A Flexible Multifunctional Triboelectric Nanogenerator

Advanced Functional Materials 31, 2104928 DOI: 10.1002/adfm.202104928

Citation Report

#	Article	IF	CITATIONS
1	Self-Powered Biosensor for Specifically Detecting Creatinine in Real Time Based on the Piezo-Enzymatic-Reaction Effect of Enzyme-Modified ZnO Nanowires. Biosensors, 2021, 11, 342.	4.7	10
2	Antiliquid-Interfering, Antibacteria, and Adhesive Wearable Strain Sensor Based on Superhydrophobic and Conductive Composite Hydrogel. ACS Applied Materials & Interfaces, 2021, 13, 46022-46032.	8.0	50
3	Fabricâ€Assisted MXene/Silicone Nanocompositeâ€Based Triboelectric Nanogenerators for Selfâ€Powered Sensors and Wearable Electronics. Advanced Functional Materials, 2022, 32, 2107143.	14.9	81
4	A Triboelectric Nanogenerator Based on Sodium Chloride Powder for Self-Powered Humidity Sensor. Nanomaterials, 2021, 11, 2657.	4.1	12
5	A Novel Triboelectric Material Based on Deciduous Leaf for Energy Harvesting. Micromachines, 2021, 12, 1314.	2.9	2
6	Advances in Inorganic Nanomaterials for Triboelectric Nanogenerators. ACS Nanoscience Au, 2022, 2, 12-31.	4.8	15
7	Natural rubber toughened carbon nanotube buckypaper and its multifunctionality in electromagnetic interference shielding, thermal conductivity, Joule heating and triboelectric nanogenerators. Chemical Engineering Journal, 2022, 433, 133499.	12.7	41
8	Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection. Nano Energy, 2022, 92, 106689.	16.0	76
9	Polyacrylamide/Copperâ€Alginate Double Network Hydrogel Electrolyte with Excellent Mechanical Properties and Strain‧ensitivity. Macromolecular Bioscience, 2022, 22, e2100361.	4.1	17
10	Neuromorphic display system for intelligent display. Nano Energy, 2022, 94, 106931.	16.0	17
11	A review of the advances in composites/nanocomposites for triboelectric nanogenerators. Nanotechnology, 2022, 33, 212003.	2.6	14
12	Ultraâ€High Electrical Conductivity in Fillerâ€Free Polymeric Hydrogels Toward Thermoelectrics and Electromagnetic Interference Shielding. Advanced Materials, 2022, 34, e2109904.	21.0	91
13	A textile-based triboelectric nanogenerator for long jump monitoring. Materials Technology, 2022, 37, 2360-2367.	3.0	8
14	An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties, to Functional Applications. Macromolecular Rapid Communications, 2022, 43, e2100785.	3.9	36
15	Facile preparation of MXene and protonated-g-C3N4 on natural latex foam for highly efficient solar steam generation. Materials Letters, 2022, 313, 131779.	2.6	23
16	Robust and flexible wearable generator driven by water evaporation for sustainable and portable self-power supply. Chemical Engineering Journal, 2022, 434, 134671.	12.7	19
17	Highly adhesive and self-healing γ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics. Nano Energy, 2022, 95, 106991.	16.0	104
18	Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy, 2022, 95, 106967.	16.0	115

#	Article	IF	CITATIONS
19	Hydrogel-based triboelectric devices for energy-harvesting and wearable sensing applications. Nano Energy, 2022, 95, 106988.	16.0	29
20	2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chemical Reviews, 2022, 122, 6514-6613.	47.7	187
21	Chitosan for constructing stable polymer-inorganic suspensions and multifunctional membranes for wound healing. Carbohydrate Polymers, 2022, 285, 119209.	10.2	15
22	A review of etching methods of MXene and applications of MXene conductive hydrogels. European Polymer Journal, 2022, 167, 111063.	5.4	79
23	Hydrogels as Soft Ionic Conductors in Flexible and Wearable Triboelectric Nanogenerators. Advanced Science, 2022, 9, e2106008.	11.2	48
24	2D Materials for Wearable Energy Harvesting. Advanced Materials Technologies, 2022, 7, .	5.8	16
25	Dyeing-Inspired Sustainable and Low-Cost Modified Cellulose-Based TENG for Energy Harvesting and Sensing. ACS Sustainable Chemistry and Engineering, 2022, 10, 3909-3919.	6.7	19
26	Progress of Advanced Devices and Internet of Things Systems as Enabling Technologies for Smart Homes and Health Care. ACS Materials Au, 2022, 2, 394-435.	6.0	31
27	Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy, 2022, 98, 107229.	16.0	78
28	Development and Applications of Hydrogel-Based Triboelectric Nanogenerators: A Mini-Review. Polymers, 2022, 14, 1452.	4.5	6
29	Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment. Nano Energy, 2022, 96, 107067.	16.0	30
30	Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety. Nano Energy, 2022, 97, 107199.	16.0	56
31	Hydrogelâ€based triboelectric nanogenerators: Properties, performance, and applications. International Journal of Energy Research, 2022, 46, 5603-5624.	4.5	28
32	Composites based on <scp>PVA</scp> and <scp>Al–Zn</scp> structures with excellent mechanical properties. Polymer Composites, 2022, 43, 4029-4037.	4.6	6
33	A Triboelectric Sensor with a Dual Working Unit for Race Walking Motion Monitoring. Journal of Electronic Materials, 2022, 51, 3569-3578.	2.2	7
34	Self-Powered Force Sensors for Multidimensional Tactile Sensing. ACS Applied Materials & Interfaces, 2022, 14, 20122-20131.	8.0	35
35	A tough organohydrogel-based multiresponsive sensor for a triboelectric nanogenerator and supercapacitor toward wearable intelligent devices. Journal of Materials Chemistry A, 2022, 10, 12092-12103.	10.3	35
36	Transparent stretchable hydrogel sensors: materials, design and applications. Journal of Materials Chemistry C, 2022, 10, 13351-13371.	5.5	42

