Mapping habitat suitability for Asiatic black bear and re Park of Nepal from Maxent and GARP models

Scientific Reports 11, 14135

DOI: 10.1038/s41598-021-93540-x

Citation Report

#	Article	IF	CITATIONS
1	Modelling Potential Distribution of Snow Leopards in Pamir, Northern Pakistan: Implications for Human–Snow Leopard Conflicts. Sustainability, 2021, 13, 13229.	3.2	13
2	In Pursuit of New Spaces for Threatened Mammals: Assessing Habitat Suitability for Kashmir Markhor (Capra falconeri cashmeriensis) in the Hindukush Range. Sustainability, 2022, 14, 1544.	3.2	9
3	Understanding Species–Habitat Associations: A Case Study with the World's Bears. Land, 2022, 11, 180.	2.9	7
4	Prediction of Suitable Distribution of a Critically Endangered Plant Glyptostrobus pensilis. Forests, 2022, 13, 257.	2.1	11
5	Impacts of climate change on predicted habitat suitability and distribution of Djaffa Mountains Guereza (Colobus guereza gallarum, Neumann 1902) using MaxEnt algorithm in Eastern Ethiopian Highland. Global Ecology and Conservation, 2022, 35, e02094.	2.1	8
6	Identifying the potential geographic distribution for Castanopsis argentea and C. tungurrut (Fagaceae) in the Sumatra Conservation Area Network, Indonesia. Biodiversitas, 2022, 23, .	0.6	2
7	Analyses of driving factors on the spatial variations in regional eco-environmental quality using two types of species distribution models: A case study of Minjiang River Basin, China. Ecological Indicators, 2022, 139, 108980.	6.3	15
8	Ecological Niche Overlap and Prediction of the Potential Distribution of Two Sympatric Ficus (Moraceae) Species in the Indo-Burma Region. Forests, 2022, 13, 1420.	2.1	3
9	Buffalo on the Edge: Factors Affecting Historical Distribution and Restoration of Bison bison in the Western Cordillera, North America. Diversity, 2022, 14, 937.	1.7	2
10	An $ ilde{A}_i$ lisis de la incidencia del cambio clim $ ilde{A}_i$ tico en especies de aves amenazadas en los Andes peruanos: modelos de distribuci $ ilde{A}^3$ n y propuestas de conectividad. Pirineos, 0, 177, e071.	0.6	O
11	Modeling habitat suitability of Hippophae rhamnoides L. using MaxEnt under climate change in China: A case study of H. r. sinensis and H. r. turkestanica. Frontiers in Forests and Global Change, 0, 5, .	2.3	3
12	Predicting the potential suitable distribution area of Emeia pseudosauteri in Zhejiang Province based on the MaxEnt model. Scientific Reports, 2023, 13 , .	3.3	6
13	Comparison of machine learning and deep learning models for evaluating suitable areas for premium teas in Yunnan, China. PLoS ONE, 2023, 18, e0282105.	2.5	2
14	Mapping of suitable habitats for earthworms in China. Soil Biology and Biochemistry, 2023, 184, 109081.	8.8	2
15	What follows fallow? Assessing revegetation patterns on abandoned sugarcane land in Hawaiʻi. Agriculture, Ecosystems and Environment, 2023, 355, 108603.	5.3	2
16	Projection of the potential distribution of suitable habitats for Siberian crane (Grus leucogeranus) in the middle and lower reaches of the Yangtze River basin. Frontiers in Earth Science, $0,11,.$	1.8	2
17	Determining the distribution factors of an endangered large carnivore: A case study of the brown bear Ursus arctos population in the Central Zagros Mountains, Southwest Iran. Global Ecology and Conservation, 2023, 46, e02590.	2.1	1
18	Mapping cropland suitability in China using optimized MaxEnt model. Field Crops Research, 2023, 302, 109064.	5.1	3

#	Article	IF	CITATIONS
19	Prediction of the potential geographic distribution of golden snub-nosed monkey (Rhinopithecus) Tj ETQq0 0 0	rgBT /Ove	lock 10 Tf 50
20	The predicted potential distribution of Aedes albopictus in China under the shared socioeconomic pathway (SSP)1–2.6. Acta Tropica, 2023, 248, 107001.	2.0	2
21	A framework for assessing variations in ecological networks to support wildlife conservation and management. Ecological Indicators, 2023, 155, 110936.	6.3	1
22	Climate change impacts: Vegetation shift of broad-leaved and coniferous forests. Trees, Forests and People, 2023, 14, 100457.	1.9	3
23	Modelling the current and future distribution potential areas of Peperomia abyssinica Miq., and Helichrysum citrispinum Steud. ex A. Rich. in Ethiopia. Bmc Ecology and Evolution, 2023, 23, .	1.6	1
24	Identifying potential habitats of Himalayan Red Panda Ailurus fulgens (Cuvier, 1825) (Mammalia:) Tj ETQq1 1 0. 2023, 15, 24345-24351.	784314 rg 0.3	BT /Overlock i O
25	Research on the Changes in Distribution and Habitat Suitability of the Chinese Red Panda Population. Animals, 2024, 14, 424.	2.3	0
26	Prediction of Historical, Current, and Future Configuration of Tibetan Medicinal Herb Gymnadenia orchidis Based on the Optimized MaxEnt in the Qinghai–Tibet Plateau. Plants, 2024, 13, 645.	3.5	O
27	Assessment of Habitat Suitability and Potential Corridors for Bengal Tiger (Panthera tigris tigris) in Valmiki Tiger Reserve, India, Using MaxEnt Model and Least-Cost Modeling Approach. Environmental Modeling and Assessment, 2024, 29, 405-422.	2.2	0
28	Dataâ€centric species distribution modeling: Impacts of modeler decisions in a case study of invasive European frogâ€bit. Applications in Plant Sciences, 0, , .	2.1	O