Chemical Analysis of Microplastics and Nanoplastics: Cl Perspectives

Chemical Reviews 121, 11886-11936

DOI: 10.1021/acs.chemrev.1c00178

Citation Report

#	Article	IF	CITATIONS
1	Analysis of microplastics in drinking water and other clean water samples with micro-Raman and micro-infrared spectroscopy: minimum requirements and best practice guidelines. Analytical and Bioanalytical Chemistry, 2021, 413, 5969-5994.	3.7	94
2	An assessment of micro- and nanoplastics in the biosphere: A review of detection, monitoring, and remediation technology. Chemical Engineering Journal, 2022, 430, 132913.	12.7	42
3	New Analytical Approaches for Effective Quantification and Identification of Nanoplastics in Environmental Samples. Processes, 2021, 9, 2086.	2.8	10
4	Applying Raman imaging to capture and identify microplastics and nanoplastics in the garden. Journal of Hazardous Materials, 2022, 426, 127788.	12.4	11
5	The micro-, submicron-, and nanoplastic hunt: A review of detection methods for plastic particles. Chemosphere, 2022, 293, 133514.	8.2	54
6	A method to remove cellulose from rich organic samples to analyse microplastics. Journal of Cleaner Production, 2022, 334, 130248.	9.3	9
7	Separation and characterization of microplastic and nanoplastic particles in marine environment. Environmental Pollution, 2022, 297, 118773.	7.5	55
8	Microplastics as Emerging Food Contaminants: A Challenge for Food Safety. International Journal of Environmental Research and Public Health, 2022, 19, 1174.	2.6	40
9	Adsorption of Linear and Spherical DNA Oligonucleotides onto Microplastics. Langmuir, 2022, 38, 1915-1922.	3.5	14
10	Latest Advances and Developments to Detection of Micro―and Nanoplastics Using Surfaceâ€Enhanced Raman Spectroscopy. Particle and Particle Systems Characterization, 2022, 39, .	2.3	19
11	Dual-Principal Component Analysis of the Raman Spectrum Matrix to Automatically Identify and Visualize Microplastics and Nanoplastics. Analytical Chemistry, 2022, 94, 3150-3157.	6.5	32
12	The identification of microplastics based on vibrational spectroscopy data – A critical review of data analysis routines. TrAC - Trends in Analytical Chemistry, 2022, 148, 116535.	11.4	13
13	A microwave-based technique as a feasible method to detect plastic pollutants in experimental samples. Journal of Hazardous Materials, 2022, 428, 128224.	12.4	6
14	Pyrolysis-GC–MS analysis of ingested polystyrene microsphere content in individual Daphnia magna. Science of the Total Environment, 2022, 817, 152981.	8.0	10
15	Raman imaging of microplastics and nanoplastics generated by cutting PVC pipe. Environmental Pollution, 2022, 298, 118857.	7.5	16
16	Development of a Binary Digestion System for Extraction Microplastics in Fish and Detection Method by Optical Photothermal Infrared. Frontiers in Marine Science, 2022, 9, .	2.5	2
17	Pyrolysis-GC/MS, A Powerful Analytical Tool for Additives and Polymers Characterization. , 0, , .		1
18	Instigating reflections on microplastics uptake and translocations from the study "Microplastic inclusion in birch tree roots―by Austen et al. (2022). Science of the Total Environm <u>ent, 2022, , 154030.</u>	8.0	0

#	Article	IF	CITATIONS
19	Microplastic sample purification methods - Assessing detrimental effects of purification procedures on specific plastic types. Science of the Total Environment, 2022, 833, 154824.	8.0	33
20	Detecting Micro- and Nanoplastics Released from Food Packaging: Challenges and Analytical Strategies. Polymers, 2022, 14, 1238.	4.5	27
21	Discovery and quantification of plastic particle pollution in human blood. Environment International, 2022, 163, 107199.	10.0	1,134
22	Development of a low-cost method for quantifying microplastics in soils and compost using near-infrared spectroscopy. Measurement Science and Technology, 2022, 33, 075801.	2.6	11
23	A Simple Method for Quantification of Polyhydroxybutyrate and Polylactic Acid Micro-Bioplastics in Soils by Evolved Gas Analysis. Molecules, 2022, 27, 1898.	3.8	8
24	Soil plastisphere: Exploration methods, influencing factors, and ecological insights. Journal of Hazardous Materials, 2022, 430, 128503.	12.4	45
25	Assessment of microplastics and nanoplastics released from a chopping board using Raman imaging in combination with three algorithms. Journal of Hazardous Materials, 2022, 431, 128636.	12.4	13
26	Investigating kitchen sponge-derived microplastics and nanoplastics with Raman imaging and multivariate analysis. Science of the Total Environment, 2022, 824, 153963.	8.0	7
27	Size-dependent enhancement on conjugative transfer of antibiotic resistance genes by micro/nanoplastics. Journal of Hazardous Materials, 2022, 431, 128561.	12.4	18
28	Evaluation of three pyrolyzer technologies for quantitative pyrolysis-gas chromatography-mass spectrometry (Py-CC-MS) of tire tread polymer in an artificial sediment matrix. Environmental Advances, 2022, 8, 100213.	4.8	11
29	Microplastics and nanoplastics in the marine-atmosphere environment. Nature Reviews Earth & Environment, 2022, 3, 393-405.	29.7	121
30	Bioanalytical approaches for the detection, characterization, and risk assessment of micro/nanoplastics in agriculture and food systems. Analytical and Bioanalytical Chemistry, 2022, 414, 4591-4612.	3.7	6
31	Weathering-induced oxidation: An investigation of artificially aged polystyrene samples using Laser-induced Breakdown Spectroscopy. Polymer Testing, 2022, 112, 107623.	4.8	8
32	Microplastic Pollution Focused on Sources, Distribution, Contaminant Interactions, Analytical Methods, and Wastewater Removal Strategies: A Review. International Journal of Environmental Research and Public Health, 2022, 19, 5610.	2.6	21
33	Technical Challenges of Molecular-Imprinting-Based Optical Sensors for Environmental Pollutants. Langmuir, 2022, 38, 5963-5967.	3.5	81
34	A review on source, occurrence, and impacts of microplastics in freshwater aquaculture systems in China. , 2022, 1, 100040.		15
35	Microplastic sampling from wastewater treatment plant effluents: Best-practices and synergies between thermoanalytical and spectroscopic analysis. Water Research, 2022, 219, 118549.	11.3	15
36	Toxic Chemicals and Persistent Organic Pollutants Associated with Micro-and Nanoplastics Pollution. Chemical Engineering Journal Advances, 2022, 11, 100310.	5.2	48