#	Article	IF	CITATIONS
37	A high-performance, single-electrode and stretchable piezo-triboelectric hybrid patch for omnidirectional biomechanical energy harvesting and motion monitoring. Journal of Materiomics, 2022, 8, 958-966.	5.7	4
38	A multifunctional MXene-assembled anhydrous gel electronics. Journal of Colloid and Interface Science, 2022, 623, 1151-1159.	9.4	9
39	A high output triboelectric nanogenerator integrated with wave-structure electrode for football monitoring. Current Applied Physics, 2022, 39, 122-127.	2.4	7
40	Self-powered pacemaker based on all-in-one flexible piezoelectric nanogenerator. Nano Energy, 2022, 99, 107420.	16.0	19
41	Molecular-assembly route to fabricate a robust flexible hydrogel membrane for high-efficient and durable solar water purification. Separation and Purification Technology, 2022, 295, 121335.	7.9	17
42	Low-voltage solution-processed artificial optoelectronic hybrid-integrated neuron based on 2D MXene for multi-task spiking neural network. Nano Energy, 2022, 99, 107418.	16.0	13
43	Biocompatible, stretchable, and compressible cellulose/MXene hydrogel for strain sensor and electromagnetic interference shielding. Soft Materials, 2022, 20, 444-454.	1.7	21
44	<scp>Energyâ€Dissipative</scp> and Soften Resistant Hydrogels Based on Chitosan Physical Network: From Construction to Application. Chinese Journal of Chemistry, 2022, 40, 2118-2134.	4.9	11
45	Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy, 2022, 99, 107442.	16.0	39
46	Triboelectric hydrophone for underwater detection of low-frequency sounds. Nano Energy, 2022, 99, 107428.	16.0	15
47	Object recognition by a heat-resistant core-sheath triboelectric nanogenerator sensor. Journal of Materials Chemistry A, 2022, 10, 15080-15088.	10.3	22
48	Double-Network Hydrogel for Stretchable Triboelectric Nanogenerator and Integrated Electroluminescent Skin with Self-Powered Rapid Visual Sensing. Electronics (Switzerland), 2022, 11, 1928.	3.1	3
49	Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity. Nature Communications, 2022, 13, .	12.8	103
50	Laser-carbonized MXene/ZiF-67 nanocomposite as an intermediate layer for boosting the output performance of fabric-based triboelectric nanogenerator. Nano Energy, 2022, 100, 107462.	16.0	22
51	An Ultrafast Selfâ€Polarization Effect in Barium Titanate Filled Poly(Vinylidene Fluoride) Composite Film Enabled by Selfâ€Charge Excitation Triboelectric Nanogenerator. Advanced Functional Materials, 2022, 32, .	14.9	28
52	Edgeâ€Enriched Mo ₂ TiC ₂ T _x /MoS ₂ Heterostructure with Coupling Interface for Selective NO ₂ Monitoring. Advanced Functional Materials, 2022, 32, .	14.9	58
53	Evaluation of the Accessibility of Molecules in Hydrogels Using a Scale of Spin Probes. Gels, 2022, 8, 428.	4.5	5
54	Flexible single-electrode triboelectric nanogenerator with MWCNT/PDMS composite film for environmental energy harvesting and human motion monitoring. Rare Metals, 2022, 41, 3117-3128.	7.1	38

#	Article	IF	CITATIONS
55	Strong–Weak Response Network-Enabled Ionic Conductive Hydrogels with High Stretchability, Self-Healability, and Self-Adhesion for Ionic Sensors. ACS Applied Materials & Interfaces, 2022, 14, 32551-32560.	8.0	16
56	Superhydrophobic, Humidity-Resistant, and Flexible Triboelectric Nanogenerators for Biomechanical Energy Harvesting and Wearable Self-Powered Sensing. ACS Applied Nano Materials, 2022, 5, 9840-9851.	5.0	19
57	Ferroelectricity-Coupled 2D-MXene-Based Hierarchically Designed High-Performance Stretchable Triboelectric Nanogenerator. ACS Nano, 2022, 16, 11415-11427.	14.6	31
58	Stretchable and fatigue resistant hydrogels constructed by natural galactomannan for flexible sensing application. International Journal of Biological Macromolecules, 2022, 216, 193-202.	7.5	11
59	High performance triboelectric nanogenerator based on bamboo fibers with trench structure for self-powered sensing. Sustainable Energy Technologies and Assessments, 2022, 53, 102489.	2.7	1
60	MXene-based materials for advanced nanogenerators. Nano Energy, 2022, 101, 107556.	16.0	19
61	Bioinspired Freezeâ€Tolerant Soft Materials: Design, Properties, and Applications. Small, 2022, 18, .	10.0	29
62	The rise of AI optoelectronic sensors: From nanomaterial synthesis, device design to practical application. Materials Today Physics, 2022, 27, 100812.	6.0	12
63	A temperature responsive adhesive hydrogel for fabrication of flexible electronic sensors. Npj Flexible Electronics, 2022, 6, .	10.7	35
64	Mechanically robust, stretchable, autonomously adhesive, and environmentally tolerant triboelectric electronic skin for self-powered healthcare monitoring and tactile sensing. Nano Energy, 2022, 102, 107636.	16.0	18
65	Significant enhancement of the output voltage of piezoelectric/triboelectric hybrid nanogenerators based on MAPbBr3 single crystals embedded into a porous PVDF matrix. Nano Energy, 2022, 102, 107676.	16.0	19
66	Polymeric nanocomposite multifunctional core-shell membrane for periodontal repair and regeneration applications. Materials Today Chemistry, 2022, 26, 101097.	3.5	5
67	Structural Flexibility in Triboelectric Nanogenerators: A Review on the Adaptive Design for Self-Powered Systems. Micromachines, 2022, 13, 1586.	2.9	21
68	Fully stretchable, porous MXene-graphene foam nanocomposites for energy harvesting and self-powered sensing. Nano Energy, 2022, 103, 107807.	16.0	39
69	A stretchable and adhesive composite hydrogel containing PEDOT:PSS for wide-range and precise motion sensing and electromagnetic interference shielding and as a triboelectric nanogenerator. Materials Chemistry Frontiers, 2022, 6, 3359-3368.	5.9	15
70	MXene/PVA Fiber-based Supercapacitor with Stretchability for Wearable Energy Storage. Fibers and Polymers, 2022, 23, 2994-3001.	2.1	10
71	Selfâ€Powered Smart Gloves Based on Triboelectric Nanogenerators. Small Methods, 2022, 6, .	8.6	20
72	Preparation of tough and ionic conductive PVA/carboxymethyl chitosan bio-based organohydrogels with long-term stability for strain sensor. Cellulose, 2022, 29, 9323-9339.	4.9	13

