-Functionalized Imidazolium Surfactants. Pharmaceutics, 2022, 14, 2685.	4.5	4
458	Core–Shell Magnetoelectric Nanoparticles: Materials, Synthesis, Magnetoelectricity, and Applications. Actuators, 2022, 11, 380.	2.3	6
459	Molecular Complementarity of Proteomimetic Materials for Targetâ€Specific Recognition and Recognitionâ€Mediated Complex Functions. Advanced Materials, 2023, 35, .	21.0	1
460	Immunomodulatory nano-preparations for rheumatoid arthritis. Drug Delivery, 2023, 30, 9-19.	5.7	5
461	Interaction Kinetics of Individual mRNA-Containing Lipid Nanoparticles with an Endosomal Membrane Mimic: Dependence on pH, Protein Corona Formation, and Lipoprotein Depletion. ACS Nano, 2022, 16, 20163-20173.	14.6	22
462	Monoclonal antibodies against S2 subunit of spike protein exhibit broad reactivity toward SARS-CoV-2 variants. Journal of Biomedical Science, 2022, 29, .	7.0	4
463	Recommendation for broad use of Covid-19 mRNA vaccine boosters due to waning vaccine effectiveness is taking the easy way out. Journal of Infection, 2023, 86, 256-308.	3.3	0
464	Biomimetic calcium carbonate nanoparticles delivered IL-12 mRNA for targeted glioblastoma sono-immunotherapy by ultrasound-induced necroptosis. Journal of Nanobiotechnology, 2022, 20, .	9.1	17
465	Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Advanced Drug Delivery Reviews, 2023, 197, 114683.	13.7	8
466	Advances of mRNA vaccine in tumor: a maze of opportunities and challenges. Biomarker Research, 2023, 11, .	6.8	12
467	Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery. Pharmaceutical Research, 2023, 40, 27-46.	3.5	31
468	Licensed liposomal vaccines and adjuvants in the antigen delivery system. Biotechnologia, 2022, 103, 409-423.	0.9	1
469	mRNA in the Context of Protein Replacement Therapy. Pharmaceutics, 2023, 15, 166.	4.5	22
470	Structures and Applications of Nucleic Acid-Based Micelles for Cancer Therapy. International Journal of Molecular Sciences, 2023, 24, 1592.	4.1	3
471	Identification of potent siRNA targeting complement C5 and its robust activity in pre-clinical models of myasthenia gravis and collagen-induced arthritis. Molecular Therapy - Nucleic Acids, 2023, 31, 339-351.	5.1	3
472	DNA Nanomaterialsâ€Based Platforms for Cancer Immunotherapy. Small Methods, 2023, 7, .	8.6	11

#	ARTICLE	IF	CITATIONS
473	Gene editing for dyslipidemias: New tools to "cut―lipids. Atherosclerosis, 2023, 368, 14-24.	0.8	5
474	Atomistic Insights into Organization of RNA-Loaded Lipid Nanoparticles. Journal of Physical Chemistry B, 2023, 127, 1158-1166.	2.6	4
475	Biopolymer-Based Nanosystems for siRNA Drug Delivery to Solid Tumors including Breast Cancer. Pharmaceutics, 2023, 15, 153.	4.5	2
476	Pilot Study for Immunogenicity of SARS-CoV-2 Vaccine with Seasonal Influenza and Pertussis Vaccines in Pregnant Women. Vaccines, 2023, 11, 119.	4.4	1
477	Induced pluripotent stem cells: Generation methods and a new perspective in COVID-19 research. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	1
478	<scp>SARSâ€CoV</scp> â€2 spike <scp>mRNA</scp> vaccine sequences circulate in blood up to 28 days afted	er 2.0	14
479	Self-Amplifying RNA Vaccine Candidates: Alternative Platforms for mRNA Vaccine Development. Pathogens, 2023, 12, 138.	2.8	15
480	Oligonucleotide Therapeutics for Age-Related Musculoskeletal Disorders: Successes and Challenges. Pharmaceutics, 2023, 15, 237.	4.5	3
481	Optimal delivery strategies for nanoparticle-mediated mRNA delivery. Journal of Materials Chemistry B, 2023, 11, 2063-2077.	5.8	4
482	Every nano-step counts: a critical reflection on do's and don'ts in researching nanomedicines for retinal gene therapy. Expert Opinion on Drug Delivery, 2023, 20, 259-271.	5.0	O
483	Acidification-Induced Structure Evolution of Lipid Nanoparticles Correlates with Their <i>In Vitro</i> Gene Transfections. ACS Nano, 2023, 17, 979-990.	14.6	15
484	Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. Science Advances, 2023, 9, .	10.3	52
485	Targeting and functional effects of biomaterials-based nanoagents for acute pancreatitis treatment. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	4.1	0
486	Hollow, pHâ€Sensitive Microgels as Nanocontainers for the Encapsulation of Proteins. Macromolecular Bioscience, 2023, 23, .	4.1	5
487	Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	19
488	Bioinspired Lipid Nanocarriers for RNA Delivery. ACS Bio & Med Chem Au, 2023, 3, 114-136.	3.7	8
489	Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. Small, 2023, 19, .	10.0	16
490	Neoantigens: promising targets for cancer therapy. Signal Transduction and Targeted Therapy, 2023, 8,	17.1	112

#	Article	IF	CITATIONS
491	A universal method to analyze cellular internalization mechanisms via endocytosis without nonâ€specific crossâ€effects. FASEB Journal, 2023, 37, .	0.5	4
493	A novel heterologous receptor-binding domain dodecamer universal mRNA vaccine against SARS-CoV-2 variants. Acta Pharmaceutica Sinica B, 2023, 13, 4291-4304.	12.0	2
494	Copper-responsive liposomes for triggered cargo release employing a picolinamideâ^lipid conjugate. Organic and Biomolecular Chemistry, 0, , .	2.8	0
495	The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clinical Microbiology Reviews, 2023, 36, .	13.6	3
496	Efficient delivery of VEGFA mRNA for promoting wound healing via ionizable lipid nanoparticles. Bioorganic and Medicinal Chemistry, 2023, 78, 117135.	3.0	9
497	Recent advances in selective and targeted drug/gene delivery systems using cell-penetrating peptides. Archives of Pharmacal Research, 2023, 46, 18-34.	6.3	23
498	Efficient delivery of VEGF-A mRNA for promoting diabetic wound healing via ionizable lipid nanoparticles. International Journal of Pharmaceutics, 2023, 632, 122565.	5.2	14
499	A highly efficient needle-free-injection delivery system for mRNA-LNP vaccination against SARS-CoV-2. Nano Today, 2023, 48, 101730.	11.9	10
500	Non-viral nucleic acid delivery approach: A boon for state-of-the-art gene delivery. Journal of Drug Delivery Science and Technology, 2023, 80, 104152.	3.0	1
501	mRNA COVID-19 Vaccines—Facts and Hypotheses on Fragmentation and Encapsulation. Vaccines, 2023, 11, 40.	4.4	1
502	Silica-Based Nanomaterials for Diabetes Mellitus Treatment. Bioengineering, 2023, 10, 40.	3.5	3
503	Lipid Membrane Interface Viewpoint: From Viral Entry to Antiviral and Vaccine Development. Langmuir, 2023, 39, 1-11.	3.5	2
504	Nanomaterials for Therapeutic Nucleic Acid Delivery. , 2022, , 1-29.		0
505	Development of mRNA Vaccines/Therapeutics and Their Delivery System. Molecules and Cells, 2023, 46, 41-47.	2.6	6
506	Effect of SARS-CoV-2 BNT162b2 mRNA vaccine on thyroid autoimmunity: A twelve-month follow-up study. Frontiers in Endocrinology, 0, 14, .	3.5	7
507	Lung-Targeted Transgene Expression of Nanocomplexed Ad5 Enhances Immune Response in the Presence of Preexisting Immunity. Engineering, 2023, 27, 127-139.	6.7	0
508	Biomaterials-Mediated Engineering of the Immune System. Annual Review of Immunology, 2023, 41, 153-179.	21.8	6
509	Animal Model-Based Studies to Evaluate the Lipid-Based Drug Delivery Nanocarriers for Cancer Treatment., 2023,, 1019-1038.		0

#	ARTICLE	IF	CITATIONS
510	Iterative Design of Ionizable Lipids for Intramuscular mRNA Delivery. Journal of the American Chemical Society, 2023, 145, 2294-2304.	13.7	24
511	Lipid Nanoparticles for Nucleic Acid Delivery to Endothelial Cells. Pharmaceutical Research, 2023, 40, 3-25.	3.5	11
512	Extracellular vesicles: The next generation in gene therapy delivery. Molecular Therapy, 2023, 31, 1225-1230.	8.2	35
513	DOTAP: Structure, hydration, and the counterion effect. Biophysical Journal, 2023, 122, 1086-1093.	0.5	1
514	Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature Reviews Materials, 2023, 8, 282-300.	48.7	88
515	Ready-to-Use-Type Lyophilized Lipid Nanoparticle Formulation for the Postencapsulation of Messenger RNA. ACS Nano, 2023, 17, 2588-2601.	14.6	9
516	A Comprehensive Review of mRNA Vaccines. International Journal of Molecular Sciences, 2023, 24, 2700.	4.1	42
517	Nanomaterials for <scp>mRNA</scp> â€based therapeutics: Challenges and opportunities. Bioengineering and Translational Medicine, 2023, 8, .	7.1	14
518	Highly efficient mRNA delivery with nonlinear microfluidic cell stretching for cellular engineering. Lab on A Chip, 2023, 23, 1758-1767.	6.0	7
519	Lipid and Peptide-Oligonucleotide Conjugates for Therapeutic Purposes: From Simple Hybrids to Complex Multifunctional Assemblies. Pharmaceutics, 2023, 15, 320.	4.5	9
520	The safety and immunogenicity of two Zika virus mRNA vaccine candidates in healthy flavivirus baseline seropositive and seronegative adults: the results of two randomised, placebo-controlled, dose-ranging, phase 1 clinical trials. Lancet Infectious Diseases, The, 2023, 23, 621-633.	9.1	23
521	Novel Ionizable Lipid Nanoparticles for SARS oVâ€⊋ Omicron mRNA Delivery. Advanced Healthcare Materials, 2023, 12, .	7.6	11
522	The Combination of an mRNA Immunogen, a TLR7 Agonist and a PD1 Blocking Agent Enhances In-Vitro HIV T-Cell Immune Responses. Vaccines, 2023, 11, 286.	4.4	2
523	Belief in COVID-19 Conspiracy Theories, Level of Trust in Government Information, and Willingness to Take COVID-19 Vaccines Among Health Care Workers in Nigeria: Survey Study. JMIR Formative Research, 0, 7, e41925.	1.4	0
524	SARS-CoV-2 infection and immune responses. AIMS Microbiology, 2023, 9, 245-276.	2.2	2
525	Successful batch and continuous lyophilization of mRNA LNP formulations depend on cryoprotectants and ionizable lipids. Biomaterials Science, 2023, 11, 4327-4334.	5.4	7
526	Analysis of PEG-lipid anchor length on lipid nanoparticle pharmacokinetics and activity in a mouse model of traumatic brain injury. Biomaterials Science, 2023, 11, 4238-4253.	5.4	8
527	Polymerâ€Based mRNA Delivery Strategies for Advanced Therapies. Advanced Healthcare Materials, 2023, 12, .	7.6	32

#	Article	IF	CITATIONS
528	Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks. Pharmaceutics, 2023, 15, 612.	4.5	7
529	mRNA-Based Therapeutics in Cancer Treatment. Pharmaceutics, 2023, 15, 622.	4.5	11
530	Nanobiotechnology-Enabled mRNA Stabilization. Pharmaceutics, 2023, 15, 620.	4.5	5
531	Lipid Nanoparticle and Liposome Reference Materials: Assessment of Size Homogeneity and Long-Term â~70 °C and 4 °C Storage Stability. Langmuir, 2023, 39, 2509-2519.	3.5	8
533	Optimizing Lipid Nanoparticles for Delivery in Primates. Advanced Materials, 2023, 35, .	21.0	20
534	Nanotechnology advancement in the elimination of chemical toxins from air spectrums. International Journal of Environmental Science and Technology, 0, , .	3.5	3
535	Visible Light Conjugation with Triazolinediones as a Route to Degradable Poly(ethylene glycol)–Lipids for mRNA Lipid Nanoparticle Formulation. Angewandte Chemie, 2023, 135, .	2.0	0
536	Progress in vaccine development for infectious diseasesâ€"a Keystone Symposia report. Annals of the New York Academy of Sciences, 2023, 1524, 65-86.	3.8	3
537	Versatile fluorescence detection of T4 PNK and mRNA based on unique DNA nanomachine amplification. Analytica Chimica Acta, 2023, 1251, 341003.	5.4	5
538	Brain gene therapy with Trojan horse lipid nanoparticles. Trends in Molecular Medicine, 2023, 29, 343-353.	6.7	13
539	Targeting intracellular and extracellular receptors with nano-to-macroscale biomaterials to activate immune cells. Journal of Controlled Release, 2023, 357, 52-66.	9.9	3
540	Corosolic acid-modified lipid nanoparticles as delivery carriers for DNA vaccines against avian influenza. International Journal of Pharmaceutics, 2023, 638, 122914.	5.2	0
541	Hybrid nanovesicle of chimeric antigen receptor (CAR)-engineered cell-derived vesicle and drug-encapsulated liposome for effective cancer treatment. Journal of Industrial and Engineering Chemistry, 2023, 122, 127-137.	5.8	8
542	Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. Journal of Controlled Release, 2023, 354, 465-488.	9.9	48
543	Empowering the youth to choose nonâ€traditional careers in research and academia. Journal of Oral Pathology and Medicine, 2023, 52, 339-341.	2.7	0
544	Development of a Library of Disulfide Bond-Containing Cationic Lipids for mRNA Delivery. Pharmaceutics, 2023, 15, 477.	4.5	0
545	An Overview: Genetic Tumor Markers for Early Detection and Current Gene Therapy Strategies. Cancer Informatics, 2023, 22, 117693512211507.	1.9	0
547	Dose-Dependent Nuclear Delivery and Transcriptional Repression with a Cell-Penetrant MeCP2. ACS Central Science, 2023, 9, 277-288.	11.3	6