#	Article	IF	CITATIONS
37	Biphasic Magnetic Levitation to Detect Organic Pollutants on Microplastics. Analytical Chemistry, 2022, 94, 9033-9039.	6.5	5
38	Evaluating the Occurrence of Polystyrene Nanoparticles in Environmental Waters by Agglomeration with Alkylated Ferroferric Oxide Followed by Micropore Membrane Filtration Collection and Py-GC/MS Analysis. Environmental Science & Technology, 2022, 56, 8255-8265.	10.0	24
39	Particle-in-Molybdenum Disulfide-Coated Cavity Structure with a Raman Internal Standard for Sensitive Raman Detection of Water Contaminants from Ions to <300 nm Nanoplastics. Journal of Physical Chemistry Letters, 2022, 13, 5815-5823.	4.6	22
40	Advanced microplastic monitoring using Raman spectroscopy with a combination of nanostructure-based substrates. Journal of Nanostructure in Chemistry, 2022, 12, 865-888.	9.1	17
41	Polystyrene nanoplastics induce profound metabolic shift in human cells as revealed by integrated proteomic and metabolomic analysis. Environment International, 2022, 166, 107349.	10.0	16
42	Microplastics and nanoplastics released from a PPE mask under a simulated bushfire condition. Journal of Hazardous Materials, 2022, 439, 129621.	12.4	14
43	Monitoring of microplastic pollution in the Arctic: recent developments in polymer identification, quality assurance and control, and data reporting. Arctic Science, 2023, 9, 176-197.	2.3	21
44	Know What You Don't Know: Assessment of Overlooked Microplastic Particles in FTIR Images. Microplastics, 2022, 1, 359-376.	4.2	1
45	Photocatalytic degradation of polystyrene nanoplastics in water. A methodological study. Journal of Environmental Chemical Engineering, 2022, 10, 108195.	6.7	8
46	Impact of COVID-19, Technology, and Organizational Leadership Business Considerations in the Water Sector. Advances in Logistics, Operations, and Management Science Book Series, 2022, , 28-55.	0.4	0
47	Honey Quality and Microplastic Migration from Food Packaging: A Potential Threat for Consumer Health?. Microplastics, 2022, 1, 406-427.	4.2	5
48	Alcohol Pretreatment to Eliminate the Interference of Micro Additive Particles in the Identification of Microplastics Using Raman Spectroscopy. Environmental Science & Technology, 2022, 56, 12158-12168.	10.0	20
49	Emerging electrochemical tools for microplastics remediation and sensing. Frontiers in Sensors, 0, 3,	3.3	3
50	Towards Microplastic Reduction Within Institutions. Water, Air, and Soil Pollution, 2022, 233, .	2.4	2
51	Improved microplastic processing from complex biological samples using a customized vacuum filtration apparatus. Limnology and Oceanography: Methods, 2022, 20, 553-567.	2.0	2
52	A review on the impacts of nanomaterials on neuromodulation and neurological dysfunction using a zebrafish animal model. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 261, 109428.	2.6	5
53	Low-toxic, fluorescent labeled and size-controlled graphene oxide quantum dots@polystyrene nanospheres as reference material for quantitative determination and in vivo tracing. Chemosphere, 2022, 307, 136094.	8.2	1
54	Raman imaging of microplastics and nanoplastics released from the printed toner powders burned by a mimicked bushfire. Science of the Total Environment, 2022, 849, 157686.	8.0	4

#	Article	IF	CITATIONS
55	Nanoplastics: Detection and impacts in aquatic environments – A review. Science of the Total Environment, 2022, 849, 157852.	8.0	24
56	Fire releases micro- and nanoplastics: Raman imaging on burned disposable gloves. Environmental Pollution, 2022, 312, 120073.	7.5	6
57	Facile nanoplastics formation from macro and microplastics in aqueous media. Environmental Pollution, 2022, 313, 120171.	7.5	14
58	Microplastics: Occurrences, treatment methods, regulations and foreseen environmental impacts. Environmental Research, 2022, 215, 114224.	7.5	28
59	Quantification and characterization of additives, plasticizers, and small microplastics (5–100Âμm) in highway stormwater runoff. Journal of Environmental Management, 2022, 324, 116348.	7.8	9
60	Separation of Microplastic Particles from Sewage Sludge Extracts Using Magnetic Seeded Filtration. Water Research X, 2022, 17, 100155.	6.1	10
61	Microplastics (MPs) and nanoplastics (NPs): Introduction. , 2023, , 1-32.		1
62	Acute toxicity of nanoplastics on Daphnia and Gammarus neonates: Effects of surface charge, heteroaggregation, and water properties. Science of the Total Environment, 2023, 854, 158763.	8.0	5
63	Raman imaging combined with an improved PCA/algebra-based algorithm to capture microplastics and nanoplastics. Analyst, The, 2022, 147, 4301-4311.	3.5	8
64	Extraction and Quantification of Polystyrene Nanoplastics from Biological Samples. SSRN Electronic Journal, 0, , .	0.4	0
65	Ecological and human health risks of atmospheric microplastics (MPs): a review. Environmental Science Atmospheres, 2022, 2, 921-942.	2.4	10
66	Finding the tiny plastic needle in the haystack: how field flow fractionation can help to analyze nanoplastics in food. Analytical and Bioanalytical Chemistry, 2023, 415, 7-16.	3.7	4
67	Threats to Terrestrial Plants from Emerging Nanoplastics. ACS Nano, 2022, 16, 17157-17167.	14.6	27
68	Extraction and quantification of polystyrene nanoplastics from biological samples. Environmental Pollution, 2022, 314, 120267.	7.5	6
69	Detection of PTFE microparticles by ICP-qMS operated in single-particle mode. Journal of Analytical Atomic Spectrometry, 2022, 37, 2282-2285.	3.0	5
70	Spectroâ€Microscopic Techniques for Studying Nanoplastics in the Environment and in Organisms. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
71	Spectroâ€Microscopic Techniques for Studying Nanoplastics in the Environment and in Organisms. Angewandte Chemie, 2023, 135, .	2.0	1
72	Non-Destructive Extraction and Separation of Nano- and Microplastics from Environmental Samples by Density Gradient Ultracentrifugation. Analytical Chemistry, 2022, 94, 15280-15287.	6.5	9