#	Article	IF	Citations
73	Facile Synthesis of Biobased Polyamide Derived from Epoxidized Soybean Oil as a High-Efficiency Triboelectric Nanogenerator. ACS Sustainable Chemistry and Engineering, 2022, 10, 13680-13691.	6.7	12
74	Tough and strong soy protein film by integrating CNFs and MXene with photothermal conversion and UV-blocking performance. Cellulose, 2022, 29, 9235-9249.	4.9	6
75	Multifunctional Integrated Interdigital Microsupercapacitors and Self-Powered Iontronic Tactile Pressure Sensor for Wearable Electronics. ACS Applied Materials & Interfaces, 2022, 14, 47136-47147.	8.0	7
76	Mechanically Ultraâ€Robust, Elastic, Conductive, and Multifunctional Hybrid Hydrogel for a Triboelectric Nanogenerator and Flexible/Wearable Sensor. Small, 2022, 18, .	10.0	33
77	Carbon Nanocoils and Polyvinyl Alcohol Composite Films for Fiber-Optic Fabry–Perot Acoustic Sensors. Coatings, 2022, 12, 1599.	2.6	4
78	Recent Progress in Advanced Units of Triboelectric Electronic Skin. Advanced Materials Technologies, 2023, 8, .	5.8	8
79	Allâ€Printed Wearable Triboelectric Nanogenerator with Ultraâ€Charged Electron Accumulation Polymers Based on MXene Nanoflakes. Advanced Electronic Materials, 2022, 8, .	5.1	8
80	Selfâ€Healable Triboelectric Nanogenerators: Marriage between Selfâ€Healing Polymer Chemistry and Triboelectric Devices. Advanced Functional Materials, 2023, 33, .	14.9	30
81	A flexible, stretchable and triboelectric smart sensor based on graphene oxide and polyacrylamide hydrogel for high precision gait recognition in Parkinsonian and hemiplegic patients. Nano Energy, 2022, 104, 107978.	16.0	32
82	MXene supported by cotton fabric as electrode layer of triboelectric nanogenerators for flexible sensors. Nano Energy, 2023, 105, 107973.	16.0	38
83	Zirconium metal-organic framework and hybridized Co-NPC@MXene nanocomposite-coated fabric for stretchable, humidity-resistant triboelectric nanogenerators and self-powered tactile sensors. Nano Energy, 2022, 104, 107931.	16.0	22
84	Paraffin/polyvinyl alcohol/MXene flexible phase change composite films for thermal management applications. Chemical Engineering Journal, 2023, 453, 139727.	12.7	18
85	Breakage-resistant hydrogel electrode enables ultrahigh mechanical reliability for triboelectric nanogenerators. Chemical Engineering Journal, 2023, 454, 140261.	12.7	14
86	MXene Reinforced PAA/PEDOT:PSS/MXene Conductive Hydrogel for Highly Sensitive Strain Sensors. Macromolecular Materials and Engineering, 2023, 308, .	3.6	19
87	Triboelectric Nanogenerator Enabled Wearable Sensors and Electronics for Sustainable Internet of Things Integrated Green Earth. Advanced Energy Materials, 2023, 13, .	19.5	79
88	Effects of a plasma jet on electrochemical properties of silk fibroin hydrogel doped with graphene oxide. Polymers and Polymer Composites, 2022, 30, 096739112211465.	1.9	0
89	Recent advances in wearable electromechanical sensors—Moving towards machine learning-assisted wearable sensing systems. Nano Energy, 2023, 105, 108041.	16.0	27
90	Self-healing polymer design from dynamic B–O bonds to their emerging applications. Materials Chemistry Frontiers, 2023, 7, 381-404.	5.9	9

#	Article	IF	CITATIONS
91	A potential flexible fuel cell with dual-functional hydrogel based on multi-component crosslinked hybrid polyvinyl alcohol. Energy, 2023, 265, 126166.	8.8	3
92	Antimicrobial MXene-based conductive alginate hydrogels as flexible electronics. Chemical Engineering Journal, 2023, 455, 140546.	12.7	6
93	Machine-Learning Assisted Handwriting Recognition Using Graphene Oxide-Based Hydrogel. ACS Applied Materials & Interfaces, 2022, 14, 54276-54286.	8.0	3
94	A Comprehensive Review on the Novel Principles, Development and Applications of Triboelectric Nanogenerators. Applied Mechanics Reviews, 2024, 76, .	10.1	10
95	Mechanically Robust and Highly Conductive Ionogels for Soft Ionotronics. Advanced Functional Materials, 2023, 33, .	14.9	35
96	A stretchable, self-healing and semi-transparent nanogenerator for energy harvesting and sensing. Nano Energy, 2023, 107, 108127.	16.0	8
97	A High Performance Triboelectric Nanogenerator Based on MXene/Graphene Oxide Electrode for Glucose Detection. Materials, 2023, 16, 841.	2.9	5
98	Ecofriendly low voltage high-performance ionic artificial muscles based on bacterial cellulose nanofibers reinforced with polyvinyl alcohol. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	2
99	High performance additional mass enhanced film structure triboelectric nanogenerator for scavenging vibration energy in broadband frequency range. Nano Energy, 2023, 107, 108182.	16.0	12
100	A novel flexible substrate-free NH3 sensing membrane based on PANI covered rGO functionalized fiber. Sensors and Actuators B: Chemical, 2023, 380, 133307.	7.8	4
101	Highly Electronegative V ₂ CT <i>_x</i> /Silicone Nanocompositeâ€Based Serpentine Triboelectric Nanogenerator for Wearable Selfâ€Powered Sensors and Sign Language Interpretation. Advanced Energy Materials, 2023, 13, .	19.5	14
102	Boosting the Durability of Triboelectric Nanogenerators: A Critical Review and Prospect. Advanced Functional Materials, 2023, 33, .	14.9	9
103	A multifunctional integrated carbon nanotubes/polyphenylene sulfide composite: preparation, properties and applications. Nanoscale Advances, 2023, 5, 1740-1749.	4.6	1
104	Flexible Triboelectric Tactile Sensor Based on a Robust MXene/Leather Film for Human–Machine Interaction. ACS Applied Materials & Interfaces, 2023, 15, 13802-13812.	8.0	20
105	Constructing high-efficiency stretchable-breathable triboelectric fabric for biomechanical energy harvesting and intelligent sensing. Nano Energy, 2023, 108, 108224.	16.0	7
106	Ionic Flexible Mechanical Sensors: Mechanisms, Structural Engineering, Applications, and Challenges. , 2023, 2, .		0
107	Mechanoresponsive ionic elastomers with Ultra-Stretchability, high toughness, fatigue resistance, and extreme temperature resistance. Chemical Engineering Journal, 2023, 461, 142064.	12.7	2
108	A high-performance S-TENG based on the synergistic effect of keratin and calcium chloride for finger activity tracking. Nano Energy, 2023, 112, 108443.	16.0	5