#	Article	IF	CITATIONS
548	Highâ€Precision Synthesis of RNA‣oaded Lipid Nanoparticles for Biomedical Applications. Advanced Healthcare Materials, 2023, 12, .	7.6	11
549	Potential of siRNA in COVID-19 therapy: Emphasis on in silico design and nanoparticles based delivery. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	3
550	Immune Response and Molecular Mechanisms of Cardiovascular Adverse Effects of Spike Proteins from SARS-CoV-2 and mRNA Vaccines. Biomedicines, 2023, 11, 451.	3.2	10
551	Efficient intracellular and in vivo delivery of toxin proteins by a ROS-responsive polymer for cancer therapy. Journal of Controlled Release, 2023, 355, 160-170.	9.9	3
552	Das COVID19â€NMRâ€Konsortium: Ein öffentlicher Bericht Ã⅓ber den Einfluss dieser neuen globalen Kollaboration. Angewandte Chemie, 2023, 135, .	2.0	0
553	The COVID19â€NMR Consortium: A Public Report on the Impact of this New Global Collaboration. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
554	Translation of in vitro-transcribed RNA therapeutics. Frontiers in Molecular Biosciences, $0,10,10$	3.5	2
556	GSH-Activatable Aggregation-Induced Emission Cationic Lipid for Efficient Gene Delivery. Molecules, 2023, 28, 1645.	3.8	2
557	Green Synthesized Iron-Coated Silver Nanoparticles: Economic Bimetallic Nanoparticles Potential Against Methicillin-Resistance Staphylococcus aureus. Molecular Biotechnology, 2023, 65, 1704-1714.	2.4	1
558	Nanoparticles of VAV1 siRNA combined with LL37 peptide for the treatment of pancreatic cancer. Journal of Controlled Release, 2023, 355, 312-326.	9.9	1
559	mRNA vaccines: The future of prevention of viral infections?. Journal of Medical Virology, 2023, 95, .	5.0	24
560	Effect of PEG Anchor and Serum on Lipid Nanoparticles: Development of a Nanoparticles Tracking Method. Pharmaceutics, 2023, 15, 597.	4.5	5
561	A cooperative nano-CRISPR scaffold potentiates immunotherapy via activation of tumour-intrinsic pyroptosis. Nature Communications, 2023, 14 , .	12.8	25
562	Intracellular Delivery of mRNA for Cellâ€Selective CRISPR/Cas9 Genome Editing using Lipid Nanoparticles. ChemBioChem, 2023, 24, .	2.6	4
563	Toxicological Assessments of a Pandemic COVID-19 Vaccine—Demonstrating the Suitability of a Platform Approach for mRNA Vaccines. Vaccines, 2023, 11, 417.	4.4	5
565	Liver Cancer and the Curative Potential of Nanomedicine. , 2023, , 283-306.		0
566	The Role of Separation Techniques in the Analysis of mRNA Therapeutic Drug Substances and Drug Products. Lc-gc Europe, 2023, , 42-50.	0.5	0
567	Switchable Lipids: From Conformational Switch to Macroscopic Changes in Lipid Vesicles. Langmuir, 2023, 39, 3072-3082.	3.5	3

#	ARTICLE	IF	CITATIONS
568	Targeting the â€~Undruggable' Driver Protein, KRAS, in Epithelial Cancers: Current Perspective. Cells, 2023, 12, 631.	4.1	8
569	Mass production system for RNA-loaded lipid nanoparticles using piling up microfluidic devices. Applied Materials Today, 2023, 31, 101754.	4.3	7
570	Therapeutic strategies for autism: targeting three levels of the central dogma of molecular biology. Translational Psychiatry, 2023, 13 , .	4.8	6
571	Engineering cytokine therapeutics. , 2023, 1, 286-303.		29
572	Advanced delivery systems for peptide antibiotics. Advanced Drug Delivery Reviews, 2023, 196, 114733.	13.7	12
573	Lipid-based colloidal nanoparticles for applications in targeted vaccine delivery. Nanoscale Advances, 2023, 5, 1853-1869.	4.6	8
574	Development of Novel siRNA Therapeutics: A Review with a Focus on Inclisiran for the Treatment of Hypercholesterolemia. International Journal of Molecular Sciences, 2023, 24, 4019.	4.1	11
575	Is PEGylation of Drugs Associated with Hypersensitivity Reactions? An Analysis of the Italian National Spontaneous Adverse Drug Reaction Reporting System. Drug Safety, 2023, 46, 343-355.	3.2	5
576	RNA modification in mRNA cancer vaccines. Clinical and Experimental Medicine, 2023, 23, 1917-1931.	3.6	7
577	Peptide-DNA Co-Assembled Nanoparticles as a Nonviral Vector for Gene Delivery with High Transgene Expression. ACS Applied Nano Materials, 2023, 6, 3191-3201.	5.0	3
578	Genetically engineered cellular nanoparticles for biomedical applications. Biomaterials, 2023, 296, 122065.	11.4	9
579	Continuous production of lipid nanoparticles by multiple-splitting in microfluidic devices with chaotic microfibrous channels. Colloids and Surfaces B: Biointerfaces, 2023, 224, 113212.	5.0	1
580	Self-Organization of Mobile, Polyelectrolytic Dendrons on Stable, Amphiphile-Based Spherical Surfaces. Langmuir, 2023, 39, 3439-3449.	3.5	1
581	Recent progress on single-atom catalysts for lithium–air battery applications. Energy and Environmental Science, 2023, 16, 1431-1465.	30.8	29
582	Delivering on the promise of protein degraders. Nature Reviews Drug Discovery, 2023, 22, 410-427.	46.4	16
583	Delivery challenges for CRISPRâ€"Cas9 genome editing for Duchenne muscular dystrophy. Biophysics Reviews, 2023, 4, .	2.7	2
584	Ionizable lipids in bio-inspired nanocarriers. European Biophysics Journal, 2023, 52, 121-127.	2.2	1
585	Engineered exosome-mediated messenger RNA and single-chain variable fragment delivery for human chimeric antigen receptor T-cell engineering. Cytotherapy, 2023, 25, 615-624.	0.7	9

#	Article	IF	CITATIONS
586	Organic and inorganic nanomedicine for combination cancer therapies. Nanoscale Advances, 2023, 5, 1600-1610.	4.6	2
587	LINE1-Mediated Reverse Transcription and Genomic Integration of SARS-CoV-2 mRNA Detected in Virus-Infected but Not in Viral mRNA-Transfected Cells. Viruses, 2023, 15, 629.	3.3	6
588	Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. Journal of Nanoparticle Research, 2023, 25, .	1.9	66
589	Recent Progress of Lipid Nanoparticles-Based Lipophilic Drug Delivery: Focus on Surface Modifications. Pharmaceutics, 2023, 15, 772.	4.5	16
590	Polysarcosine-based lipid formulations for intracranial delivery of mRNA. Journal of Controlled Release, 2023, 356, 1-13.	9.9	8
591	Encapsulation: A Strategy to Deliver Therapeutics and Bioactive Compounds?. Pharmaceuticals, 2023, 16, 362.	3.8	8
592	Modified mRNA as a Treatment for Myocardial Infarction. International Journal of Molecular Sciences, 2023, 24, 4737.	4.1	3
593	Novel bionic inspired nanosystem construction for precise delivery of mRNA. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	2
594	New insights from nanotechnology in SARS-CoV-2 detection, treatment strategy, and prevention. Materials Today Chemistry, 2023, 29, 101478.	3.5	15
595	Advances in RNA cancer therapeutics: New insight into exosomes as miRNA delivery. , 2023, 1, 100005.		4
596	mRNA delivery in cancer immunotherapy. Acta Pharmaceutica Sinica B, 2023, 13, 1348-1357.	12.0	9
597	Solid Lipid Nanoparticles: Review of the Current Research on Encapsulation and Delivery Systems for Active and Antioxidant Compounds. Antioxidants, 2023, 12, 633.	5.1	8
598	Application of nucleic acid-encoded antibodies in prevention and treatment of emerging viral infectious diseases. Chinese Science Bulletin, 2023, , .	0.7	0
600	Strategies to target the cancer driver MYC in tumor cells. Frontiers in Oncology, 0, 13, .	2.8	8
601	Delivering mRNA to a human NK cell line, NK-92 cells, by lipid nanoparticles. International Journal of Pharmaceutics, 2023, 636, 122810.	5.2	2
602	Recent Advances in Nanoparticle-Mediated Co-Delivery System: A Promising Strategy in Medical and Agricultural Field. International Journal of Molecular Sciences, 2023, 24, 5121.	4.1	9
603	Visible Light Conjugation with Triazolinediones as a Route to Degradable Poly(ethylene glycol)–Lipids for mRNA Lipid Nanoparticle Formulation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
604	Nanodrug delivery systems for metabolic chronic liver diseases: advances and perspectives. Nanomedicine, 2023, 18, 67-84.	3.3	4

#	Article	IF	CITATIONS
605	The Effect of Cryoprotectants and Storage Conditions on the Transfection Efficiency, Stability, and Safety of Lipidâ€Based Nanoparticles for mRNA and DNA Delivery. Advanced Healthcare Materials, 2023, 12, .	7.6	4
606	Microfluidic-based technologies for diagnosis, prevention, and treatment of COVID-19: recent advances and future directions. Biomedical Microdevices, 2023, 25, .	2.8	7
607	Proteinâ€based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angewandte Chemie, 0, , .	2.0	1
608	Proteinâ€based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
609	Research progress on non-protein-targeted drugs for cancer therapy. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	8.6	4
610	Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines. Vaccines, 2023, 11, 658.	4.4	8
611	Mitochondrial gene editing. Nature Reviews Methods Primers, 2023, 3, .	21.2	3
612	Glucoseâ€Responsive Chargeâ€Switchable Lipid Nanoparticles for Insulin Delivery. Angewandte Chemie, 2023, 135, .	2.0	2
613	Glucoseâ€Responsive Chargeâ€Switchable Lipid Nanoparticles for Insulin Delivery. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
614	Targeting Inflammation in Non-Small Cell Lung Cancer through Drug Repurposing. Pharmaceuticals, 2023, 16, 451.	3.8	9
615	mRNA therapy at the convergence of genetics and nanomedicine. Nature Nanotechnology, 2023, 18, 537-540.	31.5	11
616	Impact of non-ionizable lipids and phase mixing methods on structural properties of lipid nanoparticle formulations. International Journal of Pharmaceutics, 2023, 637, 122874.	5.2	5
618	mRNA-lipid Nanoparticle Vaccines: Structure and Delivery. , 0, 36, 1459-1467.		0
620	Single-tailed heterocyclic carboxamide lipids for macrophage immune-modulation. Biomaterials Science, 2023, 11, 2693-2698.	5.4	2
621	Engineering nanomaterial physical characteristics for cancer immunotherapy., 2023, 1, 499-517.		11
622	Field applications of zein as a precise nanoscale delivery system for methoxyfenozide. Journal of Insect Science, 2023, 23, .	1.5	0
623	Influence of lipid composition of messenger RNA-loaded lipid nanoparticles on the protein expression via intratracheal administration in mice. International Journal of Pharmaceutics, 2023, 637, 122896.	5.2	3
624	ETV2/ER71, the key factor leading the paths to vascular regeneration and angiogenic reprogramming. Stem Cell Research and Therapy, 2023, 14, .	5.5	5

#	Article	IF	CITATIONS
625	Antitumor activities of novel glycyrrhetinic acid-modified lipogel hybrid system in vitro. Journal of Materials Science, 2023, 58, 5788-5807.	3.7	0
626	Spotlight on Genetic Kidney Diseases: A Call for Drug Delivery and Nanomedicine Solutions. ACS Nano, 2023, 17, 6165-6177.	14.6	10
627	Recent Advances in Site-Specific Lipid Nanoparticles for mRNA Delivery. ACS Nanoscience Au, 2023, 3, 192-203.	4.8	8
628	è,,³ã,'æ"™çš,,ã•ã•—ã¥è—¬ç‰©ãf»éºä¼åãf‡ãfºãfûfºãf¼ã,∙ã,¹ãf†ãfã®é—‹ç™ºã•ããã®è©•価. Yakugaku Zasshi,	20 2.3 , 143	35 9-364.
629	A Review of Tangential Flow Filtration: Process Development and Applications in the Pharmaceutical Industry. Organic Process Research and Development, 2023, 27, 571-591.	2.7	6
630	Recent Clinical Successes in Liposomal Nanomedicines. , 0, , 52-59.		4
631	Mechanistic Understanding of Protein Corona Formation around Nanoparticles: Old Puzzles and New Insights. Small, 2023, 19 , .	10.0	13
632	Lipid Nanoparticles as Promising Carriers for mRNA Vaccines for Viral Lung Infections. Pharmaceutics, 2023, 15, 1127.	4.5	16
633	Applications of Spray-Dried Vaccines. , 2023, , 325-530.		0
634	Next-generation materials for RNA–lipid nanoparticles: lyophilization and targeted transfection. Journal of Materials Chemistry B, 2023, 11, 5083-5093.	5.8	1
635	Knowledge-Based Design of Multifunctional Polymeric Nanoparticles. Handbook of Experimental Pharmacology, 2023, , .	1.8	0
636	Efficient mRNA Delivery with mRNA Lipoplexes Prepared Using a Modified Ethanol Injection Method. Pharmaceutics, 2023, 15, 1141.	4.5	4
637	Spatial Transcriptomics: Technical Aspects of Recent Developments and Their Applications in Neuroscience and Cancer Research. Advanced Science, 2023, 10, .	11.2	7
638	Revolutionizing viral disease vaccination: the promising clinical advancements of non-replicating mRNA vaccines. Virology Journal, 2023, 20, .	3.4	1
639	Multiple Routes to Bicontinuous Cubic Liquid Crystal Phases Discovered by Highâ€Throughput Selfâ€Assembly Screening of Multiâ€Tail Lipidoids. Small, 2023, 19, .	10.0	4
640	Tumor microenvironment stimuli-responsive lipid-drug conjugates for cancer treatment. International Journal of Pharmaceutics, 2023, 639, 122942.	5.2	5
641	In the business of base editors: Evolution from bench to bedside. PLoS Biology, 2023, 21, e3002071.	5.6	10
642	A fluorinated ionizable lipid improves the mRNA delivery efficiency of lipid nanoparticles. Journal of Materials Chemistry B, 2023, 11, 4171-4180.	5.8	6

#	Article	IF	CITATIONS
643	Spleen-Targeted mRNA Delivery by Amphiphilic Carbon Dots for Tumor Immunotherapy. ACS Applied Materials & Samp; Interfaces, 2023, 15, 19937-19950.	8.0	12
644	Influence of structural dynamics on cell uptake investigated with single-chain polymeric nanoparticles. CheM, 2023, 9, 1562-1577.	11.7	2
645	Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Advanced Drug Delivery Reviews, 2023, 197, 114828.	13.7	7
646	The Novelty of mRNA Viral Vaccines and Potential Harms: A Scoping Review. J, 2023, 6, 220-235.	0.9	3
648	Broadly neutralizing antibodies against Omicron variants of SARS-CoV-2 derived from mRNA-lipid nanoparticle-immunized mice. Heliyon, 2023, 9, e15587.	3.2	1
649	Antigen Delivery Systems: Past, Present, and Future. Biomolecules and Therapeutics, 2023, , .	2.4	0
651	Activatable NIRâ€II Photothermal Lipid Nanoparticles for Improved Messenger RNA Delivery. Angewandte Chemie, 0, , .	2.0	0
652	Activatable NIRâ€II Photothermal Lipid Nanoparticles for Improved Messenger RNA Delivery. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
653	Cell-Type-Specific Intracellular Protein Delivery with Inactivated Botulinum Neurotoxin. Journal of the American Chemical Society, 2023, 145, 10220-10226.	13.7	4
654	Accelerating therapeutic protein design with computational approaches toward the clinical stage. Computational and Structural Biotechnology Journal, 2023, 21, 2909-2926.	4.1	4
655	Cell-based relay delivery strategy in biomedical applications. Advanced Drug Delivery Reviews, 2023, 198, 114871.	13.7	4
656	Response and Regulation of the Microenvironment Based on Hollow Structured Drug Delivery Systems. Advanced Functional Materials, 2023, 33, .	14.9	8
657	Surface display of functional moieties on extracellular vesicles using lipid anchors. Journal of Controlled Release, 2023, 357, 630-640.	9.9	4
658	Clinical delivery of circular RNA: Lessons learned from RNA drug development. Advanced Drug Delivery Reviews, 2023, 197, 114826.	13.7	19
659	mRNA Vaccine Platform: mRNA Production and Delivery. Russian Journal of Bioorganic Chemistry, 2023, 49, 220-235.	1.0	1
660	Remodeling Serine Synthesis and Metabolism via Nanoparticles (NPs)â€Mediated CFL1 Silencing to Enhance the Sensitivity of Hepatocellular Carcinoma to Sorafenib. Advanced Science, 2023, 10, .	11.2	5
661	A Route to Synthesize Ionizable Lipid ALC-0315, a Key Component of the mRNA Vaccine Lipid Matrix. Russian Journal of Bioorganic Chemistry, 2023, 49, 412-415.	1.0	2
662	Biomaterial-enabled 3D cell culture technologies for extracellular vesicle manufacturing. Biomaterials Science, 0, , .	5.4	0

