Structural and functional basis for pan-CoV fusion inhibition variants with preclinical evaluation

Signal Transduction and Targeted Therapy 6, 288 DOI: 10.1038/s41392-021-00712-2

Citation Report

#	Article	IF	CITATIONS
1	25-Hydroxycholesterol-Conjugated EK1 Peptide with Potent and Broad-Spectrum Inhibitory Activity against SARS-CoV-2, Its Variants of Concern, and Other Human Coronaviruses. International Journal of Molecular Sciences, 2021, 22, 11869.	4.1	16
2	Animal models for SARSâ€CoVâ€2 infection and pathology. MedComm, 2021, 2, 548-568.	7.2	19
3	Stapled Peptides Targeting SARS-CoV-2 Spike Protein HR1 Inhibit the Fusion of Virus to Its Cell Receptor. Journal of Medicinal Chemistry, 2021, 64, 17486-17495.	6.4	14
4	Progress in the Diagnosis and Treatment of COVID-19 in Children: A Review. International Journal of General Medicine, 2021, Volume 14, 8097-8108.	1.8	10
5	Nanometer-resolution in situ structure of the SARS-CoV-2 postfusion spike protein. Proceedings of the United States of America, 2021, 118, .	7.1	30
6	A novel STING agonist-adjuvanted pan-sarbecovirus vaccine elicits potent and durable neutralizing antibody and T cell responses in mice, rabbits and NHPs. Cell Research, 2022, 32, 269-287.	12.0	54
7	Peptide-based pan-CoV fusion inhibitors maintain high potency against SARS-CoV-2 Omicron variant. Cell Research, 2022, 32, 404-406.	12.0	31
8	Drug Combinations as a First Line of Defense against Coronaviruses and Other Emerging Viruses. MBio, 2021, 12, e0334721.	4.1	45
9	Phage-Displayed Mimotopes of SARS-CoV-2 Spike Protein Targeted to Authentic and Alternative Cellular Receptors. Viruses, 2022, 14, 384.	3.3	10
10	Comparison of modelâ€specific histopathology in mouse models of COVIDâ€19. Journal of Medical Virology, 2022, 94, 3605-3612.	5.0	7
11	A Five-Helix-Based SARS-CoV-2 Fusion Inhibitor Targeting Heptad Repeat 2 Domain against SARS-CoV-2 and Its Variants of Concern. Viruses, 2022, 14, 597.	3.3	22
12	A Palmitic Acid-Conjugated, Peptide-Based pan-CoV Fusion Inhibitor Potently Inhibits Infection of SARS-CoV-2 Omicron and Other Variants of Concern. Viruses, 2022, 14, 549.	3.3	13
13	Identification, optimization, and biological evaluation of 3-O-β-chacotriosyl ursolic acid derivatives as novel SARS-CoV-2 entry inhibitors by targeting the prefusion state of spike protein. European Journal of Medicinal Chemistry, 2022, 238, 114426.	5.5	9
14	K18- and CAG-hACE2 Transgenic Mouse Models and SARS-CoV-2: Implications for Neurodegeneration Research. Molecules, 2022, 27, 4142.	3.8	7
15	Panâ€coronavirus fusion inhibitors to combat COVIDâ€19 and other emerging coronavirus infectious diseases. Journal of Medical Virology, 2023, 95, .	5.0	10
16	A novel cyclic γ-AApeptide-based long-acting pan-coronavirus fusion inhibitor with potential oral bioavailability by targeting two sites in spike protein. Cell Discovery, 2022, 8, .	6.7	13
17	Targeting the SARS-CoV-2 HR1 with Small Molecules as Inhibitors of the Fusion Process. International Journal of Molecular Sciences, 2022, 23, 10067.	4.1	11
18	Recombinant Protein Micelles to Block Transduction by SARS-CoV-2 Pseudovirus. ACS Nano, 2022, 16, 17466-17477.	14.6	2

CITATION REPORT

#	Article	IF	CITATIONS
19	Identification of virus-specific B-cell epitopes by convalescent plasma from COVID-19 patients. Molecular Immunology, 2022, 152, 215-223.	2.2	1
20	Antigenic mapping reveals sites of vulnerability on α-HCoV spike protein. Communications Biology, 2022, 5, .	4.4	2
21	Discovery and structural optimization of 3-O-β-Chacotriosyl betulonic acid saponins as potent fusion inhibitors of Omicron virus infections. Bioorganic Chemistry, 2023, 131, 106316.	4.1	4
22	Small molecules in the treatment of COVID-19. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	42
23	SARS-CoV-2 Omicron subvariants exhibit distinct fusogenicity, but similar sensitivity, to pan-CoV fusion inhibitors. Emerging Microbes and Infections, 2023, 12, .	6.5	13
24	Application of Pseudotyped Viruses. Advances in Experimental Medicine and Biology, 2023, , 45-60.	1.6	2
25	SARS-COV-2 Spike Protein: Characteristics and Treatments. , 0, 36, 859-865.		0
26	A Comparison of Etiology, Pathogenesis, Vaccinal and Antiviral Drug Development between Influenza and COVID-19. International Journal of Molecular Sciences, 2023, 24, 6369.	4.1	4
27	Molecular Modeling of Viral Type I Fusion Proteins: Inhibitors of Influenza Virus Hemagglutinin and the Spike Protein of Coronavirus. Viruses, 2023, 15, 902.	3.3	1
28	Targetable elements in SARS-CoV-2 S2 subunit for the design of pan-coronavirus fusion inhibitors and vaccines. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	15
29	HR121 targeting HR2 domain in S2 subunit of spike protein can serve as a broad-spectrum SARS-CoV-2 inhibitor via intranasal administration. Acta Pharmaceutica Sinica B, 2023, 13, 3339-3351.	12.0	2
30	Optimization, and biological evaluation of 3-O-β-chacotriosyl betulinic acid amide derivatives as novel small-molecule Omicron. European Journal of Medicinal Chemistry, 2023, 256, 115463.	5.5	1
31	In silico anti-viral assessment of phytoconstituents in a traditional (Siddha Medicine) polyherbal formulation – Targeting Mpro and pan-coronavirus post-fusion Spike protein. Journal of Traditional and Complementary Medicine, 2024, 14, 55-69.	2.7	2
32	Repurposing Navitoclax to block SARSâ€CoVâ€2 fusion and entry by targeting heptapeptide repeat sequence 1 in S2 protein. Journal of Medical Virology, 2023, 95, .	5.0	0
33	Clinical development of antivirals against SARS-CoV-2 and its variants. Current Research in Microbial Sciences, 2024, 6, 100208.	2.3	0
34	Enhancing Spatial Spread Prediction of Infectious Diseases through Integrating Multi-scale Human Mobility Dynamics. , 2023, , .		0
35	Causes and Consequences of Coronavirus Spike Protein Variability. Viruses, 2024, 16, 177.	3.3	0
36	Docking and other computing tools in drug design against SARS-CoV-2. SAR and QSAR in Environmental Research, 2024, 35, 91-136.	2.2	0

#	Article	IF	CITATIONS
37	Empowering SARSâ€CoVâ€2 variant neutralization with a bifunctional antibody engineered with tandem heptad repeat 2 peptides. Journal of Medical Virology, 2024, 96, .	5.0	0
38	Structure-based design of pan-coronavirus inhibitors targeting host cathepsin L and calpain-1. Signal Transduction and Targeted Therapy, 2024, 9, .	17.1	0

CITATION REPORT