#	Article	IF	CITATIONS
109	Self-powered energy harvesting and implantable storage system based on hydrogel-enabled all-solid-state supercapacitor and triboelectric nanogenerator. Chemical Engineering Journal, 2023, 463, 142427.	12.7	12
110	Recent advances on porous materials and structures for high-performance triboelectric nanogenerators. Nano Energy, 2023, 111, 108365.	16.0	18
111	All-natural phyllosilicate-polysaccharide triboelectric sensor for machine learning-assisted human motion prediction. Npj Flexible Electronics, 2023, 7, .	10.7	7
112	Fully degradable triboelectric nanogenerator using graphene composite paper to replace copper electrodes for higher output performance. Nano Energy, 2023, 108, 108223.	16.0	9
113	Ultrastretchable, Self-Healing Conductive Hydrogel-Based Triboelectric Nanogenerators for Human–Computer Interaction. ACS Applied Materials & Interfaces, 2023, 15, 5128-5138.	8.0	60
114	Bioinspired Strong, Tough, and Biodegradable Poly(Vinyl Alcohol) and its Applications as Substrates for Humidity Sensors. Advanced Materials Technologies, 2023, 8, .	5.8	9
115	Facile fabrication of a novel self-healing and flame-retardant hydrogel/MXene coating for wood. Scientific Reports, 2023, 13, .	3.3	1
116	High performance wide frequency band triboelectric nanogenerator based on multilayer wave superstructure for harvesting vibration energy. Nano Research, 2023, 16, 6933-6939.	10.4	6
117	Energy Harvesting for Wearable Sensors and Body Area Network Nodes. Energies, 2023, 16, 1681.	3.1	5
118	Antibacterial Halloysiteâ€Modified Chitosan/Polyvinylpyrrolidone Nanofibers for Ultrasensitive Selfâ€Powered Motion Monitoring. , 2023, 2, .		4
119	Elastomeric polymers for conductive layers of flexible sensors: Materials, fabrication, performance, and applications. Aggregate, 2023, 4, .	9.9	5
120	Anisotropic and super-strong conductive hydrogels enabled by mechanical stretching combined with the Hofmeister effect. Journal of Materials Chemistry A, 2023, 11, 8038-8047.	10.3	15
121	Transparent, Stretchable, and Adhesive Conductive Ionic Hydrogel-Based Self-Powered Sensors for Smart Elderly Care Systems. ACS Applied Materials & Interfaces, 2023, 15, 11802-11811.	8.0	4
122	Environmentâ€tolerant ionic hydrogel–elastomer hybrids with robust interfaces, high transparence, and biocompatibility for a mechanical–thermal multimode sensor. InformaÄnÃ-Materiály, 2023, 5, .	17.3	39
123	Sustainable and Tough MXene Hydrogel Based on Interlocked Structure for Multifunctional Sensing. ACS Sustainable Chemistry and Engineering, 2023, 11, 4177-4186.	6.7	7
124	A flexible and stretchable triboelectric nanogenerator based on a medical conductive hydrogel for biomechanical energy harvesting and electronic switches. Nanoscale, 2023, 15, 6812-6821.	5.6	2
125	Self-recoverable, highly adhesive, anti-freezing/drying, organohydrogel stretchable sensors. Applied Materials Today, 2023, 31, 101777.	4.3	2
126	PVA基水å‡è∫¶åŠå¶ç"Ÿç‰©å┤应ç". Scientia Sinica Chimica, 2023, , .	0.4	0