#	Article	IF	CITATIONS
73	A New Optical Method for Quantitative Detection of Microplastics in Water Based on Real-Time Fluorescence Analysis. Water (Switzerland), 2022, 14, 3235.	2.7	7
74	Efficient and sustainable microplastics analysis for environmental samples using flotation for sample pre-treatment. , 2022, 3, 100044.		9
75	Analytical methodologies used for screening micro(nano)plastics in (eco)toxicity tests. , 2022, 3, 100037.		4
76	Characterization and regulation of microplastic pollution for protecting planetary and human health. Environmental Pollution, 2022, 315, 120442.	7.5	31
77	Nano adsorptive extraction of diverse microplastics from the potable and seawater using organo-polyoxometalate magnetic nanotricomposites. Journal of Environmental Chemical Engineering, 2022, 10, 108720.	6.7	8
78	Research progress on microplastics in wastewater treatment plants: A holistic review. Journal of Environmental Management, 2023, 325, 116411.	7.8	17
79	Chapter 18. The Challenge of the Analysis of Nanoplastics in the Environment: Current Status and Perspectives. Chemistry in the Environment, 2022, , 450-468.	0.4	0
81	Roadmap of environmental health research on emerging contaminants: Inspiration from the studies on engineered nanomaterials. , 2022, 1, 181-197.		44
82	Unraveling the potential human health risks from used disposable face mask-derived micro/nanoplastics during the COVID-19 pandemic scenario: A critical review. Environment International, 2022, 170, 107644.	10.0	19
83	Various advanced wastewater treatment methods to remove microplastics and prevent transmission of SARS-CoV-2 to airborne microplastics. International Journal of Environmental Science and Technology, 2023, 20, 2229-2246.	3.5	10
84	Distinguishing the nanoplastic–cell membrane interface by polymer type and aging properties: translocation, transformation and perturbation. Environmental Science: Nano, 2023, 10, 440-453.	4.3	14
85	The review of nanoplastics in plants: Detection, analysis, uptake, migration and risk. TrAC - Trends in Analytical Chemistry, 2023, 158, 116889.	11.4	15
86	Recent consequences of micro-nanaoplastics (MNPLs) in subcellular/molecular environmental pollution toxicity on human and animals. Ecotoxicology and Environmental Safety, 2023, 249, 114385.	6.0	10
87	Raman imaging towards in-situ visualisation of perchlorate adsorption. Water Research, 2023, 229, 119510.	11.3	6
88	A systematic review of microplastics in the environment: Sampling, separation, characterization and coexistence mechanisms with pollutants. Science of the Total Environment, 2023, 859, 160151.	8.0	18
89	Digest, stain and bleach: Three steps to achieving rapid microplastic fluorescence analysis in wastewater samples. Science of the Total Environment, 2023, 863, 160947.	8.0	4
90	Multi-feature round silicon membrane filters enable fractionation and analysis of small micro- and nanoplastics with Raman spectroscopy and nano-FTIR. Analytical Methods, 2023, 15, 606-617.	2.7	3
91	Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy. Analytical Chemistry, 2022, 94, 17011-17019.	6.5	12

#	Article	IF	CITATIONS
92	Synergistic Adsorption–Photocatalysis based on Magnetic Metal–Organic Framework Nanoplatforms for Organic Pollutant Removal. ACS Applied Nano Materials, 2022, 5, 18930-18939.	5.0	4
93	Solid-Phase Biodegradation of Polylactides (Review). Applied Biochemistry and Microbiology, 2022, 58, 665-676.	0.9	2
94	Molecular mechanisms of microplastics degradation: A review. Separation and Purification Technology, 2023, 309, 122906.	7.9	29
95	Microplastics in Freshwater: A Focus on the Russian Inland Waters. Water (Switzerland), 2022, 14, 3909.	2.7	6
96	Polystyrene nanoplastics alleviate the toxicity of CuO nanoparticles to the marine algae Platymonas helgolandica var. tsingtaoensis. Frontiers in Marine Science, 0, 9, .	2.5	3
97	Polystyrene nanoplastics promote CHIP-mediated degradation of tight junction proteins by activating IRE11±/XBP1s pathway in mouse Sertoli cells. Ecotoxicology and Environmental Safety, 2022, 248, 114332.	6.0	13
98	Pyrolysis Process of Mixed Microplastics Using TG-FTIR and TED-GC-MS. Polymers, 2023, 15, 241.	4.5	8
99	Upcycling of real-world HDPE plastic wastes into high-purity methane and hierarchical porous carbon materials: Influence of plastics additives. Journal of Environmental Chemical Engineering, 2023, 11, 109327.	6.7	8
100	Identification of Polymers with a Small Data Set of Mid-infrared Spectra: A Comparison between Machine Learning and Deep Learning Models. Environmental Science and Technology Letters, 2023, 10, 1030-1035.	8.7	3
101	Current status of the direct detection of microplastics in environments and implications for toxicological effects. Chemical Engineering Journal Advances, 2023, 14, 100449.	5.2	11
102	Bioaccumulation of functionalized polystyrene nanoplastics in sea cucumber Apostichopus japonicus (Selenka, 1867) and their toxic effects on oxidative stress, energy metabolism and mitochondrial pathway. Environmental Pollution, 2023, 319, 121015.	7.5	14
103	Role of extracellular polymeric substances in the aggregation and biological response of micro(nano)plastics with different functional groups and sizes. Journal of Hazardous Materials, 2023, 446, 130713.	12.4	6
104	Raman imaging to capture microplastics and nanoplastics carried by smartphones. Science of the Total Environment, 2023, 864, 160959.	8.0	6
105	Strategies and Challenges of Identifying Nanoplastics in Environment by Surface-Enhanced Raman Spectroscopy. Environmental Science & Technology, 2023, 57, 25-43.	10.0	35
106	The environmental fate of nanoplastics: What we know and what we need to know about aggregation. NanoImpact, 2023, 29, 100453.	4.5	19
107	Microplastics and Nano-Plastics: From Initiation to Termination. Journal of Geoscience and Environment Protection, 2023, 11, 249-280.	0.5	2
108	Roadmap for optical tweezers. JPhys Photonics, 2023, 5, 022501.	4.6	32
109	Nanoplastics are significantly different from microplastics in urban waters. Water Research X, 2023, 19, 100169.	6.1	14