#	Article	IF	CITATIONS
663	Systemic Exposure, Metabolism, and Elimination of [14C]-Labeled Amino Lipid, Lipid 5,After a Single Administration of mRNA Encapsulating Lipid Nanoparticles to Sprague Dawley Rats. Drug Metabolism and Disposition, 0, , DMD-AR-2022-001194.	3.3	0
664	Biodistribution of Lipid 5, mRNA, and Its Translated Protein Following Intravenous Administration of mRNA-Encapsulated Lipid Nanoparticles in Rats. Drug Metabolism and Disposition, 2023, 51, 813-823.	3.3	1
665	Cellular uptake of modified mRNA occurs via caveolae-mediated endocytosis, yielding high protein expression in slow-dividing cells. Molecular Therapy - Nucleic Acids, 2023, 32, 960-979.	5.1	1
666	ROS-Responsive Nanoparticle Delivery of mRNA and Photosensitizer for Combinatorial Cancer Therapy. Nano Letters, 2023, 23, 3661-3668.	9.1	8
667	Biotechnology: Overcoming biological barriers to nucleic acid delivery using lipid nanoparticles. PLoS Biology, 2023, 21, e3002105.	5.6	8
668	The clinical progress and challenges of <scp>mRNA</scp> vaccines. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	4
669	Bioengineered Bacteriophage-Like Nanoparticles as RNAi Therapeutics to Enhance Radiotherapy against Glioblastomas. ACS Nano, 2023, 17, 10407-10422.	14.6	4
670	Evaluation of the Diagnostic Performance of Two Automated SARS-CoV-2 Neutralization Immunoassays following Two Doses of mRNA, Adenoviral Vector, and Inactivated Whole-Virus Vaccinations in COVID-19 NaĀ-ve Subjects. Microorganisms, 2023, 11, 1187.	3.6	0
671	Co-delivery of Cas9 mRNA and guide RNAs edits hepatitis B virus episomal and integration DNA in mouse and tree shrew models. Antiviral Research, 2023, 215, 105618.	4.1	5
672	Artificial Immunogenic Cell Death Lipid Nanoparticle Functions as a Therapeutic Vaccine for Cancer. Advanced Functional Materials, 0, , .	14.9	0
673	An Overview of Nanoparticle Protein Corona Literature. Small, 2023, 19, .	10.0	16
674	Comparative study of lipid nanoparticle-based mRNA vaccine bioprocess with machine learning and combinatorial artificial neural network-design of experiment approach. International Journal of Pharmaceutics, 2023, 640, 123012.	5.2	9
675	Highâ€Throughput CRISPR/Cas9 Mediated Gene Editing of Primary Human T Cells in a Microfluidic Device for Cellular Therapy Manufacturing. Advanced Materials Technologies, 2023, 8, .	5.8	1
676	Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy. Cell Stem Cell, 2023, 30, 549-570.	11.1	14
677	Cancer immunotherapy. , 2023, , 681-741.		0
678	Lipid nanoparticle delivery limits antisense oligonucleotide activity and cellular distribution in the brain after intracerebroventricular injection. Molecular Therapy - Nucleic Acids, 2023, 32, 773-793.	5.1	5
679	The Metaverse as a Virtual Model of Platform Urbanism: Its Converging AloT, XReality, Neurotech, and Nanobiotech and Their Applications, Challenges, and Risks. Smart Cities, 2023, 6, 1345-1384.	9.4	6
680	lonizable Lipids with Triazole Moiety from Click Reaction for LNP-Based mRNA Delivery. Molecules, 2023, 28, 4046.	3.8	2

#	Article	IF	CITATIONS
681	A Review of mRNA Vaccines with the Aid of Lipid Nanoparticles. Springer Proceedings in Materials, 2023, , 111-123.	0.3	0
682	Inactivation of Staphylococcus aureus in gelatin nanoparticles using supercritical carbon dioxide. Journal of Supercritical Fluids, 2023, 200, 105979.	3.2	1
684	Th1-dominant cytokine responses in kidney patients after COVID-19 vaccination are associated with poor humoral responses. Npj Vaccines, 2023, 8 , .	6.0	1
686	Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. Advanced Materials, 2023, 35, .	21.0	25
687	Implement the Materials Genome Initiative: Machine Learning Assisted Fluorescent Probe Design for Cellular Substructure Staining. Advanced Materials Technologies, 2023, 8, .	5.8	1
688	Less Is More: Developments in Nanotechnology for Antirestenosis Therapies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2023, 43, 1096-1110.	2.4	3
689	The applicability of nanobiotechnology-related approaches to veterinary medicine and assisted animal reproduction – A review. Annals of Animal Science, 2023, 23, 735-744.	1.6	0
690	Development of nucleic acid medicines based on chemical technology. Advanced Drug Delivery Reviews, 2023, 199, 114872.	13.7	5
691	Localization, tissue biology and T cell state â€" implications for cancer immunotherapy. Nature Reviews Immunology, 2023, 23, 807-823.	22.7	10
692	Design of bacteriophage T4-based artificial viral vectors for human genome remodeling. Nature Communications, 2023, 14, .	12.8	3
693	Peptide-Based Nanoparticles for Systemic Extrahepatic Delivery of Therapeutic Nucleotides. International Journal of Molecular Sciences, 2023, 24, 9455.	4.1	0
694	Amplifying gene expression with RNA-targeted therapeutics. Nature Reviews Drug Discovery, 2023, 22, 539-561.	46.4	22
695	Multi-omics for COVID-19: driving development of therapeutics and vaccines. National Science Review, 2023, 10, .	9.5	2
696	The tip of the iceberg—The roles of long noncoding <scp>RNAs</scp> in acute myeloid leukemia. Wiley Interdisciplinary Reviews RNA, 0, , .	6.4	0
697	pH-Modulated Nanoarchitectonics for Enhancement of Multivalency-Induced Vesicle Shape Deformation at Receptor-Presenting Lipid Membrane Interfaces. Langmuir, 2023, 39, 8297-8305.	3.5	1
698	Current state of RNA delivery using lipid nanoparticles to extrahepatic tissues: A review towards clinical translation. International Journal of Biological Macromolecules, 2023, 242, 125185.	7.5	1
700	Rational design and combinatorial chemistry of ionizable lipids for RNA delivery. Journal of Materials Chemistry B, 2023, 11, 6527-6539.	5.8	4
701	A Perspective of Engineered Lipids and Liposomes: Chemical Design and Functional Application Based on Therapeutic Safety. Chemistry of Materials, 2023, 35, 4587-4597.	6.7	2

#	Article	IF	CITATIONS
702	A personalized mRNA vaccine has exhibited potential in the treatment of pancreatic cancer. , 2023, 2, .		1
703	Bio-enabled Engineering of Multifunctional "Living―Surfaces. ACS Nano, 2023, 17, 11077-11086.	14.6	1
704	Lipid nanoparticles allow efficient and harmless exÂvivo gene editing of human hematopoietic cells. Blood, 2023, 142, 812-826.	1.4	8
705	An Overview of the Use of Nanoparticles in Vaccine Development. Nanomaterials, 2023, 13, 1828.	4.1	4
706	Multiphysics modeling and simulation of local transport and absorption kinetics of intramuscularly injected lipid nanoparticles. Journal of Controlled Release, 2023, 359, 234-243.	9.9	1
707	The Evolution and Recent Trends in Acoustic Targeting of Encapsulated Drugs to Solid Tumors: Strategies beyond Sonoporation. Pharmaceutics, 2023, 15, 1705.	4.5	1
708	Noncoding RNAs in tumorigenesis and tumor therapy. Fundamental Research, 2023, 3, 692-706.	3.3	3
709	High-throughput measurement of the content and properties of nano-sized bioparticles with single-particle profiler. Nature Biotechnology, 0, , .	17.5	7
711	Nanomaterials in tumor immunotherapy: new strategies and challenges. Molecular Cancer, 2023, 22, .	19.2	17
712	mRNA-based cancer therapeutics. Nature Reviews Cancer, 2023, 23, 526-543.	28.4	55
713	Pulmonary Delivery for miRs: Present and Future Potential. Processes, 2023, 11, 1788.	2.8	0
714	lonizable Lipid with Supramolecular Chemistry Features for RNA Delivery In Vivo. Small, 0, , .	10.0	0
716	Advancements of in vitro transcribed mRNA (IVT mRNA) to enable translation into the clinics. Advanced Drug Delivery Reviews, 2023, 199, 114961.	13.7	6
718	Myocarditis post–COVID-19 vaccination. Postgraduate Medical Journal, 0, , .	1.8	0
719	Safety and immunogenicity of a phase $1/2$ randomized clinical trial of a quadrivalent, mRNA-based seasonal influenza vaccine (mRNA-1010) in healthy adults: interim analysis. Nature Communications, 2023, 14, .	12.8	8
720	Immune-Modulating Lipid Nanomaterials for the Delivery of Biopharmaceuticals. Pharmaceutics, 2023, 15, 1760.	4.5	2
721	Exploring the potential of in vivo reprogramming for studying embryonic development, tissue regeneration, and organismal aging. Current Opinion in Genetics and Development, 2023, 81, 102067.	3.3	0
722	Lipid Nanoparticle-Mediated Delivery of miRNA Mimics to Myeloid Cells. Methods in Molecular Biology, 2023, , 337-350.	0.9	2

#	Article	IF	CITATIONS
723	Polyplex designs for improving the stability and safety of RNA therapeutics. Advanced Drug Delivery Reviews, 2023, 199, 114972.	13.7	6
724	Advances in mRNA therapeutics for cancer immunotherapy: From modification to delivery. Advanced Drug Delivery Reviews, 2023, 199, 114973.	13.7	13
725	Cleavable-Branched Polymer-Modified Liposomes Reduce Accelerated Blood Clearance and Enhance Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2023, 15, 32110-32120.	8.0	3
726	Emergence of Nanoscale Drug Carriers through Supramolecular Self-Assembly of RNA with Calixarene. International Journal of Molecular Sciences, 2023, 24, 7911.	4.1	0
727	Advances in engineering and delivery strategies for cytokine immunotherapy. Expert Opinion on Drug Delivery, 2023, 20, 579-595.	5.0	0
728	Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. ACS Nano, 2023, 17, 7979-8003.	14.6	105
729	Nucleic Acid-Based Strategies to Treat Neurodegenerative Diseases., 2023,, 105-133.		0
730	Immune checkpoint inhibition mediated with liposomal nanomedicine for cancer therapy. Military Medical Research, 2023, 10, .	3.4	1
731	Beyond current treatment of Fanconi Anemia: What do advances in cell and gene-based approaches offer?. Blood Reviews, 2023, 60, 101094.	5.7	1
732	Inhaled mRNA therapy for treatment of cystic fibrosis: Interim results of a randomized, doubleâ€blind, placeboâ€controlled phase 1/2 clinical study. Journal of Cystic Fibrosis, 2023, 22, 656-664.	0.7	22
733	Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges. European Polymer Journal, 2023, 193, 112111.	5.4	22
734	Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine–associated myocarditis. Science Immunology, 2023, 8, .	11.9	24
735	Advances in SARS-CoV-2 receptor-binding domain-based COVID-19 vaccines. Expert Review of Vaccines, 2023, 22, 422-439.	4.4	5
736	PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective. Bioconjugate Chemistry, 2023, 34, 941-960.	3.6	22
737	Design of experiments in the optimization of nanoparticle-based drug delivery systems. Journal of Controlled Release, 2023, 358, 398-419.	9.9	9
738	Effective mRNA Delivery by Condensation with Cationic Nanogels Incorporated into Liposomes. Molecular Pharmaceutics, 2023, 20, 3088-3099.	4.6	2
739	An Efficacy and Mechanism Driven Study on the Impact of Hypoxia on Lipid Nanoparticle Mediated mRNA Delivery. Journal of the American Chemical Society, 2023, 145, 11375-11386.	13.7	6
740	The Dawn of a New Era: Targeting the "Undruggables―with Antibody-Based Therapeutics. Chemical Reviews, 2023, 123, 7782-7853.	47.7	13

#	Article	IF	CITATIONS
741	Structural and componential design: new strategies regulating the behavior of lipid-based nanoparticles <i>in vivo</i> . Biomaterials Science, 2023, 11, 4774-4788.	5.4	2
742	Nanobiomaterial vectors for improving gene editing and gene therapy. Materials Today, 2023, 66, 114-136.	14.2	10
743	Lipid Nanocarrier-Based Drug Delivery Systems: Therapeutic Advances in the Treatment of Lung Cancer. International Journal of Nanomedicine, 0, Volume 18, 2659-2676.	6.7	6
744	The role of formulation approaches in presenting targeting ligands on lipid nanoparticles. Nanomedicine, 2023, 18, 589-597.	3.3	1
745	Polyvinyl Alcohol-Chitosan Scaffold for Tissue Engineering and Regenerative Medicine Application: A Review. Marine Drugs, 2023, 21, 304.	4.6	4
746	Long-acting vaccine delivery systems. Advanced Drug Delivery Reviews, 2023, 198, 114897.	13.7	6
747	Review of structural design guiding the development of lipid nanoparticles for nucleic acid delivery. Current Opinion in Colloid and Interface Science, 2023, 66, 101705.	7.4	11
748	Screening Libraries to Discover Molecular Design Principles for the Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers Derived from Plant Phenolic Acids. Pharmaceutics, 2023, 15, 1572.	4.5	6
749	Modular Hydrogel Vaccine for Programmable and Coordinate Elicitation of Cancer Immunotherapy. Advanced Science, 2023, 10, .	11.2	4
7 50	Encapsulation of conjugated linoleic acid and ruminant <i>trans</i> fatty acids to study the prevention of metabolic syndromeâ€"a review. Nutrition Reviews, 2024, 82, 262-276.	5.8	2
751	Gene editing innovations and their applications in cardiomyopathy research. DMM Disease Models and Mechanisms, 2023, 16 , .	2.4	4
753	Cellular Internalization and Exiting Behavior of Zwitterionic 4-Armed Star-Shaped Polymers. Molecules, 2023, 28, 4479.	3.8	4
754	Prospective Subunit Nanovaccine against <i>Mycobacterium tuberculosis</i> Infection─Cubosome Lipid Nanocarriers of Cord Factor, Trehalose 6,6′ Dimycolate. ACS Applied Materials & Dimycolate. ACS Applied Ma	8.0	7
755	Preparation of pH/Light dual-responsive biocompatible polymer micelles: Application to curcumin delivery. Journal of Drug Delivery Science and Technology, 2023, 86, 104652.	3.0	1
756	Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	18
758	Reversible 2′-OH acylation enhances RNA stability. Nature Chemistry, 2023, 15, 1296-1305.	13.6	7
759	Nanoparticle Strategies to Improve the Delivery of Anticancer Drugs across the Blood–Brain Barrier to Treat Brain Tumors. Pharmaceutics, 2023, 15, 1804.	4.5	4
760	Black Phosphorus Nanosheets Assist Nanoerythrosomes for Efficient mRNA Vaccine Delivery and Immune Activation. Advanced Healthcare Materials, 2023, 12, .	7.6	4