#	Article	IF	CITATIONS
127	Roadmap on energy harvesting materials. JPhys Materials, 2023, 6, 042501.	4.2	19
128	A transparent, flexible triboelectric nanogenerator for anti-counterfeiting based on photothermal effect. Matter, 2023, 6, 1514-1529.	10.0	8
129	Recent progress in textile-based triboelectric force sensors for wearable electronics. Advanced Composites and Hybrid Materials, 2023, 6, .	21.1	15
130	Self-powered ionic tactile sensors. Journal of Materials Chemistry C, 2023, 11, 7920-7936.	5.5	5
131	Self-Healing LiquidÂMetal Magnetic Hydrogels for Smart Feedback Sensors and High-Performance Electromagnetic Shielding. Nano-Micro Letters, 2023, 15, .	27.0	58
133	Applications of Xâ€Rayâ€Based Characterization in MXene Research. Small Methods, 2023, 7, .	8.6	7
134	Chitosan-based transparent and conductive hydrogel with highly stretchable, adhesive and self-healing as skin-like sensor. International Journal of Biological Macromolecules, 2023, 242, 124746.	7.5	6
135	A multifunctional fire-retardant gel electrolyte to enable Li-S batteries with higher Li-ion conductivity and effectively inhibited shuttling of polysulfides. Chemical Engineering Journal, 2023, 467, 143378.	12.7	4
136	Enabling glucose adaptive self-healing hydrogel based triboelectric biosensor for tracking a human perspiration. Nano Energy, 2023, 112, 108513.	16.0	13
137	Recent Progress in MXene Hydrogel for Wearable Electronics. Biosensors, 2023, 13, 495.	4.7	5
138	Triboelectric Nanogenerators Based on 2D Materials: From Materials and Devices to Applications. Micromachines, 2023, 14, 1043.	2.9	4
139	Radiation synthesis of rapidly self-healing, durable, and flexible poly(ionic liquid)/MXene gels with anti-freezing property for multi-functional strain sensors. Chemical Engineering Journal, 2023, 468, 143660.	12.7	8
140	Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. ACS Nano, 2023, 17, 11087-11219.	14.6	83
141	Vascular bundle-inspired MXene ion-conducting microchannels enabled tough ionic hydrogels with high-sensitivity sensing and high-efficiency mechanical-electric conversion. Nano Energy, 2023, 113, 108540.	16.0	7
142	A low-hysteresis, self-adhesive and conductive PAA/PEDOT:PSS hydrogel enabled body-conformable electronics. Journal of Materials Chemistry C, 2023, 11, 9355-9365.	5.5	7
143	Surface Triboelectrification of MXenes with Fluorine Groups for Flexible Energy Harvesting and Sensing. Advanced Engineering Materials, 2023, 25, .	3.5	3
144	Enhanced Triboelectric Nanogenerator Based on a Hybrid Cellulose Aerogel for Energy Harvesting and Self-Powered Sensing. ACS Sustainable Chemistry and Engineering, 2023, 11, 9424-9432.	6.7	9
145	High Performance Porous Triboelectric Nanogenerator Based on Silk Fibroin@MXene Composite Aerogel and PDMS Sponge. , 2023, 5, 1929-1937.		9

#	Article	IF	CITATIONS
146	3D Printed SnS ₂ /SnS-Based Nanocomposite Hydrogel as a Photoenhanced Triboelectric Nanogenerator. ACS Applied Energy Materials, 2023, 6, 6732-6741.	5.1	7
147	Enhanced Energy Harvesting Performance of Triboelectric Nanogenerators via Dielectric Property Regulation. ACS Applied Materials & Interfaces, 2023, 15, 31795-31802.	8.0	8
148	MXene-Based Nanocomposites for Piezoelectric and Triboelectric Energy Harvesting Applications. Micromachines, 2023, 14, 1273.	2.9	4
149	Conductive hydrogels for bioenergy harvesting and self-powered application. Progress in Materials Science, 2023, 138, 101156.	32.8	15
150	Strategies for enhancing low-frequency performances of triboelectric, electrochemical, piezoelectric, and dielectric elastomer energy harvesting: recent progress and challenges. Science Bulletin, 2023, 68, 1687-1714.	9.0	4
151	The performance of and promotion strategies for degradable polymers in triboelectric nanogenerators. Journal of Materials Chemistry A, 2023, 11, 10065-10094.	10.3	5
152	A PET/Graphite-Based Triboelectric Nanogenerator for Monitoring the Health of Leg Muscles in Football. Journal of Sensors, 2023, 2023, 1-8.	1.1	1
154	A Stretchable Solid Ionic Electrodeâ€Based Triboelectric Nanogenerator for Biomechanical Energy Harvesting and Selfâ€Powered Sensors. Small, 2023, 19, .	10.0	5
155	Biopolymers-based skin-interfaced triboelectric sensors. Nano Research, 2023, 16, 11753-11782.	10.4	3
156	Surface Size- and Structure-Optimized Design of Two-Dimensional MXene Nanosheets for Electromagnetic Wave Absorption. ACS Applied Nano Materials, 2023, 6, 12050-12062.	5.0	2
157	Improved Flexible Triboelectric Nanogenerator Based on Tileâ€Nanostructure for Wireless Human Health Monitor. Energy and Environmental Materials, 0, , .	12.8	6
158	A flexible triboelectric nanogenerator based on PVA/PTT/LiCl conductive hydrogel for gait monitoring in basketball. AIP Advances, 2023, 13, .	1.3	1
159	Recent Advances in Hydrogelâ€Based Selfâ€Powered Artificial Skins for Human–Machine Interfaces. Advanced Intelligent Systems, 2023, 5, .	6.1	3
160	Polymer-based triboelectric nanogenerators: Materials, characterization, and applications. Progress in Polymer Science, 2023, 144, 101723.	24.7	13
161	A Simple and Effective Physical Ballâ€Milling Strategy to Prepare Superâ€Tough and Stretchable PVA@MXene@PPy Hydrogel for Flexible Capacitive Electronics. Small, 2023, 19, .	10.0	12
162	Self-powered hydrogel sensors. , 2023, 1, 100007.		7
163	Sustainable and photoresponse triboelectric nanogenerators based on 2D-gC3N4 and agricultural wastes. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	1
164	Rapid fabrication of tough sodium alginate/MXene/poly(vinyl alcohol) dual-network hydrogel electrolytes for flexible all-solid-state supercapacitors. International Journal of Biological Macromolecules, 2023, 248, 125937.	7.5	4