#	Article	IF	CITATIONS
110	3D meso/macroporous carbon from MgO-templated pyrolysis of waste plastic as an efficient electrode for supercapacitors. Chemosphere, 2023, 322, 138174.	8.2	8
111	Generation of polystyrene-specific antibodies for developing immunoassays to analyze microplastics and nanoplastics. Chemical Engineering Journal, 2023, 465, 142843.	12.7	3
112	Hazard assessment of different-sized polystyrene nanoplastics in hematopoietic human cell lines. Chemosphere, 2023, 325, 138360.	8.2	11
113	Detection of microplastics and nanoplastics released from a kitchen blender using Raman imaging. Journal of Hazardous Materials, 2023, 453, 131403.	12.4	8
114	The potential risks posed by micro-nanoplastics to the safety of disinfected drinking water. Journal of Hazardous Materials, 2023, 450, 131089.	12.4	9
115	Spatial distribution of polystyrene nanoplastics and small microplastics in the Bohai Sea, China. Science of the Total Environment, 2023, 881, 163222.	8.0	4
116	Automated characterization and identification of microplastics through spectroscopy and chemical imaging in combination with chemometric: Latest developments and future prospects. TrAC - Trends in Analytical Chemistry, 2023, 160, 116956.	11.4	5
117	Development of an Inexpensive and Comparable Microplastic Detection Method Using Fluorescent Staining with Novel Nile Red Derivatives. Analytica—A Journal of Analytical Chemistry and Chemical Analysis, 2023, 4, 27-44.	1.7	9
118	Aging of Nanoplastics Significantly Affects Protein Corona Composition Thus Enhancing Macrophage Uptake. Environmental Science & Technology, 2023, 57, 3206-3217.	10.0	25
120	Detection of microplastics, polymers and additives in edible muscle of swordfish (Xiphias gladius) and bluefin tuna (Thunnus thynnus) caught in the Mediterranean Sea. Journal of Sea Research, 2023, 192, 102359.	1.6	14
121	Biotechnological methods to remove microplastics: a review. Environmental Chemistry Letters, 2023, 21, 1787-1810.	16.2	30
122	Background signals in stimulated Raman scattering microscopy and current solutions to avoid them. Advances in Physics: X, 2023, 8, .	4.1	2
123	Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography–Mass Spectrometry. Environmental Science & Technology, 2023, 57, 3114-3123.	10.0	26
124	Detection methods of micro and nanoplastics. Advances in Food and Nutrition Research, 2023, , 175-227.	3.0	1
125	Remediation plan of nano/microplastic toxicity in food. Advances in Food and Nutrition Research, 2023, , 397-442.	3.0	0
126	Nanoplastics in aquatic environments: Origin, separation and characterization: Review. Tehnika, 2023, 78, 103-108.	0.2	0
127	Promotion of DNA Adsorption onto Microplastics by Transition Metal Ions. Microplastics, 2023, 2, 158-167.	4.2	3
128	Micro and Nanoplastics in Agricultural Soils: Challenges and Future Directions. , 2023, , 413-427.		0

#	Article	IF	CITATIONS
129	Unaccounted Microplastics in the Outlet of Wastewater Treatment Plants—Challenges and Opportunities. Processes, 2023, 11, 810.	2.8	3
130	Liquid Crystals as Multifunctional Interfaces for Trapping and Characterizing Colloidal Microplastics. Small, 2023, 19, .	10.0	3
131	Organic Pollutants Associated with Plastic Debris in Marine Environment: A Systematic Review of Analytical Methods, Occurrence, and Characteristics. International Journal of Environmental Research and Public Health, 2023, 20, 4892.	2.6	1
132	Comparison of two rapid automated analysis tools for large FTIR microplastic datasets. Analytical and Bioanalytical Chemistry, 2023, 415, 2975-2987.	3.7	6
133	Mass Spectrometry Insight for Assessing the Destiny of Plastics in Seawater. Polymers, 2023, 15, 1523.	4.5	1
134	Electrospun Nanofibers as Chemosensors for Detecting Environmental Pollutants: A Review. Chemosensors, 2023, 11, 208.	3.6	20
135	Spherical DNA for Probing Wettability of Microplastics. Langmuir, 2023, 39, 4959-4966.	3.5	2
136	Simple microfluidic device for simultaneous extraction and detection of microplastics in water using DC electrical signal. New Journal of Chemistry, 2023, 47, 9050-9060.	2.8	2
137	Long-Term Toxicity of 50-nm and 1-μm Surface-Charged Polystyrene Microbeads in the Brine Shrimp Artemia parthenogenetica and Role of Food Availability. Toxics, 2023, 11, 356.	3.7	1
138	Application of High-Resolution Near-Infrared Imaging Spectroscopy to Detect Microplastic Particles in Different Environmental Compartments. Water, Air, and Soil Pollution, 2023, 234, .	2.4	3
139	Microplastic pollution in the sediments of interconnected lakebed, seabed, and seashore aquatic environments: polymer-specific total mass through the multianalytical "PISA―procedure. Analytical and Bioanalytical Chemistry, 0, , .	3.7	1
140	Identification of microplastic fibres released from COVID-19 test swabs with Raman imaging. Environmental Sciences Europe, 2023, 35, .	11.0	7
141	Photodegradation of Microplastics by ZnO Nanoparticles with Resulting Cellular and Subcellular Responses. Environmental Science & amp; Technology, 2023, 57, 8118-8129.	10.0	5
142	Photocatalytic Microplastics "Onâ€Theâ€fly―Degradation via Motile Quantum Materialsâ€Based Microrobots. Advanced Optical Materials, 0, , .	7.3	1
143	<scp>TiO₂</scp> nanoparticles combined with polystyrene nanoplastics aggravated reproductive toxicity in female mice via exacerbating intestinal barrier disruption. Journal of the Science of Food and Agriculture, 2023, 103, 6452-6462.	3.5	3
144	Development of a machine learning-based method for the analysis of microplastics in environmental samples using µ-Raman spectroscopy. Microplastics and Nanoplastics, 2023, 3, .	8.8	1
145	Sources, analysis, and health implications of atmospheric microplastics. Emerging Contaminants, 2023, 9, 100233.	4.9	10
146	Raman imaging for the analysis of silicone microplastics and nanoplastics released from a kitchen sealant. Frontiers in Chemistry, 0, 11, .	3.6	0

