Synthesis and applications of nano-MgO and composite environmental remediation: a review

Environmental Chemistry Letters 19, 4415-4454 DOI: 10.1007/s10311-021-01299-4

Citation Report

#	Article	IF	CITATION
1	Engineered magnetic oxides nanoparticles as efficientÂsorbents for wastewater remediation: a review. Environmental Chemistry Letters, 2022, 20, 519-562.	16.2	28
2	Comparative studies of the biological efficacies of Ag and Ag-MgO nanocomposite formed by the green synthesis route. Inorganic Chemistry Communication, 2022, 135, 109082.	3.9	5
3	Characteristics of MgO/PCL/PVP antibacterial nanofiber membranes produced by electrospinning technology. Surfaces and Interfaces, 2022, 28, 101661.	3.0	13
4	Epitaxial growth of aligned MgO nanowire arrays on a single crystalline substrate. Dalton Transactions, 2022, 51, 3740-3746.	3.3	2
5	Simultaneous removal of heavy metals and dyes in water using a MgO-coated Fe3O4 nanocomposite: Role of micro-mixing effect induced by bubble generation. Chemosphere, 2022, 294, 133788.	8.2	7
6	The selective removal of Congo red using dumbbell-shaped hierarchically porous Ca-Mg mixed oxide. Applied Surface Science Advances, 2022, 8, 100221.	6.8	2
7	The effect of Cr alloying with Pt/C as an electrocatalyst for low temperature PEM fuel cell. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 3239-3252.	2.3	3
8	Biopolymer-supported TiO2 as a sustainable photocatalyst for wastewater treatment: a review. Environmental Chemistry Letters, 2022, 20, 3071-3098.	16.2	50
9	Ultrasound assisted impregnation of platinum on carbon for ORR activity in PEM fuel cell. International Journal of Ambient Energy, 2022, 43, 8239-8247.	2.5	0
10	Estimation of in vivo toxicity of MgO/ZnO core/shell nanoparticles synthesized by eco-friendly non-thermal plasma technology. Applied Nanoscience (Switzerland), 0, , .	3.1	5
11	Food additives for the synthesis of metal nanoparticles: a review. Environmental Chemistry Letters, 2023, 21, 525-538.	16.2	8
12	Catalytic nanomedicine: a brief review of bionanocatalysts. Nanomedicine, 2022, 17, 1131-1156.	3.3	5
13	Green synthesis of magnesium oxide nanosheets by using Citrullus colocynthis fruit extract and its use in biofuel production. Biomass and Bioenergy, 2022, 167, 106640.	5.7	2
14	Nanoparticles of magnesium oxyhydroxide and copper oxide: Synthesis and evaluation of their in vitro fungicidal activity on the fungus Omphalia sp Inorganic Chemistry Communication, 2022, 146, 110085.	3.9	4
15	Synthesis and characterization of MgO nanostructures: A comparative study on the effect of preparation route. Materials Chemistry and Physics, 2023, 294, 127036.	4.0	7
16	Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects. Journal of Functional Biomaterials, 2022, 13, 274.	4.4	26
17	Removal of bromophenol blue dye from water onto biomass, activated carbon, biochar, polymer, nanoparticle, and composite adsorbents. Biomass Conversion and Biorefinery, 0, , .	4.6	7
18	Synthesis of high purity magnesia MgO from Algerian dolomite ore. Journal of Mining and Metallurgy, Section B: Metallurgy, 2023, , 5-5.	0.8	0

CITATION REPORT

#	Article	IF	CITATIONS
19	Novel Synthesis of Nano Mg(OH)2 by Means of Hydrothermal Method with Different Surfactants. Nanomaterials, 2023, 13, 454.	4.1	4
20	Determination of technological properties of wood plastic nanocomposites produced by flat press reinforced with nano MgO. Journal of Composite Materials, 2023, 57, 1641-1651.	2.4	2
21	Enzyme-free carbon dots@MgO nanocomposite as an efficient sensor for on-site detection and degradation of paraoxon toxins. Carbon, 2023, 209, 118003.	10.3	1
22	Nanostructured systems based on magnesium oxide: the synthesis and application in sorption and catalytic processes. Russian Chemical Bulletin, 2023, 72, 335-344.	1.5	1
23	Nanofabrication of Metals and Their Compounds for Effective Medicinal and Environmental Applications (A Review). Russian Journal of General Chemistry, 2023, 93, 635-665.	0.8	4
24	Bio-inspired synthesis and characterizations of groundnut shells-mediated Cu/CuO/Cu2O nanoparticles for anticancer, antioxidant, and DNA damage activities. Journal of Sol-Gel Science and Technology, 2023, 106, 737-747.	2.4	8
25	Sorption and reduction of hexavalent uranium by natural and modified silicate minerals: A review. Environmental Chemistry Letters, 2023, 21, 2441-2470.	16.2	10
27	Recovery of ultra-high purity reactive magnesia from reject brine and its comparison with commercial magnesia. Desalination, 2023, 566, 116909.	8.2	1
28	First principle and experimental study on AlxMg1-xO compound thin films for electronic, optical, and antibacterial activity. Solid State Communications, 2023, 372, 115302.	1.9	0
29	Magnesium oxyhydroxide nanoparticles: Synthesis, characterization and evaluation of their genotoxicity in Vicia faba L Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 298, 116896.	3.5	0
30	From waste to wealth: Using MgO nanoparticles to transform ammonium into a valuable resource. Journal of Water Process Engineering, 2023, 56, 104331.	5.6	1
32	Chitosan/metal organic frameworks for environmental, energy, and bio-medical applications: a review. Materials Advances, 2023, 4, 5920-5947.	5.4	3
33	Improved Stability and Spectral Photophysical Properties of poly (9, 9′-di-n-1 octylfluorenyl-2.7-diyl) /MgO Nanohybrid Films. Arabian Journal for Science and Engineering, 0, , .	3.0	1
34	MgO-ZnO nanoparticle as an efficient photocatalyst in the synthesis of substituted chromeno[4, 3-b]chromenes as effective drugs in gastrointestinal cancer therapy. Inorganic Chemistry Communication, 2024, 160, 111894.	3.9	0
35	Maximizing heat transfer and minimizing entropy generation in concentric cylinders with CuO MgO TiO2 nanoparticles. Chinese Journal of Physics, 2024, 89, 493-503.	3.9	1
36	Development of innovative and green adsorbents for in situ cleanup of fluoride-polluted groundwater: Mechanisms and field-scale studies. Chemosphere, 2024, 350, 141035.	8.2	0
37	Fabrication of Efficient Na, B, and O Codoped g-C ₃ N ₄ /Polypyrrole-Carbon Black 3D Beads for Expeditious Degradation of Tetracycline via Percarbonate Activation. Industrial & Engineering Chemistry Research, 2024, 63, 2605-2618.	3.7	0
38	Photocatalytic sponges for wastewater treatment, carbon dioxide reduction, and hydrogen production: a review. Environmental Chemistry Letters, 2024, 22, 635-656.	16.2	1

#	Article	IF	CITATIONS
40	Removal of fluoride ions from water using MgO-based materials with special emphasis on MgO/PPy nanocomposites: A review. Journal of Molecular Liquids, 2024, 399, 124473.	4.9	0

CITATION REPORT