Combined Effect of a Polygenic Risk Score and Rare Gen Risk

European Urology 80, 134-138 DOI: 10.1016/j.eururo.2021.04.013

Citation Report

#	Article	IF	CITATIONS
1	Observed evidence for guidelineâ€recommended genes in predicting prostate cancer risk from a large populationâ€based cohort. Prostate, 2021, 81, 1002-1008.	2.3	10
3	Incorporation of Polygenic Risk Score into Guidelines for Inherited Risk Assessment for Prostate Cancer. European Urology, 2021, 80, 139-141.	1.9	4
4	Mechanistic insights into genetic susceptibility to prostate cancer. Cancer Letters, 2021, 522, 155-163.	7.2	7
5	Focal therapy: definition and rationale. Current Opinion in Urology, 2022, 32, 218-223.	1.8	0
6	10 Years of GWAS discovery in endometrial cancer: Aetiology, function and translation. EBioMedicine, 2022, 77, 103895.	6.1	11
7	Polygenic risk scores and prostate cancer screening: a recipe for more overdiagnosis?. BJU International, 2022, 129, 271-271.	2.5	0
8	The role of genetic testing in prostate cancer screening, diagnosis, and treatment. Current Opinion in Oncology, 2022, Publish Ahead of Print, .	2.4	0
9	Inherited risk assessment and its clinical utility for predicting prostate cancer from diagnostic prostate biopsies. Prostate Cancer and Prostatic Diseases, 2022, 25, 422-430.	3.9	12
10	SNPs at SMG7 associated with time from biochemical recurrence to prostate cancer death. Cancer Epidemiology Biomarkers and Prevention, 2022, , .	2.5	1
11	The Value of Rare Genetic Variation in the Prediction of Common Obesity in European Ancestry Populations. Frontiers in Endocrinology, 2022, 13, 863893.	3.5	7
12	Precision intervention for prostate cancer: Re-evaluating who is at risk. Cancer Letters, 2022, 538, 215709.	7.2	9
13	Germline genetics of prostate cancer. Prostate, 2022, 82, .	2.3	8
14	Clonal hematopoiesis and risk of prostate cancer in large samples of European ancestry men. Human Molecular Genetics, 2023, 32, 489-495.	2.9	1
15	Family History of Prostate and Breast Cancer Integrated with a Polygenic Risk Score Identifies Men at Highest Risk of Dying from Prostate Cancer before Age 75 Years. Clinical Cancer Research, 2022, 28, 4926-4933.	7.0	2
16	Reliability of Ancestry-specific Prostate Cancer Genetic Risk Score in Four Racial and Ethnic Populations. European Urology Open Science, 2022, 45, 23-30.	0.4	2
17	Whole-Exome Sequencing Study of Familial Nasopharyngeal Carcinoma and Its Implication for Identifying High-Risk Individuals. Journal of the National Cancer Institute, 2022, 114, 1689-1697.	6.3	7
18	The contribution of functional HNF1A variants and polygenic susceptibility to risk of type 2 diabetes in ancestrally diverse populations. Diabetologia, 0, , .	6.3	1
20	Association of rare, recurrent nonsynonymous variants in the germline of prostate cancer patients of African ancestry. Prostate, 2023, 83, 454-461.	2.3	1

CITATION REPORT

#	Article	IF	CITATIONS
21	CanRisk-Prostate: A Comprehensive, Externally Validated Risk Model for the Prediction of Future Prostate Cancer. Journal of Clinical Oncology, 2023, 41, 1092-1104.	1.6	9
22	Genetic Risk Prediction for Prostate Cancer: Implications for Early Detection and Prevention. European Urology, 2023, 83, 241-248.	1.9	16
24	A Polygenic Risk Score for Prostate Cancer Risk Prediction. JAMA Internal Medicine, 2023, 183, 386.	5.1	4
25	The cancer-risk variant frequency among Polish population reported by the first national whole-genome sequencing study. Frontiers in Oncology, 0, 13, .	2.8	0
26	Systematic evaluation of narrowâ€sense validity of polygenic risk score for prostate cancer in a Chinese prostate biopsy cohort. Clinical Genetics, 0, , .	2.0	0
27	Evaluating Germline Testing Panels in Southern African Males With Advanced Prostate Cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2023, 21, 289-296.e3.	4.9	9
29	Genetic and Genomic Testing for Prostate Cancer: Beyond DNA Repair. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2023, , .	3.8	5
31	ELAC2 is a functional prostate cancer risk allele. Trends in Molecular Medicine, 2023, 29, 586-588.	6.7	0
32	Genetic risk assessment of lethal prostate cancer using polygenic risk score and hereditary cancer susceptibility genes. Journal of Translational Medicine, 2023, 21, .	4.4	0
33	Management of individuals with germline pathogenic/likely pathogenic variants in CHEK2: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine, 2023, 25, 100870.	2.4	5
34	Joint associations between established genetic susceptibility loci, pesticide exposures, and risk of prostate cancer. Environmental Research, 2023, 237, 117063.	7.5	2
35	Polygenic Risk Score Modifies Prostate Cancer Risk of Pathogenic Variants in Men of African Ancestry. Cancer Research Communications, 2023, 3, 2544-2550.	1.7	0
36	17.ÂCancer. , 2023, , .		0
37	A cost-effective sequencing method for genetic studies combining high-depth whole exome and low-depth whole genome. Npj Genomic Medicine, 2024, 9, .	3.8	0
38	Identification of Genes with Rare Loss of Function Variants Associated with Aggressive Prostate Cancer and Survival. European Urology Oncology, 2024, 7, 248-257.	5.4	0