#	Article	IF	CITATIONS
761	Development of an Alcohol Dilutionâ€"Lyophilization Method for the Preparation of mRNA-LNPs with Improved Storage Stability. Pharmaceutics, 2023, 15, 1819.	4.5	4
762	Immunotherapeutic Approaches for the Treatment of Glioblastoma Multiforme: Mechanism and Clinical Applications. International Journal of Molecular Sciences, 2023, 24, 10546.	4.1	1
763	Basic Principles of RNA Interference: Nucleic Acid Types and In Vitro Intracellular Delivery Methods. Micromachines, 2023, 14, 1321.	2.9	0
764	Targeting Ras with protein engineering. Oncotarget, 2023, 14, 672-687.	1.8	0
765	Realâ€Time pHâ€Dependent Selfâ€Assembly of Ionisable Lipids from COVIDâ€19 Vaccines and <i>In Situ</i> Nucleic Acid Complexation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
766	Realâ€Time pHâ€Dependent Selfâ€Assembly of Ionisable Lipids from COVIDâ€19 Vaccines and <i>In Situ</i> Nucleic Acid Complexation. Angewandte Chemie, 2023, 135, .	2.0	3
767	A localizing nanocarrier formulation enables multi-target immune responses to multivalent replicating RNA with limited systemic inflammation. Molecular Therapy, 2023, 31, 2360-2375.	8.2	7
768	Messenger RNA-Based Therapeutics and Vaccines: What's beyond COVID-19?. ACS Pharmacology and Translational Science, 2023, 6, 943-969.	4.9	10
769	In vitro and in vivo evaluation of clinically-approved ionizable cationic lipids shows divergent results between mRNA transfection and vaccine efficacy. Biomedicine and Pharmacotherapy, 2023, 165, 115065.	5.6	3
770	Unlocking the potential of non-coding RNAs in cancer research and therapy. Translational Oncology, 2023, 35, 101730.	3.7	1
771	Engineered biomimetic micro/nano-materials for tissue regeneration. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	2
772	mRNA: A promising platform for cancer immunotherapy. Advanced Drug Delivery Reviews, 2023, 199, 114993.	13.7	4
773	MicroRNAâ€4691â€3p inhibits the inflammatory response by targeting STING in human dental pulp cells: A laboratory investigation. International Endodontic Journal, 2023, 56, 1328-1336.	5.0	0
774	<scp>TECPR1</scp> is activated by damageâ€induced sphingomyelin exposure to mediate noncanonicalÂautophagy. EMBO Journal, 2023, 42, .	7.8	9
775	Organic Phase-Soluble Nanomagnetically Cationic Phospholipid: Synthesis, Characterization, and <i>In Vitro</i> I> Transfection Activity. ACS Applied Materials & Interfaces, 2023, 15, 33437-33443.	8.0	0
776	Learning from cancer to address COVID-19. Biologia Futura, 2023, 74, 29-43.	1.4	0
777	Strategies for targeted gene delivery using lipid nanoparticles and cell-derived nanovesicles. Nanoscale Advances, 2023, 5, 3834-3856.	4.6	3
778	The use of RNA-based treatments in the field of cancer immunotherapy. Molecular Cancer, 2023, 22, .	19.2	13

#	Article	IF	CITATIONS
779	Expanding the Reach of Monoclonal Antibodies: A Review of Synthetic Nucleic Acid Delivery in Immunotherapy. Antibodies, 2023, 12, 46.	2.5	3
780	A microfluidic electrophoretic dual dynamic staining method for the identification and relative quantitation of dsRNA contaminants in mRNA vaccines. Analyst, The, 2023, 148, 3758-3767.	3.5	1
781	Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Advanced Drug Delivery Reviews, 2023, 200, 114990.	13.7	14
782	Advances with Lipid-Based Nanosystems for siRNA Delivery to Breast Cancers. Pharmaceuticals, 2023, 16, 970.	3.8	6
783	Advances of Nanotechnology Toward Vaccine Development Against Animal Infectious Diseases. Advanced Functional Materials, 2023, 33, .	14.9	1
784	Comb-structured mRNA vaccine tethered with short double-stranded RNA adjuvants maximizes cellular immunity for cancer treatment. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	12
785	Knife's edge: Balancing immunogenicity and reactogenicity in mRNA vaccines. Experimental and Molecular Medicine, 2023, 55, 1305-1313.	7.7	11
786	Transitional Insight into the RNA-Based Oligonucleotides in Cancer Treatment. Applied Biochemistry and Biotechnology, 2024, 196, 1685-1711.	2.9	1
787	Blended Block Polycation Micelles Enhance Antisense Oligonucleotide Delivery. Bioconjugate Chemistry, 2023, 34, 1418-1428.	3.6	1
788	Development and Characterization of Cationic Nanostructured Lipid Carriers as Drug Delivery Systems for miRNA-27a. Pharmaceuticals, 2023, 16, 1007.	3.8	1
790	Role of long non-coding RNAs in cancer: From subcellular localization to nanoparticle-mediated targeted regulation. Molecular Therapy - Nucleic Acids, 2023, 33, 774-793.	5.1	4
791	mRNA lipid nanoparticle-mediated pyroptosis sensitizes immunologically cold tumors to checkpoint immunotherapy. Nature Communications, 2023, 14, .	12.8	14
792	Non-viral engineering of NK cells. Biotechnology Advances, 2023, 68, 108212.	11.7	1
793	lonizable Lipid Nanoparticles for Therapeutic Base Editing of Congenital Brain Disease. ACS Nano, 2023, 17, 13594-13610.	14.6	10
794	Mesenchymal stem cell engineering by ARCA analog-capped mRNA. Molecular Therapy - Nucleic Acids, 2023, 33, 454-468.	5.1	2
795	Process Robustness in Lipid Nanoparticle Production: A Comparison of Microfluidic and Turbulent Jet Mixing. Molecular Pharmaceutics, 2023, 20, 4285-4296.	4.6	4
796	Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chemical Society Reviews, 2023, 52, 5172-5254.	38.1	7
797	Recent Advancement in mRNA Vaccine Development and Applications. Pharmaceutics, 2023, 15, 1972.	4.5	6

#	Article	IF	CITATIONS
798	Targeting Wnt- \hat{l}^2 -Catenin Signaling Pathway for Hepatocellular Carcinoma Nanomedicine. , 2023, 2, 948-963.		1
799	Novel Vectors and Administrations for mRNA Delivery. Small, 2023, 19, .	10.0	3
800	Editorial: Anti-cancer drug delivery: lipid-based nanoparticles. Frontiers in Oncology, 0, 13, .	2.8	0
801	Nanoprecipitation through solvent-shifting using rapid mixing: Dispelling the Ouzo boundary to reach large solute concentrations. Journal of Colloid and Interface Science, 2023, 650, 2049-2055.	9.4	2
802	Nanoadjuvants: Promising Bioinspired and Biomimetic Approaches in Vaccine Innovation. ACS Omega, 2023, 8, 27953-27968.	3.5	1
803	Lipid nanoparticles in the treatment of lung cancerâ€"hype or hope?. Memo - Magazine of European Medical Oncology, 0, , .	0.5	O
804	Charged Lipids Modulate the Phase Separation in Multicomponent Membranes. Langmuir, 2023, 39, 11371-11378.	3.5	1
805	Intratumoural Delivery of mRNA Loaded on a Cationic Hyper-Branched Cyclodextrin-Based Polymer Induced an Anti-Tumour Immunological Response in Melanoma. Cancers, 2023, 15, 3748.	3.7	1
806	Intelligent Biomaterialomics: Molecular Design, Manufacturing, and Biomedical Applications. Advanced Materials, 0, , .	21.0	7
807	Esteraseâ€Labile Quaternium Lipidoid Enabling Improved mRNAâ€LNP Stability and Spleenâ€Selective mRNA Transfection. Advanced Materials, 2023, 35, .	21.0	4
809	New opportunities and old challenges in the clinical translation of nanotheranostics. Nature Reviews Materials, 2023, 8, 783-798.	48.7	9
810	Delivery and Expression of mRNA in the Secondary Lymphoid Organs Drive Immune Responses to Lipid Nanoparticle-mRNA Vaccines after Intramuscular Injection. Molecular Pharmaceutics, 2023, 20, 3876-3885.	4.6	6
811	A Smart DNAâ€Based Nanosystem Containing Ribosomeâ€RegulatingÂsiRNA for Enhanced mRNA Transfection. Advanced Materials, 2023, 35, .	21.0	6
812	Evolution of Vaccines Formulation to Tackle the Challenge of Anti-Microbial Resistant Pathogens. International Journal of Molecular Sciences, 2023, 24, 12054.	4.1	0
813	Nanomaterials for Therapeutic Nucleic Acid Delivery. , 2023, , 2005-2033.		0
814	Development and Perspectives: Multifunctional Nucleic Acid Nanomedicines for Treatment of Gynecological Cancers. Small, 0, , .	10.0	1
815	The promise of inÂvivo HSC prime editing. Blood, 2023, 141, 2039-2040.	1.4	1
816	Recent Advances in Messenger Ribonucleic Acid (mRNA) Vaccines and Their Delivery Systems: A Review. Clinical Pharmacology: Advances and Applications, 0, Volume 15, 77-98.	1.2	1

#	Article	IF	Citations
817	The mRNA Vaccine Revolution: COVID-19 Has Launched the Future of Vaccinology. ACS Nano, 2023, 17, 15231-15253.	14.6	8
818	Orthogonal Design of Experiments for Engineering of Lipid Nanoparticles for mRNA Delivery to the Placenta. Small, $0, , .$	10.0	5
819	Lipid nanoparticles for siRNA delivery in cancer treatment. Journal of Controlled Release, 2023, 361, 130-146.	9.9	3
820	Lipid Nanoparticles Optimized for Targeting and Release of Nucleic Acid. Advanced Materials, 2024, 36, .	21.0	5
821	Lipid nanoparticle-based mRNA delivery systems for cancer immunotherapy. Nano Convergence, 2023, 10, .	12.1	6
822	Lipidâ€based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm, 2023, 4, .	7.2	1
823	Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	11
824	The interplay of quaternary ammonium lipid structure and protein corona on lung-specific mRNA delivery by selective organ targeting (SORT) nanoparticles. Journal of Controlled Release, 2023, 361, 361-372.	9.9	10
825	Non-Invasive Vaccines: Challenges in Formulation and Vaccine Adjuvants. Pharmaceutics, 2023, 15, 2114.	4.5	1
826	Revitalizing Cytokineâ€Based Cancer Immunotherapy through Advanced Delivery Systems. Macromolecular Bioscience, 2023, 23, .	4.1	0
827	DS-5670a, a novel mRNA-encapsulated lipid nanoparticle vaccine against severe acute respiratory syndrome coronavirus 2: Results from a phase 2 clinical study. Vaccine, 2023, 41, 5525-5534.	3.8	0
828	Nanoparticle platform comprising lipid-tailed pH-sensitive carbon dots with minimal drug loss. Journal of Controlled Release, 2023, 361, 373-384.	9.9	1
829	Branched hydrophobic tails in lipid nanoparticles enhance mRNA delivery for cancer immunotherapy. Biomaterials, 2023, 301, 122279.	11.4	5
830	The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environmental Research, 2023, 237, 116894.	7.5	10
831	A Synthetic Poly(A) Tail Targeting Extracellular CIRP Inhibits Sepsis. Journal of Immunology, 2023, 211, 1144-1153.	0.8	4
832	基于病æ-'æ·é¢—ç²'çš"mRNA递é€ç³»ç»Ÿç"究进展. Chinese Science Bulletin, 2023, , .	0.7	0
833	Targeting cancer with mRNA–lipid nanoparticles: key considerations and future prospects. Nature Reviews Clinical Oncology, 2023, 20, 739-754.	27.6	17
834	Nanotechnology-based mRNA vaccines. Nature Reviews Methods Primers, 2023, 3, .	21.2	19

#	Article	IF	CITATIONS
835	Telomerase mRNA Enhances Human Skin Engraftment for Wound Healing. Advanced Healthcare Materials, 2024, 13 , .	7.6	0
836	Cell unit-inspired natural nano-based biomaterials as versatile building blocks for bone/cartilage regeneration. Journal of Nanobiotechnology, 2023, 21, .	9.1	1
837	Physalis Mottle Virus-Like Nanocarriers with Expanded Internal Loading Capacity. Bioconjugate Chemistry, 0 , 0 ,	3.6	2
838	Emerging platinum(IV) prodrug nanotherapeutics: A new epoch for platinum-based cancer therapy. Journal of Controlled Release, 2023, 361, 819-846.	9.9	4
839	Dendritic Cell Vaccines: A Shift from Conventional Approach to New Generations. Cells, 2023, 12, 2147.	4.1	7
840	Flow-based assembly of nucleic acid-loaded polymer nanoparticles. Australian Journal of Chemistry, 2023, , NULL.	0.9	0
842	mRNA-Based Nanomedicine: A New Strategy for Treating Infectious Diseases and Beyond. European Journal of Drug Metabolism and Pharmacokinetics, 2023, 48, 515-529.	1.6	1
843	Magainin 2-derived stapled peptides derived with the ability to deliver pDNA, mRNA, and siRNA into cells. Chemical Science, 2023, 14, 10403-10410.	7.4	0
844	DNA Origami: From Molecular Folding Art to Drug Delivery Technology. Advanced Materials, 0, , .	21.0	3
845	Advanced Materials and Delivery Systems for Enhancement of Chimeric Antigen Receptor Cells. Small Methods, 2023, 7, .	8.6	0
846	Design and fabrication of intracellular therapeutic cargo delivery systems based on nanomaterials: current status and future perspectives. Journal of Materials Chemistry B, 2023, 11, 7873-7912.	5.8	2
847	Microfluidic synthesis of nanomaterials for biomedical applications. Nanoscale Horizons, 0, , .	8.0	0
848	Polysarcosine-Functionalized mRNA Lipid Nanoparticles Tailored for Immunotherapy. Pharmaceutics, 2023, 15, 2068.	4.5	7
849	Vaccines' New Era-RNA Vaccine. Viruses, 2023, 15, 1760.	3.3	5
850	Comprehensive Evaluation of Lipid Nanoparticles and Polyplex Nanomicelles for Muscle-Targeted mRNA Delivery. Pharmaceutics, 2023, 15, 2291.	4.5	2
851	<scp>PEGylated /scp> therapeutics in the clinic. Bioengineering and Translational Medicine, 2024, 9, .</scp>	7.1	4
852	Molecular-Level Structural Analysis of siRNA-Loaded Lipid Nanoparticles by ¹ H NMR Relaxometry: Impact of Lipid Composition on Their Structural Properties. Molecular Pharmaceutics, 2023, 20, 4729-4742.	4.6	1
853	Strategies for Targeted Delivery via Structurally Variant Polymeric Nanocarriers. ChemistrySelect, 2023, 8, .	1.5	0

