Perspective on the application of medicinal plants and a A mechanistic review

Pharmacological Research 174, 105841 DOI: 10.1016/j.phrs.2021.105841

Citation Report

#	Article	IF	CITATIONS
1	Prevalence, antimicrobial resistance profile, and characterization of multi-drug resistant bacteria from various infected wounds in North Egypt. Saudi Journal of Biological Sciences, 2022, 29, 2978-2988.	3.8	32
2	Biocompatible Chitosan-Based Hydrogels for Bioabsorbable Wound Dressings. Gels, 2022, 8, 107.	4.5	24
3	HPLC/MSn Profiling and Healing Activity of a Muco-Adhesive Formula of Salvadora persica against Acetic Acid-Induced Oral Ulcer in Rats. Nutrients, 2022, 14, 28.	4.1	6
4	Acceleration of wound healing by topical application of gel formulation of Barringtonia racemosa (L.) Spreng kernel extract. F1000Research, 2022, 11, 191.	1.6	0
5	Acceleration of wound healing by topical application of gel formulation of Barringtonia racemosa (L.) Spreng kernel extract. F1000Research, 0, 11, 191.	1.6	0
6	Genipin-Crosslinking Effects on Biomatrix Development for Cutaneous Wound Healing: A Concise Review. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	10
7	Topical and oral applications of <i>Aloe vera</i> improve healing of deep second-degree burns in rats via modulation of growth factors. Biomarkers, 2022, 27, 608-617.	1.9	3
8	Characterization and antimicrobial activity of fungal endophytes from Crocus caspius (Iridaceae). Biocatalysis and Agricultural Biotechnology, 2022, 43, 102429.	3.1	1
9	Flower, stem, and leaf extracts from Hypericum perforatum L. to synthesize gold nanoparticles: Effectiveness and antioxidant activity. Surfaces and Interfaces, 2022, 32, 102181.	3.0	5
10	Promising Hydrogels-Based Dressings for Optimal Treatment of Cutaneous Lesions. , 0, , .		0
11	Emerging ROS-Modulating Technologies for Augmentation of the Wound Healing Process. ACS Omega, 2022, 7, 30657-30672.	3.5	33
12	Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing. Polymers, 2022, 14, 3266.	4.5	39
13	ROS-responsive resveratrol-loaded cyclodextrin nanomicelles reduce inflammatory osteolysis. Colloids and Surfaces B: Biointerfaces, 2022, 219, 112819.	5.0	1
14	Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: A review. Journal of Ethnopharmacology, 2022, 298, 115663.	4.1	29
15	Application of Metal–Organic Framework in Diagnosis and Treatment of Diabetes. Biomolecules, 2022, 12, 1240.	4.0	9
16	Advances in traditional Chinese medicine as adjuvant therapy for diabetic foot. World Journal of Diabetes, 0, 13, 851-860.	3.5	7
17	Nanozymeâ€Engineered Bioglass through Supercharged Interface for Enhanced Antiâ€Infection and Fibroblast Regulation. Advanced Functional Materials, 2023, 33, .	14.9	12
18	Asterohyptis stellulata: Phytochemistry and wound healing activity. Food Bioscience, 2022, 50, 102150.	4.4	1