#	Article	IF	CITATIONS
147	Building Tunable Degradation into High-Performance Poly(acrylate) Pressure-Sensitive Adhesives. ACS Macro Letters, 2023, 12, 787-793.	4.8	13
148	Microplastics' Aging Processes in the Aquatic Environment: Aging Mechanisms, Altered Environmental Behaviors and Ecotoxicity. Chemical Research in Chinese Universities, 2023, 39, 378-388.	2.6	4
149	Framework for data-driven polymer characterization from infrared spectra. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 300, 122841.	3.9	0
150	Versatile nanomaterials for remediation of microplastics from the environment. , 2023, , 107-126.		0
151	Quantification of Very Low Concentrations of Colloids with Light Scattering Applied to Micro(Nano)Plastics in Seawater. Microplastics, 2023, 2, 202-214.	4.2	1
152	The removal characteristics and mechanisms of polystyrene microplastics with various induced photoaging degrees by CuFe2O4. Separation and Purification Technology, 2023, 322, 124245.	7.9	5
153	Flowthrough Capture of Microplastics through Polyphenolâ€Mediated Interfacial Interactions on Wood Sawdust. Advanced Materials, 2023, 35, .	21.0	8
155	Visual monitoring of polystyrene nanoplastics <Â100Ânm in drinking water based on functionalized gold nanoparticles. Sensors and Actuators B: Chemical, 2023, 392, 134099.	7.8	2
156	Bisphenol A decreases the developmental toxicity and histopathological alterations caused by polystyrene nanoplastics in developing marine medaka Oryzias melastigma. Chemosphere, 2023, 336, 139174.	8.2	1
157	TUM-ParticleTyper 2: automated quantitative analysis of (microplastic) particles and fibers down to 1Â\$\${upmu }\$\$m by Raman microspectroscopy. Analytical and Bioanalytical Chemistry, 0, , .	3.7	0
158	Improved Reliability of Raman Spectroscopic Imaging of Low-Micrometer Microplastic Mixtures in Lake Water by Fractionated Membrane Filtration. ACS ES&T Water, 0, , .	4.6	0
160	Poly(glycidyl methacrylate- <i>co</i> -ethylene glycol dimethacrylate) Monoliths by Spinodal Decomposition for Hydrodynamic Chromatography. ACS Applied Polymer Materials, 0, , .	4.4	1
161	Using optimized particle imaging of micro-Raman to characterize microplastics in water samples. Science of the Total Environment, 2023, 896, 165031.	8.0	2
162	Investigating Microplastics and Nanoplastics Released from a Rubber Band Used for Orthodontic Treatment with Improved Raman Imaging Algorithms. , 2023, 1, 63-71.		1
163	Microplastics and trace metals in river sediment: Prevalence and correlation with multiple factors. Science of the Total Environment, 2023, 895, 165145.	8.0	2
164	Physicochemical characterization and quantification of nanoplastics: applicability, limitations and complementarity of batch and fractionation methods. Analytical and Bioanalytical Chemistry, 2023, 415, 3007-3031.	3.7	5
166	Nanoparticulate pollutants in the environment: Analytical methods, formation, and transformation. , 2023, 2, 61-73.		4
167	Microplastics and nanoplastics contamination in raw and treated water. Water Science and Technology: Water Supply, 2023, 23, 2267-2282.	2.1	2

#	Article	IF	Citations
168	Effects of nanoplastics on clam Ruditapes philippinarum at environmentally realistic concentrations: Toxicokinetics, toxicity, and gut microbiota. Journal of Hazardous Materials, 2023, 456, 131647.	12.4	9
169	Analysis of oligomers to assess exposure to microplastics from foods. A perspective. Frontiers in Nutrition, 0, 10, .	3.7	3
170	Insights into Anthropogenic Micro- and Nanoplastic Accumulation in Drinking Water Sources and Their Potential Effects on Human Health. Polymers, 2023, 15, 2425.	4.5	3
171	Reproductive toxicity of micro- and nanoplastics. Environment International, 2023, 177, 108002.	10.0	13
172	Developing and testing a workflow to identify microplastics using near infrared hyperspectral imaging. Chemosphere, 2023, 336, 139186.	8.2	7
173	Distribution, abundance, and risks posed by microplastics in surface waters of the Yangtze River Basin, China. Environmental Pollution, 2023, 333, 122086.	7.5	4
174	Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35, 108718.	9.0	1
175	Catalytic approaches for the removal of microplastics from water: Recent advances and future opportunities. Chemical Engineering Journal Advances, 2023, 16, 100529.	5.2	7
176	Microplastics: Detection in human samples, cell line studies, and health impacts. Environmental Toxicology and Pharmacology, 2023, 101, 104204.	4.0	17
177	Super-resolution imaging of micro- and nanoplastics using confocal Raman with Gaussian surface fitting and deconvolution. Talanta, 2023, 265, 124886.	5.5	5
178	Interaction of Microbes with Microplastics and Nanoplastics in the Agroecosystems—Impact on Antimicrobial Resistance. Pathogens, 2023, 12, 888.	2.8	3
179	Microplastics and nanoplastics analysis: Options, imaging, advancements and challenges. TrAC - Trends in Analytical Chemistry, 2023, 166, 117158.	11.4	11
180	Nile Red staining for nanoplastic quantification: Overcoming the challenge of false positive counts due to fluorescent aggregates. Environmental Challenges, 2023, 13, 100744.	4.2	0
181	Enumeration of microparticles on a gridded filter using a stratified random sampling tool. MethodsX, 2023, 11, 102284.	1.6	0
182	Advanced Raman spectroscopy for nanoplastics analysis: Progress and perspective. TrAC - Trends in Analytical Chemistry, 2023, 166, 117188.	11.4	6
183	Urban stormwater microplastic size distribution and impact of subsampling on polymer diversity. Environmental Sciences: Processes and Impacts, 2023, 25, 1374-1384.	3.5	1
184	Microplastics as an Emerging Threat to the Global Environment and Human Health. Sustainability, 2023, 15, 10821.	3.2	25
185	Detection of Various Microplastics in Patients Undergoing Cardiac Surgery. Environmental Science & Technology, 2023, 57, 10911-10918.	10.0	40