#	Article	IF	Citations
854	Coding Therapeutic Nucleic Acids from Recombinant Proteins to Next-Generation Vaccines: Current Uses, Limitations, and Future Horizons. Molecular Biotechnology, $0, , .$	2.4	2
855	Nanotechnology-based theranostic and prophylactic approaches against SARS-CoV-2. Immunologic Research, 0, , .	2.9	1
856	Particle Metrology Approach to Understanding How Storage Conditions Affect Long-Term Liposome Stability. Langmuir, 2023, 39, 12313-12323.	3.5	1
857	<scp>DNA</scp> nanostructures as biomolecular scaffolds for antigen display. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2024, 16, .	6.1	0
858	Computational design of mRNA vaccines. Vaccine, 2023, , .	3.8	1
859	The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. International Journal of Molecular Sciences, 2023, 24, 14820.	4.1	2
860	Updated Considerations for the Immunopharmacological Aspects of the "Talented mRNA Vaccines― Vaccines, 2023, 11, 1481.	4.4	1
861	Smart and versatile biomaterials for cutaneous wound healing. Biomaterials Research, 2023, 27, .	6.9	5
862	Preparation and stability of pegylated poly(S-alkyl-L-homocysteine) coacervate core micelles in aqueous media. European Physical Journal E, 2023, 46, .	1.6	0
863	Nanotechnology of inhalable vaccines for enhancing mucosal immunity. Drug Delivery and Translational Research, 0, , .	5.8	0
864	Engineering nanoparticle toolkits for mRNA delivery. Advanced Drug Delivery Reviews, 2023, 200, 115042.	13.7	11
865	Liposomal co-delivery of toll-like receptors 3 and 7 agonists induce a hot triple-negative breast cancer immune environment. Journal of Controlled Release, 2023, 361, 443-454.	9.9	2
866	Single Particle Chemical Characterisation of Nanoformulations for Cargo Delivery. AAPS Journal, 2023, 25, .	4.4	1
867	Dual mRNA co-delivery for in situ generation of phagocytosis-enhanced CAR macrophages augments hepatocellular carcinoma immunotherapy. Journal of Controlled Release, 2023, 360, 718-733.	9.9	6
868	Recent advances in strategies for developing tissue-selective mRNA-LNP technology. Chinese Science Bulletin, 2023, , .	0.7	0
869	Genetically Engineered Biomimetic Nanoparticles for Targeted Delivery of mRNA to Treat Rheumatoid Arthritis. Small Methods, 2023, 7, .	8.6	4
870	Generative design of therapeutics that bind and modulate protein states. Current Opinion in Biomedical Engineering, 2023, 28, 100496.	3.4	1
871	Machine learning instructed microfluidic synthesis of curcumin-loaded liposomes. Biomedical Microdevices, 2023, 25, .	2.8	2

#	Article	IF	CITATIONS
872	Chemical Modifications of mRNA Ends for Therapeutic Applications. Accounts of Chemical Research, 2023, 56, 2814-2826.	15.6	4
873	Nanovaccines: A game changing approach in the fight against infectious diseases. Biomedicine and Pharmacotherapy, 2023, 167, 115597.	5.6	7
874	Recent advances on emerging nanomaterials for diagnosis and treatment of inflammatory bowel disease. Journal of Controlled Release, 2023, 363, 149-179.	9.9	1
875	Get out or die trying: Peptide- and protein-based endosomal escape of RNA therapeutics. Advanced Drug Delivery Reviews, 2023, 200, 115047.	13.7	10
876	Release of molecules from nanocarriers. Physical Chemistry Chemical Physics, 2023, 25, 28955-28964.	2.8	2
877	Deciphering Structural Determinants Distinguishing Active from Inactive Cell-Penetrating Peptides for Cytosolic mRNA Delivery. Bioconjugate Chemistry, 2023, 34, 1822-1834.	3.6	0
879	In Vitro Transcribed RNA-Based Platform Vaccines: Past, Present, and Future. Vaccines, 2023, 11, 1600.	4.4	1
880	Combinatorial Screening of Cationic Lipidoids Reveals How Molecular Conformation Affects Membrane-Targeting Antimicrobial Activity. ACS Applied Materials & Interfaces, 2023, 15, 40178-40190.	8.0	1
881	Environmentâ€Responsive Peptide Dimers Bind and Stabilize Doubleâ€Stranded RNA. Angewandte Chemie - International Edition, 2023, 62, .	13.8	0
882	Environmentâ€Responsive Peptide Dimers Bind and Stabilize Doubleâ€Stranded RNA. Angewandte Chemie, 2023, 135, .	2.0	0
883	Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS Materials Au, 2023, 3, 600-619.	6.0	11
884	The power of sulfhydryl groups: Thiolated lipid-based nanoparticles enhance cellular uptake of nucleic acids. Journal of Colloid and Interface Science, 2024, 654, 1136-1145.	9.4	1
885	Nano-bio interactions in mRNA nanomedicine: Challenges and opportunities for targeted mRNA delivery. Advanced Drug Delivery Reviews, 2023, 203, 115116.	13.7	6
886	mRNA-based vaccines and therapeutics: an in-depth survey of current and upcoming clinical applications. Journal of Biomedical Science, 2023, 30, .	7.0	10
887	Micro―and Nanomanufacturing for Biomedical Applications and Nanomedicine: A Perspective. Small Science, 2023, 3, .	9.9	0
888	Effect of mRNA-LNP components of two globally-marketed COVID-19 vaccines on efficacy and stability. Npj Vaccines, 2023, 8, .	6.0	11
889	Advances in surface functionalization of next-generation metal-organic frameworks for biomedical applications: Design, strategies, and prospects. CheM, 2024, 10, 504-543.	11.7	1
890	Modular Bioorthogonal Lipid Nanoparticle Modification Platforms for Cardiac Homing. Journal of the American Chemical Society, 2023, 145, 22659-22670.	13.7	1

#	Article	IF	CITATIONS
891	Using RNA-based therapies to target the kidney in cardiovascular disease. Frontiers in Cardiovascular Medicine, $0,10,1$	2.4	1
892	An insight of different classes of RNA-based therapeutic, nanodelivery and clinical status: current landscape. Current Research in Biotechnology, 2023, , 100150.	3.7	0
893	Chimeric antigen receptor therapy meets mRNA technology. Trends in Biotechnology, 2024, 42, 228-240.	9.3	1
894	Overview of Solid Lipid Nanoparticles in Breast Cancer Therapy. Pharmaceutics, 2023, 15, 2065.	4.5	3
895	â€~Passive' nanoparticles for organ-selective systemic delivery: design, mechanism and perspective. Chemical Society Reviews, 2023, 52, 7579-7601.	38.1	5
896	The use of nanomaterials in advancing photodynamic therapy (PDT) for deep-seated tumors and synergy with radiotherapy. Frontiers in Bioengineering and Biotechnology, $0,11,.$	4.1	4
897	Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina. Nature Communications, $2023, 14, \ldots$	12.8	7
898	RNA Nanomedicine: Delivery Strategies and Applications. AAPS Journal, 2023, 25, .	4.4	1
899	Ionizable Lipid Nanoparticles with Integrated Immune Checkpoint Inhibition for mRNA CAR T Cell Engineering. Advanced Healthcare Materials, 2023, 12, .	7.6	6
900	3D-Printed Microcubes for Catalase Drug Delivery. ACS Omega, 2023, 8, 26775-26781.	3.5	0
901	An in vitro-transcribed circular RNA targets the mitochondrial inner membrane cardiolipin to ablate EIF4G2+/PTBP1+ pan-adenocarcinoma. Nature Cancer, 2024, 5, 30-46.	13.2	1
902	Protein-based delivery systems for RNA delivery. Journal of Controlled Release, 2023, 363, 253-274.	9.9	2
903	The global patent landscape of mRNA for diagnosis and therapy. Nature Biotechnology, 2023, 41, 1193-1199.	17.5	0
904	Impact of ethanol on continuous inline diafiltration of liposomal drug products. Biotechnology Journal, 2023, 18, .	3.5	0
906	GLA-modified RNA treatment lowers GB3 levels in iPSC-derived cardiomyocytes from Fabry-affected individuals. American Journal of Human Genetics, 2023, 110, 1600-1605.	6.2	0
907	Engineered Plant-Derived Nanovesicles Facilitate Tumor Therapy: Natural Bioactivity Plus Drug Controlled Release Platform. International Journal of Nanomedicine, 0, Volume 18, 4779-4804.	6.7	2
908	Induction of liver-resident memory T cells and protection at liver-stage malaria by mRNA-containing lipid nanoparticles. Frontiers in Immunology, 0, 14 , .	4.8	2
909	Incorporation of noncanonical base Z yields modified mRNA with minimal immunogenicity and improved translational capacity in mammalian cells. IScience, 2023, 26, 107739.	4.1	0

#	Article	IF	CITATIONS
910	A Multidimensional Approach to Modulating Ionizable Lipids for Highâ€Performing and Organ elective mRNA Delivery. Angewandte Chemie, 2023, 135, .	2.0	0
911	Poly- <scp>L</scp> -lysine as a crosslinker in bile acid and alginate nanoaggregates for gene delivery in auditory cells. Nanomedicine, 2023, 18, 1247-1260.	3.3	1
912	A Multidimensional Approach to Modulating Ionizable Lipids for Highâ€Performing and Organâ€Selective mRNA Delivery. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
913	Modulating Plaque Inflammation <i>via</i> Targeted mRNA Nanoparticles for the Treatment of Atherosclerosis. ACS Nano, 2023, 17, 17721-17739.	14.6	3
914	The promise of RNA-based therapeutics in revolutionizing heart failure management $\hat{a}\in$ " a narrative review of current evidence. Annals of Medicine and Surgery, 2023, 85, 4442-4453.	1.1	0
915	A facile method to prepare non-cationic mRNA lipid-nanoparticles based on frame guided assembly strategy. Nano Today, 2023, 52, 101991.	11.9	2
916	Ushering in the era of tRNA medicines. Journal of Biological Chemistry, 2023, 299, 105246.	3.4	2
917	Protein Corona Formation on Lipid Nanoparticles Negatively Affects the NLRP3 Inflammasome Activation. Bioconjugate Chemistry, 2023, 34, 1766-1779.	3. 6	4
918	Differences and Similarities of the Intravenously Administered Lipid Nanoparticles in Three Clinical Trials: Potential Linkage between Lipid Nanoparticles and Extracellular Vesicles. Molecular Pharmaceutics, 2023, 20, 4883-4892.	4.6	1
919	Editorial: Advanced polymeric biomaterial technologies for biomedical applications. Frontiers in Materials, $0,10,10$	2.4	0
920	Enrichment of nano delivery platforms for mRNA-based nanotherapeutics. Medical Review, 2023, .	1.2	0
921	<scp>RNA</scp> â€based medicine: from molecular mechanisms to therapy. EMBO Journal, 2023, 42, .	7.8	7
922	Lipid Nanoparticles Deliver mRNA to the Brain after an Intracerebral Injection. Biochemistry, 0, , .	2.5	1
923	Cooperative Assembly of Self-Adjusting \hat{l} ±-Helical Coiled Coils along the Length of an mRNA Chain to Form a Thermodynamically Stable Nanotube Carrier. Journal of the American Chemical Society, 2023, 145, 23048-23056.	13.7	1
924	Quantitative size-resolved characterization of mRNA nanoparticles by in-line coupling of asymmetrical-flow field-flow fractionation with small angle X-ray scattering. Scientific Reports, 2023, 13, .	3.3	2
925	Gene-editing technology, from macromolecule therapeutics to organ transplantation: Applications, limitations, and prospective uses. International Journal of Biological Macromolecules, 2023, 253, 127055.	7.5	1
926	Enhancing Cancer Chemoâ€Immunotherapy: Innovative Approaches for Overcoming Immunosuppression by Functional Nanomaterials. Small Methods, 2024, 8, .	8.6	2
927	Theranostic Lipid Nanoparticles for Renal Cell Carcinoma. Advanced Materials, 0, , .	21.0	2

#	Article	IF	CITATIONS
928	Hyaluronan decorated layer-by-layer assembled lipid nanoparticles for miR-181a delivery in glioblastoma treatment. Biomaterials, 2023, 302, 122341.	11.4	2
929	Differential cellular responses to FDA-approved nanomedicines: an exploration of albumin-based nanocarriers and liposomes in protein corona formation. Nanoscale, 0, , .	5.6	0
931	Drug Delivery Systems: Lipid Nanoparticles Technology in Clinic. , 2023, , 181-200.		0
932	Genome and transcriptome engineering by compact and versatile CRISPR-Cas systems. Drug Discovery Today, 2023, 28, 103793.	6.4	0
933	Physiological Barriers and Strategies of Lipidâ€Based Nanoparticles for Nucleic Acid Drug Delivery. Advanced Materials, 0, , .	21.0	5
934	Engineering approaches for innate immune-mediated tumor microenvironment remodeling. Immuno-Oncology Technology, 2024, 21, 100406.	0.3	0
936	Recent advancement in targeted therapy and role of emerging technologies to treat cancer. , 2023, 40, .		2
937	Delivery of mRNA for cancer therapy: progress and prospects. Nano Today, 2023, 53, 102013.	11.9	0
939	mRNA Cancer Vaccines: Construction and Boosting Strategies. ACS Nano, 2023, 17, 19550-19580.	14.6	5
940	Silk Nanoparticle Synthesis: Tuning Size, Dispersity, and Surface Chemistry for Drug Delivery. ACS Applied Nano Materials, 2023, 6, 18967-18977.	5.0	1
941	Reversible, Covalent DNA Condensation Approach Using Chemical Linkers for Enhanced Gene Delivery. Nano Letters, 2023, 23, 9310-9318.	9.1	0
942	Prevention of liposome cryoaggregation by a radish (Raphanus sativus L.) vacuolar calcium-binding protein (RVCaB). Food Bioscience, 2023, 56, 103276.	4.4	0
943	Recent advances in nano- and micro-scale carrier systems for controlled delivery of vaccines. Biomaterials, 2023, 303, 122345.	11.4	0
945	Modular Design of Biodegradable Ionizable Lipids for Improved mRNA Delivery and Precise Cancer Metastasis Delineation In Vivo. Journal of the American Chemical Society, 2023, 145, 24302-24314.	13.7	4
946	Antigen cross-presentation in dendric cells: From bench to bedside. Biomedicine and Pharmacotherapy, 2023, 168, 115758.	5.6	0
947	Astrocyte-targeted siRNA delivery by adenosine-functionalized LNP in mouse TBI model. Molecular Therapy - Nucleic Acids, 2023, 34, 102065.	5.1	2
948	Modulation of immune cells with mRNA nanoformulations for cancer immunotherapy. Current Opinion in Biotechnology, 2023, 84, 103014.	6.6	0
949	Combining molecular dynamics simulations and x-ray scattering techniques for the accurate treatment of protonation degree and packing of ionizable lipids in monolayers. Journal of Chemical Physics, 2023, 159, .	3.0	1