#	Article	IF	CITATIONS
165	High-performance triboelectric nanogenerator based on 2D graphitic carbon nitride for self-powered electronic devices. Materials Letters, 2023, 350, 134947.	2.6	3
166	Ecoflex Flexible Array of Triboelectric Nanogenerators for Gait Monitoring Alarm Warning Applications. Electronics (Switzerland), 2023, 12, 3226.	3.1	1
167	A drum structure triboelectric nanogenerator based on PS/MXene for football training monitoring. AIP Advances, 2023, 13, .	1.3	1
168	Self-Healable, Adhesive, Anti-Drying, Freezing-Tolerant, and Transparent Conductive Organohydrogel as Flexible Strain Sensor, Triboelectric Nanogenerator, and Skin Barrier. ACS Applied Materials & Interfaces, 2023, 15, 40975-40990.	8.0	29
169	Triboelectric nanogenerators for wearable sensing applications: A system level analysis. Nano Energy, 2023, 116, 108792.	16.0	6
170	Fiber-reinforced polyvinyl alcohol hydrogel via <i>in situ</i> fiber formation. E-Polymers, 2023, 23, .	3.0	1
171	Design of Functional Ti3C2Tx MXene for Gas Sensors and Energy Harvesting: A Review. Chemosensors, 2023, 11, 477.	3.6	1
172	Ultra-stable and self-healing coordinated collagen-based multifunctional double-network organohydrogel e-skin for multimodal sensing monitoring of strain-resistance, bioelectrode, and self-powered triboelectric nanogenerator. Chemical Engineering Journal, 2023, 474, 145780.	12.7	27
173	Allâ€Weather Selfâ€Powered Intelligent Traffic Monitoring System Based on a Conjunction of Selfâ€Healable Piezoresistive Sensors and Triboelectric Nanogenerators. Advanced Functional Materials, 2023, 33, .	14.9	1
174	Artificial Intelligence Advancements in Neurocomputing for MXene-Based Artificial Synapses Devices. ACS Symposium Series, 0, , 85-106.	0.5	0
175	Humidityâ€Resistant Triboelectric Nanogenerator Based on a Swellingâ€Resistant and Antiwear PAN/PVA aCl ₂ Composite Film for Seawater Desalination. Advanced Functional Materials, 2024, 34, .	14.9	3
176	Self-strengthening and conductive cellulose composite hydrogel for high sensitivity strain sensor and flexible triboelectric nanogenerator. International Journal of Biological Macromolecules, 2023, 248, 125900.	7.5	5
177	MXeneâ€Compositeâ€Enabled Ultraâ€longâ€Distance Detection and Highly Sensitive Selfâ€Powered Noncontact Triboelectric Sensors and Their Applications in Intelligent Vehicle Perception. Advanced Functional Materials, 2023, 33, .	14.9	4
178	Easy-to-Prepare Flexible Multifunctional Sensors Assembled with Anti-Swelling Hydrogels. ACS Applied Materials & amp; Interfaces, 2023, 15, 46417-46427.	8.0	0
179	Hydrogel-Based Energy Harvesters and Self-Powered Sensors for Wearable Applications. Nanoenergy Advances, 2023, 3, 315-342.	7.7	3
180	Non ontact Triboelectric Nanogenerator. Advanced Functional Materials, 2023, 33, .	14.9	6
181	Smart battery-free and wireless bioelectronic platform based on a nature-skin-derived organohydrogel for chronic wound diagnosis, assessment, and accelerated healing. Nano Energy, 2023, 118, 108989.	16.0	3
182	Highly Charge-Trapping MOF Nanofillers Enabling Enhanced Triboelectric Performance. ACS Applied Electronic Materials, 2023, 5, 5215-5223.	4.3	0

#	Article	IF	CITATIONS
183	WS2-based inorganic triboelectric nanogenerators with light-enhanced output and excellent anti-aging ability. Applied Physics Letters, 2023, 123, .	3.3	2
184	Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheet-Functionalized Leathers for Versatile Wearable Electronics. ACS Applied Nano Materials, 2023, 6, 18150-18164.	5.0	1
185	Manufacturing robust MXene-based hydrogel-coated cotton fabric via electron-beam irradiation for efficient interfacial solar evaporation. Chemical Engineering Journal, 2023, 473, 145337.	12.7	4
186	Phase separation-regulated fabrication of MXene/PVA cryogel sensor with effective electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2023, 175, 107793.	7.6	4
187	3D g-C3N4 porous nanoribbons pillared-MXene/ PVA nanocomposite: An architecture with high dielectric, breakdown strength, thermal conductivity, and mechanical strength characteristics. Journal of Alloys and Compounds, 2023, 969, 172229.	5.5	2
188	Coupling charge pump and BUCK circuits to efficiently enhance the output performance of triboelectric nanogenerator. Nano Energy, 2023, 115, 108749.	16.0	3
189	A Portable Somatosensory Manipulator System Based on Graphene Ink/Paper Film Piezoresistive Sensors for Human–Computer Interaction. IEEE Sensors Journal, 2023, 23, 21728-21738.	4.7	0
190	Multiâ€Functional Eutectic Hydrogel for 3D Printable Flexible Omnidirectional Strain Sensors. Advanced Materials Technologies, 2023, 8, .	5.8	0
191	Amphibious Polymer Materials with High Strength and Superb Toughness in Various Aquatic and Atmospheric Environments. Advanced Materials, 2024, 36, .	21.0	5
192	Enhanced sensitivity of multifunctional wearable sensor based on Mxene-Ag QDs organo-hydrogel for human-machine interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 677, 132389.	4.7	1
193	Biomimetic PVA-PVDF-based triboelectric nanogenerator with MXene doping for self-powered water sterilization. Materials Today Nano, 2023, 24, 100410.	4.6	3
194	SnO ₂ Nanoparticle-Dispersed, Phosphoric Acid-Doped Poly(vinyl alcohol)/Epoxy Resin/Siloxane Hybrid Network Proton Transport Membrane for Fuel Cell Applications. Industrial & Engineering Chemistry Research, 2023, 62, 15953-15961.	3.7	0
195	Waterâ€Induced Phase Separation for Antiâ€Swelling Hydrogel Adhesives in Underwater Soft Electronics. Advanced Science, 2023, 10, .	11.2	4
196	Self-Powered TENG with High Humidity Sensitivity from PVA Film Modified by LiCl and MXene. ACS Applied Materials & amp; Interfaces, 2023, 15, 47208-47220.	8.0	3
197	Conventional and pulsed hybrid triboelectric nanogenerator with tunable output time and wider impedance matching range. Nanotechnology, 0, , .	2.6	0
198	A flexible triboelectric sensor based on P(VDF-co-HFP)/MXene for breath and posture monitoring in basketball motion. Materials Technology, 2023, 38, .	3.0	0
199	Bioinspired multi-crosslinking and solid–liquid composite lubricating MXene/PVA hydrogel based on salting out effect. Chemical Engineering Journal, 2023, 476, 146848.	12.7	4
200	A Multifunctional and Selective Ionic Flexible Sensor with High Environmental Suitability for Tactile Perception. Advanced Functional Materials, 2024, 34, .	14.9	2