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
19	Basella alba stem extract integrated poly (vinyl alcohol)/chitosan composite films: A promising bio-material for wound healing. International Journal of Biological Macromolecules, 2023, 225, 673-686.	7.5	10
20	Evaluation of In Vivo Wound-Healing and Anti-Inflammatory Activities of Solvent Fractions of Fruits of Argemone mexicana L. (Papaveraceae). Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-17.	1.2	3
21	Novel modalities of delivering herbal medicines for wound healing: A review. Dermatological Reviews, 2023, 4, 194-210.	0.5	0
22	Recent Advances in Enzymeâ€Based Biomaterials Toward Diabetic Wound Healing. Advanced NanoBiomed Research, 2023, 3, .	3.6	11
23	Curative effect and mechanisms of Radix Arnebiae oilÂon burn wound healing in rats. Planta Medica, 0, ,	1.3	2
24	Antibacterial Activity of Syzygium aromaticum (Clove) Bud Oil and Its Interaction with Imipenem in Controlling Wound Infections in Rats Caused by Methicillin-Resistant Staphylococcus aureus. Molecules, 2022, 27, 8551.	3.8	13
25	Gel formulated with Bryophyllum pinnatum leaf extract promotes skin wound healing in vivo by increasing VEGF expression: A novel potential active ingredient for pharmaceuticals. Frontiers in Pharmacology, 0, 13, .	3.5	5
26	Current scenario of traditional medicines in management of diabetic foot ulcers: A review. World Journal of Diabetes, 0, 14, 1-16.	3.5	3
27	KuQuinones: a ten years tale of the new pentacyclic quinoid compound. RSC Advances, 2023, 13, 9065-9077.	3.6	1
28	Phosphorus magnesium fiber regulates macrophage polarization through TRPM7 to accelerate wound healing. Applied Materials Today, 2023, 31, 101758.	4.3	0
29	Bioactive wound powders as wound healing dressings and drug delivery systems. Powder Technology, 2023, 423, 118501.	4.2	1
30	Effect of Royal Gel addition to chitosan matrix for wound dress applications: Fabrication, characterization and artificial neural network analysis. Environmental Technology and Innovation, 2023, 30, 103077.	6.1	0
31	3D Printing as a Technological Strategy for the Personalized Treatment of Wound Healing. AAPS PharmSciTech, 2023, 24, .	3.3	12
32	The Potential of Medicinal Plants and Natural Products in the Treatment of Burns and Sunburn—A Review. Pharmaceutics, 2023, 15, 633.	4.5	5
33	Therapeutic Potential of Phenolic Compounds in Medicinal Plants—Natural Health Products for Human Health. Molecules, 2023, 28, 1845.	3.8	75
34	Why traditional herbal medicine promotes wound healing: Research from immune response, wound microbiome to controlled delivery. Advanced Drug Delivery Reviews, 2023, 195, 114764.	13.7	17
35	Exploring Iberian Peninsula Lamiaceae as Potential Therapeutic Approaches in Wound Healing. Pharmaceuticals, 2023, 16, 347.	3.8	2
36	New Data on Anti-Inflammatory and Wound Healing Potential of Transgenic Senna obtusifolia Hairy Roots: In Vitro Studies. International Journal of Molecular Sciences, 2023, 24, 5906.	4.1	2

CITATION REPORT

#	Article	IF	CITATIONS
37	Peptide <scp>RLâ€QN15</scp> promotes regeneration of epidermal nerve fibers and recovery of sensory function in diabetic skin wounds. FASEB Journal, 2023, 37, .	0.5	4
38	Phytobioactive compounds as therapeutic agents for human diseases: A review. Food Science and Nutrition, 2023, 11, 2500-2529.	3.4	12
39	A mechanistic perspective on the role of phytoconstituents-based pharmacotherapeutics and their topical formulations in chronic wound management. Journal of Drug Delivery Science and Technology, 2023, 84, 104546.	3.0	4
40	Phytochemical Profiling and Biological Activity of <i>Achillea sintenisii</i> Hub.â€Mor. Chemistry and Biodiversity, 2023, 20, .	2.1	1
41	Physical Properties and pH Environment of Foam Dressing Containing Eclipta prostrata Leaf Extract and Gelatin. Pharmaceuticals, 2023, 16, 685.	3.8	1
42	Electrospun polyvinyl alcohol-chitosan dressing stimulates infected diabetic wound healing with combined reactive oxygen species scavenging and antibacterial abilities. Carbohydrate Polymers, 2023, 316, 121050.	10.2	9
43	<i>In vivo</i> healing potential of <i>Vitis Vinifera</i> L. and <i>Punica Granatum</i> L. fruit extracts in excision and burn models in rabbits. Current Issues in Pharmacy and Medical Sciences, 2023, 36, 12-17.	0.4	0
44	Formulation Development and Evaluation of Indian Propolis Hydrogel for Wound Healing. Gels, 2023, 9, 375.	4.5	7
45	Natural exosome-like nanoparticles derived from ancient medicinal insect Periplaneta americana L. as a novel diabetic wound healing accelerator. Journal of Nanobiotechnology, 2023, 21, .	9.1	2
46	Antibacterial wound dressings made of differently concentrated Salvia Miltiorrhiza Bunge via electrospinning. Journal of Polymer Research, 2023, 30, .	2.4	0
47	Pharmaceutical Compounds With Antioxidant Properties. , 2023, , 121-146.		0
48	Unlocking the Full Potential of Clove (Syzygium aromaticum) Spice: An Overview of Extraction Techniques, Bioactivity, and Future Opportunities in the Food and Beverage Industry. Processes, 2023, 11, 2453.	2.8	2
49	Comparative Study of the Efficacy of EHO-85, a Hydrogel Containing Olive Tree (Olea europaea) Leaf Extract, in Skin Wound Healing. International Journal of Molecular Sciences, 2023, 24, 13328.	4.1	2
50	Biodiversity of Skin Microbiota as an Important Biomarker for Wound Healing. Biology, 2023, 12, 1187.	2.8	0
52	Preparation and evaluation of Thesium chinense extract loaded polyvinyl alcohol/sodium alginate hydrogel for wound healing. Polymer Bulletin, 0, , .	3.3	0
53	Physiology and pharmacology of wounds. , 2024, , 21-54.		0
54	Potentials of Aloe barbadensis inclusion in fish feeds on resilience to Aeromonas hydrophila infection inÂfreshwater fish Labeo rohita. Fish Physiology and Biochemistry, 0, , .	2.3	1
55	Research progress and challenges of composite wound dressings containing plant extracts. Cellulose, 2023, 30, 11297-11322.	4.9	0