#	Article	IF	CITATIONS
950	Lipid Nanoparticle Encapsulation Empowers Poly(I:C) to Activate Cytoplasmic RLRs and Thereby Increases Its Adjuvanticity. Small, $0, \dots$	10.0	1
951	Inverse Cubic and Hexagonal Mesophase Evolution within Ionizable Lipid Nanoparticles Correlates with mRNA Transfection in Macrophages. Journal of the American Chemical Society, 0, , .	13.7	2
952	Dendritic Cellâ€Mimicking Nanoparticles Promote mRNA Delivery to Lymphoid Organs. Advanced Science, 2023, 10, .	11.2	0
953	Characterization of thraustochytrid-specific sterol $\langle i \rangle O \langle i \rangle$ -acyltransferase: modification of DGAT2-like enzyme to increase the sterol production in $\langle i \rangle$ Aurantiochytrium limacinum $\langle i \rangle$ mh0186. Applied and Environmental Microbiology, 2023, 89, .	3.1	1
954	Precision Sequenceâ€Defined Polymers: From Sequencing to Biological Functions. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
955	Precision Sequenceâ€Defined Polymers: From Sequencing to Biological Functions. Angewandte Chemie, 2024, 136, .	2.0	0
956	Vaccine approaches for antigen capture by liposomes. Expert Review of Vaccines, 2023, 22, 1022-1040.	4.4	2
957	CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nature Reviews Clinical Oncology, 2024, 21, 47-66.	27.6	14
958	Stimuliâ€Responsive Nanotechnology for RNA Delivery. Advanced Science, 2023, 10, .	11.2	0
959	Engineered Silica Nanoparticles for Nucleic Acid Delivery. Small Methods, 0, , .	8.6	0
960	Engineering metabolism to modulate immunity. Advanced Drug Delivery Reviews, 2024, 204, 115122.	13.7	0
961	Biohybrid nanoparticles for treating arthritis. Nature Nanotechnology, 2023, 18, 1387-1388.	31.5	0
962	Nanostructured Lipid Carriers for Improved Delivery of Therapeutics via the Oral Route. Journal of Nanotechnology, 2023, 2023, 1-35.	3.4	1
963	Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. International Journal of Biological Macromolecules, 2024, 254, 127911.	7.5	6
964	Sustained CREB phosphorylation by lipid-peptide liquid crystalline nanoassemblies. Communications Chemistry, 2023, 6, .	4.5	2
965	YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles. Advanced Science, 2024, 11, .	11.2	1
966	Cationic Materials for Gene Therapy: A Look Back to the Birth and Development of 2,2-Bis-(hydroxymethyl)Propanoic Acid-Based Dendrimer Scaffolds. International Journal of Molecular Sciences, 2023, 24, 16006.	4.1	2
967	A landscape of recent advances in lipid nanoparticles and their translational potential for the treatment of solid tumors. Bioengineering and Translational Medicine, 2024, 9, .	7.1	0

#	Article	IF	CITATIONS
968	Synthetically Tunable Suprahybrid Nanoparticle Platform for the Efficacious Delivery of Therapeutics. ACS Applied Materials & Interfaces, 0, , .	8.0	0
969	Recruiting In Vitro Transcribed mRNA against Cancer Immunotherapy: A Contemporary Appraisal of the Current Landscape. Current Issues in Molecular Biology, 2023, 45, 9181-9214.	2.4	0
970	Building a Better Silver Bullet: Current Status and Perspectives of Nonâ€Viral Vectors for mRNA Vaccines. Advanced Healthcare Materials, 2024, 13, .	7.6	1
971	Engineering a biomimetic system for hepatocyte-specific RNAi treatment of non-alcoholic fatty liver disease. Acta Biomaterialia, 2024, 174, 281-296.	8.3	2
972	Enhancing anti-viral neutralization response to immunization with HIV-1 envelope glycoprotein immunogens. Npj Vaccines, 2023, 8, .	6.0	1
973	Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. Naunyn-Schmiedeberg's Archives of Pharmacology, 0, , .	3.0	7
974	Straight to the point: targeted mRNA-delivery to immune cells for improved vaccine design. Frontiers in Immunology, 0, 14 , .	4.8	3
975	Advances in the Study of Liposomes Gel with Stimulus Responsiveness in Disease Treatment. Journal of Cluster Science, 2024, 35, 701-714.	3.3	1
976	Impact of the Core Chemistry of Selfâ€Assembled Spherical Nucleic Acids on their <i>In Vitro</i> Fate. Angewandte Chemie, 2023, 135, .	2.0	0
977	Impact of the Core Chemistry of Selfâ€Assembled Spherical Nucleic Acids on their <i>In Vitro</i> Fate. Angewandte Chemie - International Edition, 2023, 62, .	13.8	0
978	A new age of precision gene therapy. Lancet, The, 2024, 403, 568-582.	13.7	1
979	mRNA and Synthesis-Based Therapeutic Proteins: A Non-Recombinant Affordable Option. Biologics, 2023, 3, 355-379.	4.1	1
980	mRNA Lipid Nanoparticles for <i>Ex Vivo</i> Engineering of Immunosuppressive T Cells for Autoimmunity Therapies. Nano Letters, 2023, 23, 10179-10188.	9.1	1
981	Advancing personalized medicine in brain cancer: exploring the role of mRNA vaccines. Journal of Translational Medicine, 2023, 21, .	4.4	0
982	Multistage Self-Assembled Nanomaterials for Cancer Immunotherapy. Molecules, 2023, 28, 7750.	3.8	2
983	mRNA vaccines and their delivery strategies: A journey from infectious diseases to cancer. Molecular Therapy, 2024, 32, 13-31.	8.2	1
984	Gelatin methacryloyl granular scaffolds for localized mRNA delivery. Aggregate, 0, , .	9.9	0
985	From structural design to delivery: mRNA therapeutics for cancer immunotherapy. Exploration, 0, , .	11.0	3

#	Article	IF	CITATIONS
986	Nucleic Acid-Based Approaches to Tackle KRAS Mutant Cancers. International Journal of Molecular Sciences, 2023, 24, 16933.	4.1	0
987	Cell interactions with lipid nanoparticles possessing different internal nanostructures: Liposomes, bicontinuous cubosomes, hexosomes, and discontinuous micellar cubosomes. Journal of Colloid and Interface Science, 2024, 656, 409-423.	9.4	O
988	Structural engineered living materials. Nano Research, 2024, 17, 715-733.	10.4	1
989	Alleviation of ischemia-reperfusion induced renal injury by chemically modified SOD2 mRNA delivered via lipid nanoparticles. Molecular Therapy - Nucleic Acids, 2023, 34, 102067.	5.1	1
990	Exosomes: Membrane-associated proteins, challenges and perspectives. Biochemistry and Biophysics Reports, 2024, 37, 101599.	1.3	1
991	From bench to bedside: potential of translational research in COVID-19 and beyond. Briefings in Functional Genomics, 0, , .	2.7	0
992	Advances in Cancer Vaccine Research. ACS Biomaterials Science and Engineering, 2023, 9, 5999-6023.	5.2	3
993	Sample transformation in online separations: how chemical conversion advances analytical technology. Chemical Communications, 2023, 60, 36-50.	4.1	1
994	Nanotherapeutic Heterogeneity: Sources, Effects, and Solutions. Small, 0, , .	10.0	2
995	An updated review of YAP: A promising therapeutic target against cardiac aging?. International Journal of Biological Macromolecules, 2024, 254, 127670.	7.5	0
996	Structural determinants of stimuli-responsiveness in amphiphilic macromolecular nano-assemblies. Progress in Polymer Science, 2024, 148, 101765.	24.7	0
997	Nucleic acid degradation as barrier to gene delivery: a guide to understand and overcome nuclease activity. Chemical Society Reviews, 2024, 53, 317-360.	38.1	2
998	Screening for lipid nanoparticles that modulate the immune activity of helper T cells towards enhanced antitumour activity. Nature Biomedical Engineering, 0, , .	22.5	3
999	In Vivo mRNA CAR T Cell Engineering via Targeted Ionizable Lipid Nanoparticles with Extrahepatic Tropism. Small, $0, , .$	10.0	3
1000	Phaseâ€Separated Lipidâ€Based Nanoparticles: Selective Behavior at the Nanoâ€Bio Interface. Advanced Materials, 2024, 36, .	21.0	1
1001	Cancer vaccines in the clinic. Bioengineering and Translational Medicine, 2024, 9, .	7.1	1
1002	Cationic LNP-formulated mRNA expressing Tie2-agonist in the lung endothelium prevents pulmonary vascular leakage. Molecular Therapy - Nucleic Acids, 2023, 34, 102068.	5.1	1
1004	Multiphysics-Informed Pharmacokinetic Modeling of Systemic Exposure of Intramuscularly Injected LNPs. Molecular Pharmaceutics, 2023, 20, 6162-6168.	4.6	1

#	ARTICLE	IF	CITATIONS
1005	Lipid-Based Nanoparticles as Targeted Delivery System in Korat Chicken. ACS Food Science & Technology, 2023, 3, 1913-1919.	2.7	0
1006	Cellular Trafficking of Nanotechnologyâ€Mediated mRNA Delivery. Advanced Materials, 0, , .	21.0	2
1007	MicroRNA-200 Loaded Lipid Nanoparticles Promote Intestinal Epithelium Regeneration in Canonical MicroRNA-Deficient Mice. ACS Nano, 2023, 17, 22901-22915.	14.6	0
1008	mRNAs encoding self-DNA reactive cGAS enhance the immunogenicity of lipid nanoparticle vaccines. MBio, 2023, 14, .	4.1	1
1009	Assembly and optically triggered disassembly of lipid–DNA origami fibers. Chemical Communications, 2023, 59, 14701-14704.	4.1	0
1012	Lipids and Liposomes Delivery of Nutritional Components. , 2024, , 1-36.		0
1013	Recent advancements in cancer vaccines: A systematic review. Vacunas, 2024, 25, 97-108.	2.0	1
1015	Antitumor effects of chemically modified miR-143 lipoplexes in a mouse model of pelvic colorectal cancer via myristoylated alanine-rich C kinase substrate downregulation. Molecular Therapy - Nucleic Acids, 2023, 34, 102079.	5.1	0
1017	Delivery of mRNA Vaccine with 1, 2â€Diestersâ€Derived Lipids Elicits Fast Liver Clearance for Safe and Effective Cancer Immunotherapy. Advanced Healthcare Materials, 2024, 13, .	7.6	0
1018	Micro/nanosystems for controllable drug delivery to the brain. Innovation(China), 2024, 5, 100548.	9.1	0
1019	Modular Engineering of Aptamerâ€Based Nanobiotechnology for Conditional Control of ATP Sensing. Advanced Materials, 0, , .	21.0	1
1020	Intradermal Delivery of Naked mRNA Vaccines via Iontophoresis. Pharmaceutics, 2023, 15, 2678.	4.5	0
1021	Delineation of DNA and mRNA COVID-19 vaccine-induced immune responses in preclinical animal models. Human Vaccines and Immunotherapeutics, 2023, 19, .	3.3	0
1022	Intranasal mRNA Delivery <i>via</i> Customized RNA-Polyplex Nanoparticles Enhancing Gene Expression through Photochemical Mechanisms. ACS Applied Materials & Enhancing Gene (Compared to the Compared to the	8.0	0
1023	Regulation of Antigenâ€Specific Immunotherapy with Nanomaterials. Advanced NanoBiomed Research, 2023, 3, .	3.6	0
1024	tRNA therapeutics for genetic diseases. Nature Reviews Drug Discovery, 2024, 23, 108-125.	46.4	1
1025	lonic liquid-coated lipid nanoparticles increase siRNA uptake into CNS targets. Nanoscale Advances, 0, ,	4.6	0
1026	Emerging Strategies for Immunotherapy of Solid Tumors Using Lipidâ€Based Nanoparticles. Advanced Science, 2024, 11, .	11.2	O

#	Article	IF	CITATIONS
1027	pH-dependent structural transitions in cationic ionizable lipid mesophases are critical for lipid nanoparticle function. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	6
1028	Effect of lipid composition on RNA-Lipid nanoparticle properties and their sensitivity to thin-film freezing and drying. International Journal of Pharmaceutics, 2024, 650, 123688.	5.2	1
1029	Combinatorial design of ionizable lipid nanoparticles for muscle-selective mRNA delivery with minimized off-target effects. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	3
1030	On the interactions between RNA and titrateable lipid layers: implications for RNA delivery with lipid nanoparticles. Nanoscale, 2024, 16, 777-794.	5.6	1
1031	Aptamer-functionalized liposomes for drug delivery. Biomedical Journal, 2023, , 100685.	3.1	0
1032	Caspase inhibition improves viability and efficiency of liposomal transfection. Scientific Reports, 2023, 13, .	3.3	O
1033	Nanotechnology Platform for Advancing Vaccine Development against the COVID-19 Virus. Diseases (Basel, Switzerland), 2023, 11, 177.	2.5	0
1034	Stimuli-Responsive Drug Delivery Systems Based on Bilayer Lipid Vesicles: New Trends. Colloid Journal, 2023, 85, 687-702.	1.3	1
1035	Molecular Mechanisms of Cationic Fusogenic Liposome Interactions with Bacterial Envelopes. Journal of the American Chemical Society, 2023, 145, 28240-28250.	13.7	1
1036	Metallic Cation-Mediated Entrapment of Nucleic Acids on Mesoporous Silica Surface: Application in Castration-Resistant Prostate Cancer. Chemistry of Materials, 0, , .	6.7	0
1037	A poly(amidoamine)-based polymeric nanoparticle platform for efficient in vivo delivery of mRNA., 2024, 156, 213713.		2
1038	Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	6
1039	Multivalent Display of Erythropoietin on Quantum Dots Enhances Aquaporin-4 Expression and Water Transport in Human Astrocytes <i>In Vitro</i> . Bioconjugate Chemistry, 2023, 34, 2205-2214.	3.6	0
1040	Fusogenic Coiled-Coil Peptides Enhance Lipid Nanoparticle-Mediated mRNA Delivery upon Intramyocardial Administration. ACS Nano, 2023, 17, 23466-23477.	14.6	0
1041	Computational approaches to lipid-based nucleic acid delivery systems. European Physical Journal E, 2023, 46, .	1.6	0
1042	Anti-Idiotypic mRNA Vaccine to Treat Autoimmune Disorders. Vaccines, 2024, 12, 9.	4.4	0
1043	Solid lipid nanoparticle-based drug delivery for pancreatic cancer. , 2024, , 267-295.		0
1044	Nanophytosome formulation of \hat{l}^2 -1,3-glucan and Euglena gracilis extract for drug delivery applications. MethodsX, 2023, 11, 102480.	1.6	0

#	Article	IF	CITATIONS
1045	Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer. Chinese Physics B, 0 , , .	1.4	0
1046	Programming human cell fate: overcoming challenges and unlocking potential through technological breakthroughs. Development (Cambridge), 2023, 150, .	2.5	0
1047	Biomimetic noncationic lipid nanoparticles for mRNA delivery. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
1048	3D-printed microfluidic device for high-throughput production of lipid nanoparticles incorporating SARS-CoV-2 spike protein mRNA. Lab on A Chip, 2024, 24, 162-170.	6.0	1
1049	Identification of Messenger RNA Signatures in Age-Dependent Renal Impairment. Diagnostics, 2023, 13, 3653.	2.6	0
1050	Enhanced clearance of C. muridarum infection using azithromycin-loaded liposomes. International Journal of Pharmaceutics, 2024, 650, 123709.	5.2	O
1051	Bioinspired Spatiotemporal Management toward RNA Therapies. ACS Nano, 2023, 17, 24539-24563.	14.6	4
1052	Positive directions from negative results. Journal of Cell Science, 2023, 136, .	2.0	0
1053	Nucleotide modifications enable rational design of TLR7-selective ligands by blocking RNase cleavage. Journal of Experimental Medicine, 2024, 221, .	8.5	0
1054	Development of stealth nanoparticles coated with poly(2â€methoxyethyl vinyl ether) as an alternative to poly(ethylene glycol). Journal of Applied Polymer Science, 2024, 141, .	2.6	0
1055	Potent efficiency of the novel nitazoxanide-loaded nanostructured lipid carriers against experimental cyclosporiasis. PLoS Neglected Tropical Diseases, 2023, 17, e0011845.	3.0	0
1056	Intracellular Protein Delivery: Approaches, Challenges, and Clinical applications. BME Frontiers, 0, , .	4.5	0
1057	<i>In Vivo</i> Prime Editing by Lipid Nanoparticle Co-Delivery of Chemically Modified pegRNA and Prime Editor mRNA., 2023, 2, 490-502.		1
1058	SARS-CoV-2 Vaccination and the Multi-Hit Hypothesis of Oncogenesis. Cureus, 2023, , .	0.5	1
1059	In situ production and secretion of proteins endow therapeutic benefit against psoriasiform dermatitis and melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	0
1060	Immune response to the components of lipid nanoparticles for ribonucleic acid therapeutics. Current Opinion in Biotechnology, 2024, 85, 103049.	6.6	1
1061	Soybean Oilâ€Đerived Lipids for Efficient mRNA Delivery. Advanced Materials, 0, , .	21.0	1
1062	Zwitterionic materials for nucleic acid delivery and therapeutic applications. Journal of Controlled Release, 2024, 365, 919-935.	9.9	O