#	Article	IF	CITATIONS
201	Microwave-assisted construction of MXene/MOF aerogel via N-metal bonds for efficient photodegradation of vapor acetone under high humidity. Chemical Engineering Journal, 2023, 476, 146878.	12.7	1
202	Nanographite/nanosilica-filled dopamine-containing polyacrylamide hydrogels of temperature-sensitive photothermal responses. Materials Chemistry and Physics, 2024, 312, 128578.	4.0	1
203	Self-powered triboelectric functional devices and microsystems in health-care applications: An energy perspective. EnergyChem, 2023, 5, 100109.	19.1	1
204	Strategies in the preparation of conductive polyvinyl alcohol hydrogels for applications in flexible strain sensors, flexible supercapacitors, and triboelectric nanogenerator sensors: an overview. Advanced Composites and Hybrid Materials, 2023, 6, .	21.1	10
205	Mica's homo-positive-charging behavior enabled porous elastomer TENG for energy harvesting in high humidity. Nano Energy, 2024, 119, 109056.	16.0	0
206	Robust integration of "top-down" strategy and triple-structure design for nature-skin derived e-skin with superior elasticity and ascendency strain and vibration sensitivity. Nano Energy, 2024, 120, 109142.	16.0	0
207	The preparation of PVA/PBS/LiCl hydrogels and their performance as conductive gels. Micro and Nano Letters, 2023, 18, .	1.3	0
208	Wearable and self-powered triboelectric sensors based on NaCl/PVA hydrogel for driver multidimensional information monitoring. Nano Energy, 2023, 118, 109035.	16.0	1
209	2D Materialâ€Based Wearable Energy Harvesting Textiles: A Review. Small Structures, 2024, 5, .	12.0	3
210	Green and Lowâ€Cost Alkaliâ€Polyphenol Synergetic Selfâ€Catalysis System Access to Fast Gelation of Selfâ€Healable and Selfâ€Adhesive Conductive Hydrogels for Selfâ€Powered Triboelectric Nanogenerators. Small, 0, , .	10.0	1
211	Ultrastretchable and adhesive MXene-based hydrogel for high-performance strain sensing and self-powered application. Composites Part A: Applied Science and Manufacturing, 2024, 177, 107957.	7.6	0
212	Binary-1D/2D nanomaterial-functionalization toward strong, stretchable, and anti-freezing electrically conductive organohydrogels for self-powered operation monitoring of robotic hand. Chemical Engineering Journal, 2023, 478, 147317.	12.7	1
213	Tribopositive biomass toward enhanced stretchability and ionic conductivity of energy harvesters and sensors. Nano Energy, 2024, 119, 109085.	16.0	0
214	Selfâ€Healing Hydrogel Bioelectronics. Advanced Materials, 0, , .	21.0	0
215	Muscle-inspired anisotropic hydrogel strain sensors with ultra-strong mechanical properties and improved sensing capabilities for human motion detection and Morse code transmission. European Polymer Journal, 2024, 202, 112642.	5.4	1
216	Superior compressive and tensile bi-directional strain sensing capabilities achieved using liquid metal Hybrid-Hydrogels empowered by Machine learning algorithms. Chemical Engineering Journal, 2024, 479, 147790.	12.7	1
217	All-Fiber-Based Superhydrophobic Wearable Self-Powered Triboelectric Nanogenerators for Biomechanical and Droplet Energy Harvesting. ACS Applied Nano Materials, 2023, 6, 23279-23291.	5.0	2
218	Serpentine liquid electrode based Dual-mode skin Sensors: Monitoring biomechanical movements by resistive or triboelectric mode. Chemical Engineering Journal, 2024, 479, 147898.	12.7	Ο

#	Article	IF	CITATIONS
219	A doubleâ€dynamicâ€bond crosslinked multifunctional conductive hydrogel with selfâ€adhesive, remoldability, and rapid selfâ€healing properties for wearable sensing. Polymers for Advanced Technologies, 2024, 35, .	3.2	0
220	Skinâ€Inspired, Highly Sensitive, Broadâ€Rangeâ€Response and Ultraâ€Strong Gradient Ionogels Prepared by Electron Beam Irradiation. Small, 0, , .	10.0	0
221	Skinâ€Like Transparent, High Resilience, Low Hysteresis, Fatigueâ€Resistant Celluloseâ€Based Eutectogel for Selfâ€Powered Eâ€Skin and Human–Machine Interaction. Advanced Functional Materials, 0, , .	14.9	1
222	Flexible and multifunctional triboelectric nanogenerator based on liquid metal/polyvinyl alcohol hydrogel for energy harvesting and self-powered wearable human–machine interaction. Rare Metals, 2024, 43, 1186-1196.	7.1	1
223	Dualâ€Plasmonic Ti ₃ C ₂ T _{<i>x</i>} /CuSe 2D/2D Solar Absorber and a Hydrophilic Device for Efficient Solarâ€Driven Water Collection. Solar Rrl, 2024, 8, .	5.8	0
224	Folk arts-inspired twice-coagulated configuration-editable tough aerogels enabled by transformable gel precursors. Nature Communications, 2023, 14, .	12.8	0
225	Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries. ACS Nano, 2024, 18, 28-66.	14.6	5
226	The Need for Smart Materials in an Expanding Smart World: MXene-Based Wearable Electronics and Their Advantageous Applications. ACS Omega, 0, , .	3.5	0
227	Progress and perspectives of self-powered gas sensors. , 2024, 2, 100092.		0
228	Design of Fatigueâ€Resistant Hydrogels. Advanced Functional Materials, 0, , .	14.9	0
229	Synergistic Effect of Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets and Tannic Acid–Fe ³⁺ Network in Constructing High-Performance Hydrogel Composite Membrane for Photothermal Membrane Distillation. Nano Letters, 2024, 24, 724-732.	9.1	1
230	Sustainable electronic biomaterials for body-compliant devices: Challenges and perspectives for wearable bio-mechanical sensors and body energy harvesters. Nano Energy, 2024, 123, 109336.	16.0	0
231	2D MoO ₃ /PVDF–HFP Nanocomposites for Flexible Piezoelectric Nanogenerator and Wireless Mechanosensor Applications. ACS Applied Nano Materials, 2024, 7, 1804-1814.	5.0	0
232	An Environment-Tolerant Ion-Conducting Double-Network Composite Hydrogel for High-Performance Flexible Electronic Devices. Nano-Micro Letters, 2024, 16, .	27.0	0
233	Tailoring nanostructured MXene to adjust its dispersibility in conductive hydrogel for self-powered sensors. Composites Part B: Engineering, 2024, 272, 111191.	12.0	2
234	Effects of charge state of nano-chitin on the properties of polyvinyl alcohol composite hydrogel. Carbohydrate Polymers, 2024, 330, 121776.	10.2	1
235	Composites Based on Biodegradable Polymers and Layered Structures. Polymer Science - Series B, 2023, 65, 692-699.	0.8	0
236	Eutectogel-based self-powered wearable sensor for health monitoring in harsh environments. Nano Research, 0, , .	10.4	ο