#	Article	IF	CITATIONS
56	Demethylcalabaxanthone from Garcinia mangostana Exerts Antioxidant Effects through the Activation of the Nrf2 Pathway as Assessed via Molecular Docking and Biological Evaluation. Antioxidants, 2023, 12, 1980.	5.1	0
57	Wound healing potential of extract from Sambucus nigra L. leaves and its fractions. Journal of Ethnopharmacology, 2024, 320, 117423.	4.1	0
58	Preliminary Evaluation of Wound Healing Potential of <i>Leonurus japonicus</i> Houtt. Extracts. Chemistry and Biodiversity, 2023, 20, .	2.1	0
59	Mefenamic acid inhibit transforming growth factor-beta type-1: Repurposing anti-inflammatory drugs in wound healing using in-silico approaches. , 2023, 2, 100031.		0
60	Chitosan-based films filled with nanoencapsulated essential oil: Physical-chemical characterization and enhanced wound healing activity. International Journal of Biological Macromolecules, 2024, 261, 129049.	7.5	0
61	A critical overview of challenging roles of medicinal plants in improvement of wound healing technology. DARU, Journal of Pharmaceutical Sciences, O, , .	2.0	0
62	The wound healing effect of polycaprolactone-chitosan scaffold coated with a gel containing Zataria multiflora Boiss. volatile oil nanoemulsions. BMC Complementary Medicine and Therapies, 2024, 24, .	2.7	0
63	An effective treatment for diabetic foot necrosis with traditional Chinese and Western medicine: a case report. Journal of Wound Care, 2024, 33, 22-27.	1.2	0
64	Metal natural product complex Ru-procyanidins with quadruple enzymatic activity combat infections from drug-resistant bacteria. Acta Pharmaceutica Sinica B, 2024, , .	12.0	1
65	<i>Basella alba</i> L. (Malabar Spinach) as an Abundant Source of Betacyanins: Identification, Stability, and Bioactivity Studies on Natural and Processed Fruit Pigments. Journal of Agricultural and Food Chemistry, 2024, 72, 2943-2962.	5.2	1
66	Revolutionizing diabetic wound healing: Targeted therapeutic strategies based on growth factors. Obesity Medicine, 2024, 47, 100535.	0.9	0
67	Exploring the Efficacy of Musa Cavendish Stem Extract (Mucase) as a Novel Wound Dressing: A Comparative Study With Sofratulle®. Cureus, 2024, , .	0.5	0
68	Market Overview of Herbal Medicines for Lifestyle Diseases. , 2023, , 597-614.		0
69	Hydrogel film sheets-based medicinal plants for diabetic wound dressing application: A review. AIP Conference Proceedings, 2024, , .	0.4	0

CITATION REPORT