#	Article	IF	CITATIONS
1064	Monovalent SARS-COV-2 mRNA vaccine using optimal UTRs and LNPs is highly immunogenic and broadly protective against Omicron variants. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	1
1065	The potential of mRNA vaccines in cancer nanomedicine and immunotherapy. Trends in Immunology, 2023, , .	6.8	0
1066	Mucosal vaccine development for respiratory viral infections., 2024, 2, 50-63.		0
1067	Development of Polymer–Lipid Hybrid Nanoparticles for Large-Sized Plasmid DNA Transfection. ACS Applied Materials & DNA Transfection. ACS Applied Materials & DNA Transfection. ACS	8.0	0
1068	Emerging perspectives on RNA virus-mediated infections: from pathogenesis to therapeutic interventions. World Journal of Virology, 0, 12, 242-255.	2.9	0
1069	Advancement in Lipid-based Nanocomposites for Theranostic Applications in Lung Carcinoma Treatment. OpenNano, 2023, , 100199.	4.8	0
1070	A Synergistic Lipid Nanoparticle Encapsulating Mrna Shingles Vaccine Induces Potent Immune Responses and Protects Guinea Pigs from Viral Challenges. Advanced Materials, 0, , .	21.0	0
1071	Unleashing the Power of Proenzyme Delivery for Targeted Therapeutic Applications Using Biodegradable Lipid Nanoparticles. Accounts of Chemical Research, 0, , .	15.6	0
1072	mRNA vaccines as a revolutionary approach to combat cancer. Postgraduate Medical Journal, 0, , .	1.8	0
1073	Topical gene editing therapeutics using lipid nanoparticles: â€~gene creams' for genetic skin diseases?. British Journal of Dermatology, 0, , .	1.5	0
1074	Separation of Protein Corona from Nanoparticles at the Intracellular Acidic Condition: Effect of Protonation on Nanoparticle-Protein and Protein-Protein Interactions. Physical Chemistry Chemical Physics, 0, , .	2.8	0
1075	Development of polypeptide-based materials toward messenger RNA delivery. Nanoscale, 0, , .	5.6	0
1076	Biological recognition and cellular trafficking of targeted RNA-lipid nanoparticles. Current Opinion in Biotechnology, 2024, 85, 103041.	6.6	1
1077	Influencing Endothelial Cells' Roles in Inflammation and Wound Healing Through Nucleic Acid Delivery. Tissue Engineering - Part A, 2024, 30, 272-286.	3.1	0
1078	Latent Class Analysis Identifies Distinct Phenotypes of Systemic Lupus Erythematosus Predictive of Flares after mRNA COVID-19 Vaccination: Results from the Coronavirus National Vaccine Registry for ImmuNe Diseases SINGapore (CONVIN-SING). Vaccines, 2024, 12, 29.	4.4	0
1080	Lipid-Based Nanocarriers and Applications in Medicine. Recent Advances in Biotechnology, 2023, , 25-56.	0.1	O
1081	Recent advances and clinical translation of liposomal delivery systems in cancer therapy. European Journal of Pharmaceutical Sciences, 2024, 193, 106688.	4.0	4
1082	Ionic liquids meet lipid bilayers: a state-of-the-art review. Biophysical Reviews, 2023, 15, 1909-1939.	3.2	2

#	Article	IF	Citations
1083	Protein-based nanoparticles for therapeutic nucleic acid delivery. Biomaterials, 2024, 305, 122464.	11.4	1
1084	Expanding CAR-T cell immunotherapy horizons through microfluidics. Lab on A Chip, 2024, 24, 1088-1120.	6.0	O
1085	Therapeutic synthetic and natural materials for immunoengineering. Chemical Society Reviews, 2024, 53, 1789-1822.	38.1	0
1086	Current diagnostic and therapeutic approaches for severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) and the role of nanomaterial-based theragnosis in combating the pandemic. Nanotechnology Reviews, 2023, 12, .	5.8	O
1087	Translational medicine for acute lung injury. Journal of Translational Medicine, 2024, 22, .	4.4	1
1088	mRNA vaccines expressing malaria transmission-blocking antigens Pfs25 and Pfs230D1 induce a functional immune response. Npj Vaccines, 2024, 9, .	6.0	0
1089	Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment. Biomaterials, 2024, 305, 122463.	11.4	2
1090	Recent Advances in Nanomodulators for Augmenting Cancer Immunotherapy in Cold Tumors: Insights from Drug Delivery to Drugâ€Free Strategies. Advanced Functional Materials, 2024, 34, .	14.9	O
1091	What can molecular assembly learn from catalysed assembly in living organisms?. Chemical Society Reviews, 2024, 53, 1892-1914.	38.1	0
1092	mRNA therapy corrects defective glutathione metabolism and restores ureagenesis in preclinical argininosuccinic aciduria. Science Translational Medicine, 2024, 16, .	12.4	0
1093	Breaking the mold with RNA—a "RNAissance―of life science. Npj Genomic Medicine, 2024, 9, .	3.8	0
1094	Lipid nanoparticles in targeting Alzheimer's disease. , 2024, , 283-295.		0
1095	Biomimetic Nano-Drug Delivery System: An Emerging Platform for Promoting Tumor Treatment. International Journal of Nanomedicine, 0, Volume 19, 571-608.	6.7	2
1096	Priming agents transiently reduce the clearance of cell-free DNA to improve liquid biopsies. Science, 2024, 383, .	12.6	4
1097	Morphological Characterization of Self-Amplifying mRNA Lipid Nanoparticles. ACS Nano, 2024, 18, 1464-1476.	14.6	2
1098	A Journey of Challenges and Victories: A Bibliometric Worldview of Nanomedicine since the 21st Century. Advanced Materials, 2024, 36, .	21.0	0
1099	Tailoring drug delivery systems by microfluidics for tumor therapy. Materials Today, 2024, 73, 151-178.	14.2	0
1100	<scp>CRISPR</scp> /Cas gene editing and delivery systems for cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2024, 16, .	6.1	O

#	ARTICLE	IF	CITATIONS
1101	Bibliometric and visualized analysis of cancer nanomedicine from 2013 to 2023. Drug Delivery and Translational Research, 0 , , .	5.8	1
1102	A Novel Strategy for the Characterization of Self-Assembled Structures Using the Static Solid-State Phosphorus Nuclear Magnetic Resonance Technique. Journal of Physical Chemistry Letters, 2024, 15, 262-266.	4.6	O
1103	Nucleic acid drug and delivery techniques for disease therapy: Present situation and future prospect., 2024, 2, .		0
1105	Evolution of the structure of lipid nanoparticles for nucleic acid delivery: From in situ studies of formulation to colloidal stability. Journal of Colloid and Interface Science, 2024, 660, 66-76.	9.4	4
1106	Optimization of Aerosolizable Messenger RNA Lipid Nanoparticles for Pulmonary Delivery. Biomedical Science Letters, 2023, 29, 231-241.	0.3	0
1107	Applications of CRISPR/Cas9 gene-editing technology in cancer. , 2024, , .		0
1108	Improving Gene Delivery: Synergy between Alkyl Chain Length and Lipoic Acid for PDMAEMA Hydrophobic Copolymers. Macromolecular Rapid Communications, 2024, 45, .	3.9	0
1109	Engineering immunomodulatory biomaterials to combat bacterial infections. , 0, 2, .		0
1110	Controlling the size and adhesion of DNA droplets using surface- enriched DNA molecules. Soft Matter, 2024, 20, 1275-1281.	2.7	0
1111	CARBON DOTS: Bioimaging and Anticancer Drug Delivery. Chemistry - A European Journal, 2024, 30, .	3.3	O
1113	Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care. Nano Letters, 2024, 24, 920-928.	9.1	1
1114	The Application of Nanovaccines in Autoimmune Diseases. International Journal of Nanomedicine, 0, Volume 19, 367-388.	6.7	O
1116	Polyethylene glycol (PEG) as a broad applicability marker for LC–MS/MS-based biodistribution analysis of nanomedicines. Journal of Controlled Release, 2024, 366, 611-620.	9.9	0
1117	mRNA Vaccine Nanoplatforms and Innate Immunity. Viruses, 2024, 16, 120.	3.3	O
1118	Nanoscale Surface Topography of Polyethylene Glycol-Coated Nanoparticles Composed of Bottlebrush Block Copolymers Prolongs Systemic Circulation and Enhances Tumor Uptake. ACS Nano, 2024, 18, 2815-2827.	14.6	0
1119	Protein Kinase STK24 Promotes Tumor Immune Evasion via the AKTâ€PD‣1 Axis. Advanced Science, 2024, 11, .	11.2	0
1120	Tailoring Gene Transfer Efficacy through the Arrangement of Cationic and Anionic Blocks in Triblock Copolymer Micelles. ACS Macro Letters, 0, , 158-165.	4.8	0
1121	Advances in RNA therapeutics for modulation of â€~undruggable' targets. Progress in Molecular Biology and Translational Science, 2024, , 249-294.	1.7	O

#	Article	IF	CITATIONS
1122	Monitoring stability indicating impurities and aldehyde content in lipid nanoparticle raw material and formulated drugs. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2024, 1234, 124005.	2.3	0
1123	Lipid- and Polymer-Based Nanocarrier Platforms for Cancer Vaccine Delivery. ACS Applied Bio Materials, 0, , .	4.6	0
1124	Chimeric Antigen Cytotoxic Receptors for In Vivo Engineering of Tumor-Targeting NK Cells. ImmunoHorizons, 2024, 8, 97-105.	1.8	0
1126	Microfluidic generation of diverse lipid nanoparticle libraries. Nanomedicine, 2024, 19, 455-457.	3.3	0
1127	Chemistry and Art of Developing Lipid Nanoparticles for Biologics Delivery: Focus on Development and Scale-Up. Pharmaceutics, 2024, 16, 131.	4.5	1
1128	RNA in cardiovascular disease: A new frontier of personalized medicine. Progress in Cardiovascular Diseases, 2024, , .	3.1	0
1130	Nuclear-import receptors as gatekeepers of pathological phase transitions in ALS/FTD. Molecular Neurodegeneration, 2024, 19 , .	10.8	0
1131	Novel Lipid Nanoparticles Stable and Efficient for mRNA Transfection to Antigen-Presenting Cells. International Journal of Molecular Sciences, 2024, 25, 1388.	4.1	0
1132	Preparing for the future of precision medicine: synthetic cell drug regulation. Synthetic Biology, 2024, 9, .	2.2	0
1134	Recent approaches to investigate drug delivery systems through the lymphatic pathway using oral lipid-based formulations. Journal of Pharmaceutical Investigation, 2024, 54, 131-144.	5.3	0
1135	RNA therapeutics: Molecular mechanisms, and potential clinical translations. Progress in Molecular Biology and Translational Science, 2024, , 65-82.	1.7	0
1136	COVID-19 mRNA Vaccines: Lessons Learned from the Registrational Trials and Global Vaccination Campaign. Cureus, 2024, , .	0.5	2
1137	LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing. Nature Communications, 2024, 15, .	12.8	0
1138	Biomimetic proteolipid vesicles for reverting GPI deficiency in paroxysmal nocturnal hemoglobinuria. IScience, 2024, 27, 109021.	4.1	0
1139	Cell-Specific mRNA Therapeutics for Cardiovascular Diseases and Regeneration. Journal of Cardiovascular Development and Disease, 2024, 11, 38.	1.6	0
1140	Novel frontiers in gene therapy: In vivo gene editing. HemaSphere, 2024, 8, .	2.7	O
1141	The Effect of Cholesterol Content on the Adjuvant Activity of Nucleic-Acid-Free Lipid Nanoparticles. Pharmaceutics, 2024, 16, 181.	4.5	0
1142	Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. Advanced Science, 2024, 11 , .	11.2	0

#	Article	IF	CITATIONS
1143	Oligonucleotides and mRNA Therapeutics. , 2024, , 291-321.		0
1144	Building CRISPR Gene Therapies for the Central Nervous System. JAMA Neurology, 2024, 81, 283.	9.0	0
1145	Delivery of Nucleic Acid Drugs for Tumor Therapy: Opportunities and Challenges. Fundamental Research, 2024, , .	3.3	0
1146	Clinical and Preclinical Methods of Heat-Stabilization of Human Vaccines. Molecular Pharmaceutics, 2024, 21, 1015-1026.	4.6	0
1147	Lipid Nanoparticle-Based Delivery System─A Competing Place for mRNA Vaccines. ACS Omega, 2024, 9, 6219-6234.	3.5	0
1148	Lipid Nanocarrierâ€Based mRNA Therapy: Challenges and Promise for Clinical Transformation. Small, 0, ,	10.0	0
1149	Drug catalyzed polymerization yields one pot nanomedicines. , 2024, 2, 238-247.		0
1150	Recent advances in the design and applications of near-infrared II responsive small molecule phototherapeutic agents. Coordination Chemistry Reviews, 2024, 505, 215677.	18.8	0
1151	TGF- \hat{l}^2 R2 signaling coordinates pulmonary vascular repair after viral injury in mice and human tissue. Science Translational Medicine, 2024, 16, .	12.4	1
1152	pHâ€Dependent Lyotropic Liquid Crystalline Mesophase and Ionization Behavior of Phytantriolâ€Based Ionizable Lipid Nanoparticles. Small, 0, , .	10.0	0
1153	Development of a minimal PBPK-QSP modeling platform for LNP-mRNA based therapeutics to study tissue disposition and protein expression dynamics. Frontiers in Nanotechnology, 0, 6, .	4.8	0
1154	Recent trends in the delivery of RNA drugs: Beyond the liver, more than vaccine. European Journal of Pharmaceutics and Biopharmaceutics, 2024, 197, 114203.	4.3	0
1155	Organ/Cell-Selective Intracellular Delivery of Biologics via <i>N</i> -Acetylated Galactosamine-Functionalized Polydisulfide Conjugates. Journal of the American Chemical Society, 2024, 146, 3974-3983.	13.7	0
1156	mRNA Delivery: Challenges and Advances through Polymeric Soft Nanoparticles. International Journal of Molecular Sciences, 2024, 25, 1739.	4.1	0
1157	Combinatorial Screening of Biscarbamate Ionizable Lipids Identifies a Low Reactogenicity Lipid for Lipid Nanoparticle mRNA Delivery. Advanced Functional Materials, 0, , .	14.9	0
1158	Probing Molecular Packing of Lipid Nanoparticles from ³¹ P Solution and Solid-State NMR. Analytical Chemistry, 2024, 96, 2464-2473.	6.5	1
1159	mRNA delivery systems for cancer immunotherapy: Lipid nanoparticles and beyond. Advanced Drug Delivery Reviews, 2024, 206, 115190.	13.7	0
1160	Nanogels: Smart tools to enlarge the therapeutic window of gene therapy. International Journal of Pharmaceutics, 2024, 653, 123864.	5 . 2	0