#	Article	IF	CITATIONS
237	Seamless Integration of Conducting Hydrogels in Daily Life: From Preparation to Wearable Application. Advanced Science, 2024, 11, .	11.2	1
238	Mxene-based wearable self-powered and photothermal triboelectric nanogenerator patches for wound healing acceleration and tactile sensing. Chemical Engineering Journal, 2024, 482, 148949.	12.7	0
239	Preparation and performance enhancement of n-eicosane/polyvinyl alcohol/MXene flexible phase change composites with sandwich structure. Composite Structures, 2024, 331, 117930.	5.8	0
240	Co-immobilizing laccase-mediator system by in-situ synthesis of MOF in PVA hydrogels for enhanced laccase stability and dye decolorization efficiency. Journal of Environmental Management, 2024, 353, 120114.	7.8	0
241	Advanced triboelectric materials for self-powered gas sensing systems. Nano Energy, 2024, 122, 109335.	16.0	2
242	Janus CoMOF‣EBS Membrane for Bifunctional Dielectric Layer in Triboelectric Nanogenerators. Advanced Science, 2024, 11, .	11.2	0
243	Wasteâ€ŧoâ€Energy: Development of a Highly Efficient Keratin Enhanced Chitosan Bioâ€Wasteâ€Derived Triboelectric Nanogenerator for Energy Harvesting and Real Applications. Advanced Functional Materials, 0, , .	14.9	0
244	Fabrication of Chitosan-Based Hydrogel Embedded with Antibacterial AgMXene Nanocomposites as Photothermal Centers for Solar Steam Generation and Purification. ACS Applied Energy Materials, 2024, 7, 1250-1260.	5.1	0
245	Preparation of strong and tough conductive hydrogel based on Grafting, Fe3+-Catechol complexations and salting out for triboelectric nanogenerators. Journal of Colloid and Interface Science, 2024, 661, 450-459.	9.4	0
246	Robust and sensitive conductive nanocomposite hydrogel with bridge cross-linking–dominated hierarchical structural design. Science Advances, 2024, 10, .	10.3	0
247	3D printing of self-healing and degradable conductive ionoelastomers for customized flexible sensors. Chemical Engineering Journal, 2024, 483, 149330.	12.7	0
248	Construction methods and biomedical applications of PVA-based hydrogels. Frontiers in Chemistry, 0, 12, .	3.6	0
249	A Triboelectric Nanogenerator Based on Bamboo Leaf for Biomechanical Energy Harvesting and Self-Powered Touch Sensing. Electronics (Switzerland), 2024, 13, 766.	3.1	0
250	An overview of conductive composite hydrogels for flexible electronic devices. Advanced Composites and Hybrid Materials, 2024, 7, .	21.1	0
251	Dual–network carboxymethyl chitosan conductive hydrogels for multifunctional sensors and high–performance triboelectric nanogenerators. Carbohydrate Polymers, 2024, 333, 121960.	10.2	0
252	A Review of Polymer-Based Environment-Induced Nanogenerators: Power Generation Performance and Polymer Material Manipulations. Polymers, 2024, 16, 555.	4.5	0
253	Electrostatic-driven self-assembled chitin nanocrystals (ChNCs)/MXene films for triboelectric nanogenerator. Chemical Engineering Journal, 2024, 485, 149949.	12.7	0
254	Flexible MXene/sodium alginate composite fabric with high structural stability and oxidation resistance for electromagnetic interference shielding. Nano Research, 0, , .	10.4	0

<u> </u>		ON	Report
	IAH		REPORT

#	Article	IF	CITATIONS
255	Flexible Triboelectric Nanogenerators based on Hydrogel/g-C ₃ N ₄ Composites for Biomechanical Energy Harvesting and Self-Powered Sensing. ACS Applied Materials & Interfaces, 2024, 16, 13674-13684.	8.0	0
256	MXene based flexible materials for energy harvesting. Materials Today Chemistry, 2024, 37, 101989.	3.5	0
257	Future of Drug Delivery: Microrobotics and Self-powered Devices. , 2024, , 79-94.		0
258	Emerging cellulosic materials for sustainable mechanosensing and energy harvesting devices: Advances and prospect. Nano Today, 2024, 56, 102232.	11.9	Ο
259	Triboelectric nanogenerators based on hydrated lithium ions incorporated double-network hydrogels for biomechanical sensing and energy harvesting at low temperature. Nano Energy, 2024, 125, 109521.	16.0	0