#	Article	IF	CITATIONS
186	Status quo of operation procedures for soil sampling to analyze microplastics. Microplastics and Nanoplastics, 2023, 3, .	8.8	3
187	Fate and impact of nanoplastics in the human digestive environment after oral exposure: A common challenge for toxicology and chemistry. TrAC - Trends in Analytical Chemistry, 2023, 166, 117175.	11.4	1
188	Rapid and Controlled Ring-Opening (Co)Polymerization of Bio-Sourced Alkyl-δ-Lactones To Produce Recyclable (Co)Polyesters and Their Application as Pressure-Sensitive Adhesives. Macromolecules, 2023, 56, 6117-6125.	4.8	4
189	Toward Continuous Nano-Plastic Monitoring in Water by High Frequency Impedance Measurement With Nano-Electrode Arrays. IEEE Sensors Journal, 2023, 23, 20180-20188.	4.7	1
191	Extraction of Common Small Microplastics and Nanoplastics Embedded in Environmental Solid Matrices by Tetramethylammonium Hydroxide Digestion and Dichloromethane Dissolution for Py-GC-MS Determination. Environmental Science & Technology, 2023, 57, 12010-12018.	10.0	5
192	Microplastics analytics: why we should not underestimate the importance of blank controls. Microplastics and Nanoplastics, 2023, 3, .	8.8	4
193	Development of a solubility parameter calculation-based method as a complementary tool to traditional techniques for indoor dust microplastic determination and risk assessment. Journal of Hazardous Materials, 2023, 459, 132189.	12.4	1
194	Dark background–surface enhanced Raman spectroscopic detection of nanoplastics: Thermofluidic strategy. Water Research, 2023, 244, 120459.	11.3	1
195	Polystyrene nanoplastics aggravate reproductive system damage in obese male mice by perturbation of the testis redox homeostasis. Environmental Toxicology, 2023, 38, 2881-2893.	4.0	2
196	Identification and detection of microplastic particles in marine environment by using improved faster R–CNN model. Journal of Environmental Management, 2023, 345, 118802.	7.8	1
197	Unveiling microplastics from zippers: Characterisation and visualisation through Raman imaging analysis. Science of the Total Environment, 2023, 904, 166235.	8.0	1
198	Pretreatment, identification and quantification of submicro/nano-plastics in complex environmental matrices. TrAC - Trends in Analytical Chemistry, 2023, 167, 117259.	11.4	2
199	Overview of analytical methods for the determination of microplastics: Current status and trends. TrAC - Trends in Analytical Chemistry, 2023, 167, 117261.	11.4	9
200	Raman Diffusion-Ordered Spectroscopy. Journal of Physical Chemistry A, 0, , .	2.5	0
201	Testing of Different Digestion Solutions on Tissue Samples and the Effects of Used Potassium Hydroxide Solution on Polystyrene Microspheres. Toxics, 2023, 11, 790.	3.7	0
202	Catalytic degradation of microplastics. Russian Chemical Reviews, 2023, 92, .	6.5	7
203	Microplastic Pollution: Threats and Impacts on Global Marine Ecosystems. Sustainability, 2023, 15, 13252.	3.2	2
204	Determination of atmospherically deposited microplastics in moss: Method development and performance evaluation. , 2023, 7, 100078.		1

#	Article	IF	CITATIONS
205	From Plastic Waste to Treasure: Selective Upcycling through Catalytic Technologies. Advanced Energy Materials, 2023, 13, .	19.5	7
206	Super-resolution Raman imaging towards visualisation of nanoplastics. Analytical Methods, 2023, 15, 5300-5310.	2.7	2
207	Microplastics sequestered in the soil affect the turnover and stability of soil aggregates: A review. Science of the Total Environment, 2023, 904, 166776.	8.0	2
209	Does microplastic analysis method affect our understanding of microplastics in the environment?. Science of the Total Environment, 2023, 902, 166513.	8.0	0
210	Rapid Chemical Screening of Microplastics and Nanoplastics by Thermal Desorption and Pyrolysis Mass Spectrometry with Unsupervised Fuzzy Clustering. Analytical Chemistry, 2023, 95, 12373-12382.	6.5	2
211	3D Plasmonic Gold Nanopocket Structure for SERS Machine Learningâ€Based Microplastic Detection. Advanced Functional Materials, 2024, 34, .	14.9	5
212	Chemical characterization of microplastic particles formed in airborne waste discharged from sewer pipe repairs. Environmental Sciences: Processes and Impacts, 2023, 25, 1718-1731.	3.5	2
213	A smartphone-powered photoelectrochemical POCT via Z-scheme Cu2O/Cu3SnS4 for dibutyl phthalate in the environmental and food. Journal of Hazardous Materials, 2023, 460, 132281.	12.4	2
214	Unveiling Fragmentation of Plastic Particles during Biodegradation of Polystyrene and Polyethylene Foams in Mealworms: Highly Sensitive Detection and Digestive Modeling Prediction. Environmental Science & Technology, 2023, 57, 15099-15111.	10.0	1
215	MALDI-2 Mass Spectrometry for Synthetic Polymer Analysis. Macromolecules, 2023, 56, 7729-7736.	4.8	0
216	Marine micro(nano)plastics determination and its environmental toxicity evaluation. TrAC - Trends in Analytical Chemistry, 2023, 168, 117332.	11.4	5
217	Mass concentration and distribution characteristics of microplastics in landfill mineralized refuse using efficient quantitative detection based on Py-GC/MS. Journal of Hazardous Materials, 2023, 459, 132098.	12.4	3
218	Micro- and nanoplastics in soil ecosystems: Analytical methods, fate, and effects. TrAC - Trends in Analytical Chemistry, 2023, 169, 117309.	11.4	3
219	Near-Infrared-II <i>In Vivo</i> Visualization and Quantitative Tracking of Micro/Nanoplastics in Fish. ACS Nano, 2023, 17, 19410-19420.	14.6	3
220	Polylactide Degradation in the Presence of Members of the Genus Bacillus. Microbiology, 2023, 92, 739-743.	1.2	0
221	Exposure protocol for ecotoxicity testing of microplastics and nanoplastics. Nature Protocols, 2023, 18, 3534-3564.	12.0	10
222	Detection of low concentration microplastics in water based on the perturbation of the microwave resonance. Measurement: Journal of the International Measurement Confederation, 2023, 222, 113633.	5.0	0
223	Microbeads in personal care products: An overlooked environmental concern. Journal of Cleaner Production, 2023, 427, 139082.	9.3	3