#	Article	IF	CITATIONS
1161	Unlocking the Mitochondria for Nanomedicine-based Treatments: Overcoming Biological Barriers, Improving Designs, and Selecting Verification Techniques. Advanced Drug Delivery Reviews, 2024, 207, 115195.	13.7	0
1162	Vaccine Nanotechnology for the Prevention of Infectious Diseases. , 2023, , 77-95.		0
1163	Membrane-coated protein nanoparticles for mRNA delivery. Journal of Drug Delivery Science and Technology, 2024, 93, 105427.	3.0	0
1164	Enhancing plant biotechnology by nanoparticle delivery of nucleic acids. Trends in Genetics, 2024, 40, 352-363.	6.7	1
1165	Precision treatment of viral pneumonia through macrophage-targeted lipid nanoparticle delivery. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
1166	Facile adipocyte uptake and liver/adipose tissue delivery of conjugated linoleic acid-loaded tocol nanocarriers for a synergistic anti-adipogenesis effect. Journal of Nanobiotechnology, 2024, 22, .	9.1	0
1167	Targeted gene delivery through receptors with lipid nanoparticles. Journal of Drug Delivery Science and Technology, 2024, 93, 105457.	3.0	0
1168	Working towards the development of vaccines and chemotherapeutics against neosporosis—With all of its ups and downs—Looking ahead. Advances in Parasitology, 2024, , .	3.2	0
1169	Comparative analysis of lipid Nanoparticle-Mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2024, 196, 114207.	4.3	0
1170	Tolerogenic Nano-/Microparticle Vaccines for Immunotherapy. ACS Nano, 0, , .	14.6	0
1171	Correlating Stability-Indicating Biochemical and Biophysical Characteristics with In Vitro Cell Potency in mRNA LNP Vaccine. Vaccines, 2024, 12, 169.	4.4	0
1172	Durable protective efficiency provide by mRNA vaccines require robust immune memory to antigens and weak immune memory to lipid nanoparticles. Materials Today Bio, 2024, 25, 100988.	5. 5	O
1173	Archaeal ether lipids improve internalization and transfection with mRNA lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2024, 197, 114213.	4.3	0
1174	Modulating Lipid Nanoparticles with Histidinamideâ€Conjugated Cholesterol for Improved Intracellular Delivery of mRNA. Advanced Healthcare Materials, 0, , .	7.6	O
1175	Small-angle X-ray scattering unveils the internal structure of lipid nanoparticles. Journal of Colloid and Interface Science, 2024, 662, 446-459.	9.4	0
1176	Lipid Nanoparticle (LNP) Delivery Carrier-Assisted Targeted Controlled Release mRNA Vaccines in Tumor Immunity. Vaccines, 2024, 12, 186.	4.4	0
1177	Jellyfish-inspired smart tetraphenylethene lipids with unique AIE fluorescence, thermal response, and cell membrane interaction. Journal of Materials Chemistry B, 2024, 12, 2373-2383.	5.8	0
1178	The quest for nanoparticle-powered vaccines in cancer immunotherapy. Journal of Nanobiotechnology, 2024, 22, .	9.1	1

#	Article	IF	CITATIONS
1181	Emerging strategies for nanomedicine in autoimmunity. Advanced Drug Delivery Reviews, 2024, 207, 115194.	13.7	0
1182	mRNA biotherapeutics landscape for rare genetic disorders. Journal of Biosciences, 2024, 49, .	1.1	0
1183	Multivariate Analysis of Cellular Uptake Characteristics for a (Co)polymer Particle Library. ACS Biomaterials Science and Engineering, 2024, 10, 1481-1493.	5. 2	0
1184	Kinetics of RNA-LNP delivery and protein expression. European Journal of Pharmaceutics and Biopharmaceutics, 2024, 197, 114222.	4.3	0
1185	Instability of membranes containing ionizable cationic lipids: Effects of the repulsive range of headgroups and tail structures. Colloids and Surfaces B: Biointerfaces, 2024, 236, 113807.	5.0	0
1186	Applications and Potentials of a Silk Fibroin Nanoparticle Delivery System in Animal Husbandry. Animals, 2024, 14, 655.	2.3	0
1187	CARâ€T cell therapeutic avenue for fighting cardiac fibrosis: Roadblocks and perspectives. Cell Biochemistry and Function, 2024, 42, .	2.9	0
1188	Encapsulating In Vitro Transcribed circRNA into Lipid Nanoparticles Via Microfluidic Mixing. Methods in Molecular Biology, 2024, , 247-260.	0.9	0
1189	The therapeutic potential of immunoengineering for systemic autoimmunity. Nature Reviews Rheumatology, 2024, 20, 203-215.	8.0	0
1190	Design of charge converting lipid nanoparticles via a microfluidic coating technique. Drug Delivery and Translational Research, 0, , .	5.8	0
1191	The interaction between particles and vascular endothelium in blood flow. Advanced Drug Delivery Reviews, 2024, 207, 115216.	13.7	0
1192	RNA-encapsulating lipid nanoparticles in cancer immunotherapy: From pre-clinical studies to clinical trials. European Journal of Pharmaceutics and Biopharmaceutics, 2024, 197, 114234.	4.3	0
1193	Non-viral delivery of RNA for therapeutic T cell engineering. Advanced Drug Delivery Reviews, 2024, 208, 115215.	13.7	0
1194	Aptamer-Targeted Dendrimersomes Assembled from Azido-Modified Janus Dendrimers "Clicked―to DNA. Biomacromolecules, 2024, 25, 1541-1549.	5. 4	0
1195	Physiological principles underlying the kidney targeting of renal nanomedicines. Nature Reviews Nephrology, 0, , .	9.6	0
1196	In situ combinatorial synthesis of degradable branched lipidoids for systemic delivery of mRNA therapeutics and gene editors. Nature Communications, 2024, 15, .	12.8	0
1197	RNA interference in the era of nucleic acid therapeutics. Nature Biotechnology, 0, , .	17.5	0
1198	The Promise and Potential of Metal–Organic Frameworks and Covalent Organic Frameworks in Vaccine Nanotechnology. Chemical Reviews, 2024, 124, 3013-3036.	47.7	0

#	Article	IF	CITATIONS
1199	Recent advances in mRNAâ€based vaccine for cancer therapy; bench to bedside. Cell Biochemistry and Function, 2024, 42, .	2.9	0
1200	Effects of excipients on the interactions of self-emulsifying drug delivery systems with human blood plasma and plasma membranes. Drug Delivery and Translational Research, 0, , .	5.8	0
1202	The Combination of Vascular Endothelial Growth Factor A (VEGF-A) and Fibroblast Growth Factor 1 (FGF1) Modified mRNA Improves Wound Healing in Diabetic Mice: An Ex Vivo and In Vivo Investigation. Cells, 2024, 13, 414.	4.1	0
1203	Neutron reflectometry as a powerful tool to elucidate membrane interactions of drug delivery systems. Advances in Colloid and Interface Science, 2024, 325, 103120.	14.7	0
1204	Reliable particle sizing in vaccine formulations using advanced dynamic light scattering. Frontiers in Analytical Science, 0, 4, .	2.4	0
1205	The clinical impact of mRNA therapeutics in the treatment of cancers, infections, genetic disorders, and autoimmune diseases. Heliyon, 2024, 10, e26971.	3.2	O
1206	High-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models. Nature Communications, 2024, 15 , .	12.8	0
1207	Probing delivery of a lipid nanoparticle encapsulated self-amplifying mRNA vaccine using coherent Raman microscopy and multiphoton imaging. Scientific Reports, 2024, 14, .	3.3	O
1208	MicroRNA-targeting nanomedicines for the treatment of intervertebral disc degeneration. Advanced Drug Delivery Reviews, 2024, 207, 115214.	13.7	0
1209	Rational design of an artificial tethered enzyme for non-templated post-transcriptional mRNA polyadenylation by the second generation of the C3P3 system. Scientific Reports, 2024, 14, .	3.3	0
1210	Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Advanced Drug Delivery Reviews, 2024, 207, 115239.	13.7	0
1211	Selective Replacement of Cholesterol with Cationic Amphiphilic Drugs Enables the Design of Lipid Nanoparticles with Improved RNA Delivery. Nano Letters, 2024, 24, 2961-2971.	9.1	O
1212	Recent advances in nanoparticulate RNA delivery systems. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
1213	Novel synthesized ionizable lipid for LNP-mediated P2X7siRNA to inhibit migration and induce apoptosis of breast cancer cells. Purinergic Signalling, 0, , .	2.2	O
1214	Thiophene-based lipids for mRNA delivery to pulmonary and retinal tissues. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
1215	Targeted nonviral delivery of genome editors in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	O
1216	Lipid nanoparticle structure and delivery route during pregnancy dictate mRNA potency, immunogenicity, and maternal and fetal outcomes. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
1217	Breaking genetic shackles: The advance of base editing in genetic disorder treatment. Frontiers in Pharmacology, $0,15,.$	3.5	O

#	Article	IF	CITATIONS
1218	Liver fibrosis pathologies and potentials of RNA based the rapeutics modalities. Drug Delivery and Translational Research, 0, , .	5.8	0
1219	Modulating the immune response to SARS-CoV-2 by different nanocarriers delivering an mRNA expressing trimeric RBD of the spike protein: COVARNA Consortium. Npj Vaccines, 2024, 9, .	6.0	O
1220	Fluorinated Lipid Nanoparticles for Enhancing mRNA Delivery Efficiency. ACS Nano, 2024, 18, 7825-7836.	14.6	0
1221	Cholesterol-modified sphingomyelin chimeric lipid bilayer for improved the rapeutic delivery. Nature Communications, 2024, 15 , .	12.8	0
1222	Oncolytic Virus‣ike Nanoparticles for Tumorâ€Specific Gene Delivery. Advanced Functional Materials, 0,	14.9	0
1223	Enhancing CARâ€NK Cells Against Solid Tumors Through Chemical and Genetic Fortification with DOTAPâ€Functionalized Lipid Nanoparticles. Advanced Functional Materials, 0, , .	14.9	0
1224	Anticancer and Antibacterial Properties of Curcumin-Loaded Mannosylated Solid Lipid Nanoparticles for the Treatment of Lung Diseases. ACS Applied Bio Materials, 2024, 7, 2175-2185.	4.6	0
1225	Precise engineering of the biomolecular corona to accelerate the clinical translation of lipid nanoparticles. Trends in Biotechnology, 2024, , .	9.3	0
1226	Recent advancements in cancer vaccines: A systematic review. Vacunas (English Edition), 2024, 25, 97-108.	0.2	0
1227	Liquid-liquid phase separation (LLPS) in DNA and chromatin systems from the perspective of colloid physical chemistry. Advances in Colloid and Interface Science, 2024, 326, 103133.	14.7	0
1228	Mechanistic insights into interactions between ionizable lipid nanodroplets and biomembranes. Journal of Biomolecular Structure and Dynamics, 0 , , 1 - 11 .	3.5	0
1229	Influence of ionizable lipid tail length on lipid nanoparticle delivery of <scp>mRNA</scp> of varying length. Journal of Biomedical Materials Research - Part A, O, , .	4.0	0
1230	Progress on mRNA vaccines and lipid nanoparticles. Chinese Science Bulletin, 2024, , .	0.7	0
1231	Targeting Strategies for Site-Specific mRNA Delivery. Bioconjugate Chemistry, 2024, 35, 453-456.	3.6	0
1232	Lipid nanoparticles for local delivery of mRNA to the respiratory tract: Effect of PEG-lipid content and administration route. European Journal of Pharmaceutics and Biopharmaceutics, 2024, 198, 114266.	4.3	0
1233	Aptamers: Promising Reagents in Biomedicine Application. Advanced Biology, 0, , .	2.5	0
1236	Assembling the RNA therapeutics toolbox. Medical Review, 2024, 4, 110-128.	1.2	0
1237	Optimizing Nucleic Acid Delivery Systems through Barcode Technology. ACS Synthetic Biology, 2024, 13, 1006-1018.	3.8	0

#	Article	IF	CITATIONS
1238	Context-Responsive Nanoparticle Derived from Synthetic Zwitterionic Ionizable Phospholipids in Targeted CRISPR/Cas9 Therapy for Basal-like Breast Cancer. ACS Nano, 2024, 18, 9199-9220.	14.6	0
1239	A programmable targeted protein-degradation platform for versatile applications in mammalian cells and mice. Molecular Cell, 2024, 84, 1585-1600.e7.	9.7	O
1240	Advances in lipid nanoparticle mRNA therapeutics beyond COVID-19 vaccines. Nanoscale, 2024, 16, 6820-6836.	5.6	0
1241	Biodegradable Lipid-Modified Poly(Guanidine Thioctic Acid)s: A Fortifier of Lipid Nanoparticles to Promote the Efficacy and Safety of mRNA Cancer Vaccines. Journal of the American Chemical Society, 2024, 146, 11679-11693.	13.7	O
1242	How Microbubble-Enhanced Shock Waves Promote the Delivery of Lipid-siRNA across Neuronal Plasma Membrane: A Computational Study. Journal of Physical Chemistry B, 2024, 128, 2897-2904.	2.6	0
1243	Flash nanoprecipitation assisted self-assembly of ionizable lipid nanoparticles for nucleic acid delivery. Nanoscale, 2024, 16, 6939-6948.	5.6	0
1244	Tumor-activated IL-2 mRNA delivered by lipid nanoparticles for cancer immunotherapy. Journal of Controlled Release, 2024, 368, 663-675.	9.9	0
1245	Cholesterol-Bearing Polysaccharide-Based Nanogels for Development of Novel Immunotherapy and Regenerative Medicine. Gels, 2024, 10, 206.	4.5	0
1246	Role of Biofunctionalized Nanoparticles in Digestive Cancer Vaccine Development. Pharmaceutics, 2024, 16, 410.	4.5	0
1247	Mesoscopic Structure of Lipid Nanoparticle Formulations for mRNA Drug Delivery: Comirnaty and Drug-Free Dispersions. ACS Nano, 2024, 18, 9746-9764.	14.6	O
1248	A polyamino acid-based phosphatidyl polymer library for <i>in vivo</i> mRNA delivery with spleen targeting ability. Materials Horizons, 0, , .	12.2	0
1249	Harnessing RNA Technology to Advance Therapeutic Vaccine Antigens against Chagas Disease. ACS Applied Materials & Chagas Disease. ACS Applied Materials & Chagas Disease. ACS	8.0	0
1250	Therapeutic potential for mRNA-based IGF-I regenerative therapy. Molecular Therapy - Nucleic Acids, 2024, 35, 102143.	5.1	0
1251	Non-stem cell-derived exosomes: a novel therapeutics for neurotrauma. Journal of Nanobiotechnology, 2024, 22, .	9.1	0
1252	The optimization strategies of LNP-mRNA formulations: Development and challenges for further application. Journal of Drug Delivery Science and Technology, 2024, 95, 105547.	3.0	0
1253	Engineering aspects of lipid-based delivery systems: In vivo gene delivery, safety criteria, and translation strategies. Biotechnology Advances, 2024, 72, 108342.	11.7	0
1254	Transfection of hypoxia-inducible factor- $1\hat{l}_{\pm}$ mRNA upregulates the expression of genes encoding angiogenic growth factors. Scientific Reports, 2024, 14, .	3.3	0
1255	Epithelial dendritic cells vs. Langerhans cells: Implications for mucosal vaccines. Cell Reports, 2024, 43, 113977.	6.4	0

#	Article	IF	CITATIONS
1256	IL7 increases targeted lipid nanoparticle–mediated mRNA expression in T cells in vitro and in vivo by enhancing T cell protein translation. Proceedings of the National Academy of Sciences of the United States of America. 2024. 121	7.1	0