#	Article	IF	CITATIONS
224	Challenges and recommendations in experimentation and risk assessment of nanoplastics in aquatic organisms. TrAC - Trends in Analytical Chemistry, 2023, 167, 117262.	11.4	1
225	Challenges in the quantification of poly(ethylene terephthalate) microplastics via thermoanalytical methods posed by inorganic matrix components. Journal of Analytical and Applied Pyrolysis, 2023, 174, 106108.	5.5	2
226	Sequential quantification of number and mass of microplastics in municipal wastewater using Fourier-transform infrared spectroscopy and pyrolysis gas chromatography-mass spectrometry. Environmental Pollution, 2023, 336, 122452.	7.5	0
227	Raman imaging to identify microplastics released from toothbrushes: algorithms and particle analysis. Environmental Pollution, 2023, 337, 122510.	7.5	2
228	It matters how we measure - Quantification of microplastics in drinking water by μFTIR and μRaman. Heliyon, 2023, 9, e20119.	3.2	2
229	MICROSCOPIC METHOD TO VERIFY THE EFFICIENCY OF REMOVAL OF ORGANIC POLLUTANTS FROM MICROPLASTIC SURFACES. Civil and Environmental Engineering Reports, 2023, 33, 90-98.	0.3	0
230	Integrated Passive Sensing Chip for Highly Sensitive and Reusable Detection of Differential-Charged Nanoplastics Concentration. ACS Sensors, 0, , .	7.8	0
231	A photoluminescence strategy for detection nanoplastics in water and biological imaging in cells and plants. Journal of Hazardous Materials, 2024, 461, 132695.	12.4	1
232	Impact of treatment chemicals on the morphology and molecular structure of microfibers and microplastic films in wastewater. Water Science and Technology, 0, , .	2.5	0
233	Current advances in microplastic contamination in aquatic sediment: Analytical methods, global occurrence, and effects on elemental cycling. TrAC - Trends in Analytical Chemistry, 2023, 168, 117331.	11.4	4
234	Development of Cost-Effective Sensor for Simultaneous Determination of Nanoplastics Using Artificial Neural Network. IEEE Sensors Journal, 2023, 23, 27038-27045.	4.7	1
235	Occurrence of microplastics and disturbance of gut microbiota: a pilot study of preschool children in Xiamen, China. EBioMedicine, 2023, 97, 104828.	6.1	2
236	Migration testing of microplastics from selected water and food containers by Raman microscopy. Journal of Hazardous Materials, 2024, 462, 132798.	12.4	0
237	Fate of Nanoparticles in Soil and Water. , 2023, , 144-162.		0
238	Analytical challenges in detecting microplastics and nanoplastics in soil-plant systems. Plant Physiology and Biochemistry, 2023, 204, 108132.	5.8	5
239	Microplastic transport during desertification in drylands: Abundance and characterization of soil microplastics in the Amu Darya-Aral Sea basin, Central Asia. Journal of Environmental Management, 2023, 348, 119353.	7.8	1
240	Characterising microplastics in indoor air: Insights from Raman imaging analysis of air filter samples. Journal of Hazardous Materials, 2024, 464, 132969.	12.4	1
241	Biodegradable cellulose/curcumin films with Janus structure for food packaging and freshness monitoring. Carbohydrate Polymers, 2024, 324, 121516.	10.2	2

#	Article	IF	CITATIONS
242	Integrating metabolomics and high-throughput sequencing to investigate the effects of tire wear particles on mung bean plants and soil microbial communities. Environmental Pollution, 2024, 340, 122872.	7.5	4
243	Underappreciated microplastic galaxy biases the filter-based quantification. Journal of Hazardous Materials, 2024, 463, 132897.	12.4	1
244	A review of recent progress in the application of Raman spectroscopy and SERS detection of microplastics and derivatives. Mikrochimica Acta, 2023, 190, .	5.0	3
245	Advances in microplastics detection: A comprehensive review of methodologies and their effectiveness. TrAC - Trends in Analytical Chemistry, 2024, 170, 117440.	11.4	1
246	Origin, ecotoxicity, and analytical methods for microplastic detection in aquatic systems. TrAC - Trends in Analytical Chemistry, 2024, 170, 117392.	11.4	3
247	Mass spectrometry detection of environmental microplastics: Advances and challenges. TrAC - Trends in Analytical Chemistry, 2024, 170, 117472.	11.4	1
248	Sample transformation in online separations: how chemical conversion advances analytical technology. Chemical Communications, 2023, 60, 36-50.	4.1	1
249	Rapid detection of colored and colorless macro- and micro-plastics in complex environment via near-infrared spectroscopy and machine learning. Journal of Environmental Sciences, 0, 147, 512-522.	6.1	0
250	Salt-Induced Adsorption and Rupture of Liposomes on Microplastics. Langmuir, 2023, 39, 16395-16403.	3.5	0
251	Cytotoxicity assessment of nanoplastics and associated additives using an electrochemical sensor based on carbon nanohorn/gold nanoparticles. Journal of Environmental Chemical Engineering, 2023, 11, 111452.	6.7	0
252	Molecular Structure Characterization of Micro/Nanoplastics by 193 nm Ultraviolet Photodissociation Mass Spectrometry. Analytical Chemistry, 2023, 95, 18046-18054.	6.5	0
254	Direct entry of micro(nano)plastics into human blood circulatory system by intravenous infusion. IScience, 2023, 26, 108454.	4.1	1
255	From celebration to contamination: Analysing microplastics released by burst balloons. Journal of Hazardous Materials, 2024, 464, 133021.	12.4	0
256	A novel enzymatic method for isolation of plastic particles from human blood. Environmental Toxicology and Pharmacology, 2023, 104, 104318.	4.0	1
257	Rapid detection and identification of microplastics from nonchemically treated soil with CARS microspectroscopy. Environmental Pollution, 2024, 342, 123080.	7.5	1
258	Advancements in Raman imaging for nanoplastic analysis: Challenges, algorithms and future Perspectives. Analytica Chimica Acta, 2024, 1290, 342069.	5.4	1
259	Microplastics and Nanoplastics Impair the Biophysical Function of Pulmonary Surfactant by Forming Heteroaggregates at the Alveolar–Capillary Interface. Environmental Science & Technology, 0, , .	10.0	0
260	Pretreatment as a Microplastics Generator during Household Biogenic Waste Treatment. Engineering, 2023, , .	6.7	0

#	ARTICLE	IF	CITATIONS
261	Sub-10 nm Nanoparticle Detection Using Multi-Technique-Based Micro-Raman Spectroscopy. Polymers, 2023, 15, 4644.	4.5	0
262	Catalytic and biocatalytic degradation of microplastics. Exploration, 0, , .	11.0	0
263	An Experimental Comparison Between FTIR and Raman Microspectroscopy Applied to the Morphological Analysis of Microplastics in Drinking Water. Springer Water, 2023, , 1-7.	0.3	0
264	Depth distribution of nano- and microplastics and their contribution to carbon storage in Chinese agricultural soils. Science of the Total Environment, 2023, , 169709.	8.0	0
265	Rapid single-particle chemical imaging of nanoplastics by SRS microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	15
266	Analysis and detection methods of microplastics in the environment. , 2024, , 33-63.		0
268	Bridging the Gaps between Microplastics and Human Health. Microplastics, 2024, 3, 46-66.	4.2	0
269	Separation and Identification of Nanoplastics via a Two-Phase System Combined with Surface-Enhanced Raman Spectroscopy. ACS Sustainable Chemistry and Engineering, 2024, 12, 1595-1604.	6.7	0
270	Paint has the potential to release microplastics, nanoplastics, inorganic nanoparticles, and hybrid materials. Environmental Sciences Europe, 2024, 36, .	11.0	0
271	Why Nigeria should ban single-use plastics: Excessive microplastic pollution of the water, sediments and fish species in Osun River, Nigeria. Journal of Hazardous Materials Advances, 2024, 13, 100409.	3.0	0
272	Promoted biodegradation behavior of poly(L-lactic acid) in seawater conditions through blending amorphous polyhydroxyalkanoate. Macromolecular Research, 0, , .	2.4	0
273	Quantitative Determination of Poly(methyl Methacrylate) Micro/Nanoplastics by Cooling-Assisted Solid-Phase Microextraction Coupled to Gas Chromatography–Mass Spectrometry: Theoretical and Experimental Insights. Analytical Chemistry, 2024, 96, 2227-2235.	6.5	0
274	Micro(nano)plastics in human urine: A surprising contrast between Chongqing's urban and rural regions. Science of the Total Environment, 2024, 917, 170455.	8.0	0
275	Development of Enzyme-Based Approaches for Recycling PET on an Industrial Scale. Biochemistry, 0, , .	2.5	0
276	Hybrid Oxidation of Microplastics with Fenton and Hydrothermal Reactions. ACS ES&T Water, 2024, 4, 1688-1700.	4.6	0
277	Polystyrene microplastic-induced oxidative stress triggers intestinal barrier dysfunction via the NF-I®B/NLRP3/IL-11²/MCLK pathway. Environmental Pollution, 2024, 345, 123473.	7.5	0
278	The power of centrifugation: How to extract microplastics from soil with high recovery and matrix removal efficiency. MethodsX, 2024, 12, 102598.	1.6	0
279	Lignin derived hydrophobic deep eutectic solvents for the extraction of nanoplastics from water. Journal of Hazardous Materials, 2024, 467, 133695.	12.4	0

#	Article	IF	CITATIONS
280	New versus naturally aged greenhouse cover films: Degradation and micro-nanoplastics characterization under sunlight exposure. Science of the Total Environment, 2024, 918, 170662.	8.0	0
281	Exposure to different surface-modified polystyrene nanoparticles caused anxiety, depression, and social deficit in mice via damaging mitochondria in neurons. Science of the Total Environment, 2024, 919, 170739.	8.0	0
282	Technological approaches for removal of microplastics and nanoplastics in the environment. Journal of Environmental Chemical Engineering, 2024, 12, 112084.	6.7	0
283	Gold Nanoparticles Bioproduced in Cyanobacteria in the Initial Phase Opened an Avenue for the Discovery of Corresponding Cerium Nanoparticles. Microorganisms, 2024, 12, 330.	3.6	0
284	A critical comparison of the main characterization techniques for microplastics identification in an accelerated aging laboratory experiment. , 0, 3, .		0
285	Nanomaterial-based electrochemical chemo(bio)sensors for the detection of nanoplastic residues: trends and future prospects. , 2024, 2, 832-851.		0
286	Microplastics: Challenges, toxicity, spectroscopic and real-time detection methods. Applied Spectroscopy Reviews, 0, , 1-95.	6.7	0
287	Identification of spectral responses of different plastic materials by means of multispectral imaging. Environmental Sciences: Processes and Impacts, 0, , .	3.5	0
288	Biotechnological advancements in microplastics degradation in drinking water: Current insights and Future perspectives. Case Studies in Chemical and Environmental Engineering, 2024, 9, 100640.	6.1	0
289	Detection of nanoplastics released from consumer plastic food containers by electromagnetic heating pyrolysis mass spectrometry. Analytica Chimica Acta, 2024, 1296, 342344.	5.4	0
290	An Image-Processing Tool for Size and Shape Analysis of Manufactured Irregular Polyethylene Microparticles. Microplastics, 2024, 3, 124-146.	4.2	0
291	The "Microplastome―– A Holistic Perspective to Capture the Real-World Ecology of Microplastics. Environmental Science & Technology, 0, , .	10.0	0
292	Value for money: a cost-effectiveness analysis of microplastic analytics in seawater. Microplastics and Nanoplastics, 2024, 4, .	8.8	1
293	Fine micro- and nanoplastics concentrations in particulate matter samples from the high alpine site Sonnblick, Austria. Chemosphere, 2024, 352, 141410.	8.2	0
294	The Occurrence of Microplastics in Donax trunculus (Mollusca: Bivalvia) Collected along the Tuscany Coast (Mediterranean Sea). Animals, 2024, 14, 618.	2.3	0
295	Bidimensional Dynamic Magnetic Levitation: Sequential Separation of Microplastics by Density and Size. Analytical Chemistry, 2024, 96, 3259-3266.	6.5	0
297	A systematic review of microplastics occurrence, characteristics, identification techniques and removal methods in ASEAN and its future prospects. Journal of Environmental Chemical Engineering, 2024, 12, 112305.	6.7	0
298	Culture dependent analysis of bacterial activity, biofilm-formation and oxidative stress of seawater with the contamination of microplastics under climate change consideration. Science of the Total Environment, 2024, 922, 171103.	8.0	0

#	Article	IF	CITATIONS
299	Polyethylene terephthalate waste derived nanomaterials (WDNMs) and its utilization in electrochemical devices. Chemosphere, 2024, 353, 141541.	8.2	0
300	Harnessing photosynthetic microorganisms for enhanced bioremediation of microplastics: A comprehensive review. Environmental Science and Ecotechnology, 2024, 20, 100407.	13.5	0
301	Quantification of Polystyrene Uptake by Different Cell Lines Using Fluorescence Microscopy and Label-Free Visualization of Intracellular Polystyrene Particles by Raman Microspectroscopic Imaging. Cells, 2024, 13, 454.	4.1	0
302	Microplastic and nanoplastic debris left behind by a plastic water tank subjected to a mimicked bushfire. Engineering Reports, 0, , .	1.7	0
303	Microplastics and nanoplastics size distribution in farmed mussel tissues. Communications Earth & Environment, 2024, 5, .	6.8	0
304	Effects of polyethylene microplastics occurrence on estrogens degradation in soil. Chemosphere, 2024, 355, 141727.	8.2	0
305	Mass-based fates of microplastics throughout wastewater treatment processes. Chemical Engineering Journal, 2024, 487, 150497.	12.7	0
306	Identification and quantification of microplastics in salts by complementary approaches using pyrolysis-gas chromatography/quadrupole-time of flight mass spectrometry (Py-GC/QTOFMS) and laser direct infrared (LDIR) chemical imaging analysis. Environmental Pollution, 2024, 348, 123820.	7.5	0
307	Microplastics in drinking water: A review on methods, occurrence, sources, and potential risks assessment. Environmental Pollution, 2024, 348, 123857.	7.5	0
308	Naked-eye sensitive detection of nanoPET by pH-responsive colorimetric method based on dual-enzyme catalysis. Environment International, 2024, 186, 108598.	10.0	0
309	Plastic particles affect N2O release via altering core microbial metabolisms in constructed wetlands. Water Research, 2024, 255, 121506.	11.3	0