Longitudinal analysis shows durable and broad immune with persisting antibody responses and memory B and

Cell Reports Medicine 2, 100354 DOI: 10.1016/j.xcrm.2021.100354

Citation Report

#	Article	IF	CITATIONS
4	IFNâ€Î³ ⁺ cell response and IFNâ€Î³ release concordance after in vitro SARSâ€CoVâ€2 stimulation. European Journal of Clinical Investigation, 2021, 51, e13636.	1.7	11
5	One Year after Mild COVID-19: The Majority of Patients Maintain Specific Immunity, But One in Four Still Suffer from Long-Term Symptoms. Journal of Clinical Medicine, 2021, 10, 3305.	1.0	36
10	mRNA Vaccines Enhance Neutralizing Immunity against SARS-CoV-2 Variants in Convalescent and ChAdOx1-Primed Subjects. Vaccines, 2021, 9, 918.	2.1	40
15	Degenerate CD8 Epitopes Mapping to Structurally Constrained Regions of the Spike Protein: A T Cell-Based Way-Out From the SARS-CoV-2 Variants Storm. Frontiers in Immunology, 2021, 12, 730051.	2.2	7
16	Low-dose mRNA-1273 COVID-19 vaccine generates durable memory enhanced by cross-reactive T cells. Science, 2021, 374, eabj9853.	6.0	236
17	Immune Responses against SARS-CoV-2—Questions and Experiences. Biomedicines, 2021, 9, 1342.	1.4	10
19	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence: Navigating the absence of a gold standard. PLoS ONE, 2021, 16, e0257743.	1.1	13
20	BNT162b2 Vaccination Elicits Strong Serological Immune Responses Against SARS-CoV-2 Including Variants of Concern in Elderly Convalescents. Frontiers in Immunology, 2021, 12, 743422.	2.2	10
22	Performance of the T-SPOTⓇ.COVID test for detecting SARS-CoV-2-responsive T cells. International Journal of Infectious Diseases, 2021, 113, 155-161.	1.5	31
23	A Systematic Review of the Protective Effect of Prior SARS-CoV-2 Infection on Repeat Infection. Evaluation and the Health Professions, 2021, 44, 327-332.	0.9	79
24	Robust Neutralizing Antibody Levels Detected after Either SARS-CoV-2 Vaccination or One Year after Infection. Viruses, 2021, 13, 2003.	1.5	16
25	mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science, 2021, 374, abm0829.	6.0	609
26	T cell immunity to SARS-CoV-2. Seminars in Immunology, 2021, 55, 101505.	2.7	55
27	Neutralizing antibody activity in convalescent sera from infection in humans with SARS-CoV-2 and variants of concern. Nature Microbiology, 2021, 6, 1433-1442.	5.9	94
28	Hallmarks of immune response in COVID-19: Exploring dysregulation and exhaustion. Seminars in Immunology, 2021, 55, 101508.	2.7	37
29	Comparison of antibody and T cell responses elicited by BBIBP-CorV (Sinopharm) and BNT162b2 (Pfizer-BioNTech) vaccines against SARS-CoV-2 in healthy adult humans. GeroScience, 2021, 43, 2321-2331.	2.1	59
31	SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Science Immunology, 2021, 6, eabl9105.	5.6	147
32	Waning immunity to SARS-CoV-2: implications for vaccine booster strategies. Lancet Respiratory Medicine,the, 2021, 9, 1356-1358.	5.2	35

#	Article	IF	CITATIONS
33	Dysregulated Immune Responses in COVID-19 Patients Correlating With Disease Severity and Invasive Oxygen Requirements. Frontiers in Immunology, 2021, 12, 769059.	2.2	16
34	Determination of neutralising anti-SARS-CoV-2 antibody half-life in COVID-19 convalescent donors. Clinical Immunology, 2021, 232, 108871.	1.4	11
35	Anti-spike antibody response to natural SARS-CoV-2 infection in the general population. Nature Communications, 2021, 12, 6250.	5.8	88
37	Are COVID-19 Vaccine Boosters Needed? The Science behind Boosters. Journal of Virology, 2022, 96, JVI0197321.	1.5	35
38	Persistence of the SARS-CoV-2 Antibody Response in Asymptomatic Patients in Correctional Facilities. Frontiers in Microbiology, 2021, 12, 789374.	1.5	7
41	Antibody response to SARS-CoV-2 for more than one yearÂâ^'Âkinetics and persistence of detection are predominantly determined by avidity progression and test design. Journal of Clinical Virology, 2022, 146, 105052.	1.6	29
42	Homologous and Heterologous Covid-19 Booster Vaccinations. New England Journal of Medicine, 2022, 386, 1046-1057.	13.9	418
43	Durability of immune responses to the BNT162b2 mRNA vaccine. Med, 2022, 3, 25-27.	2.2	33
45	Wholeâ€blood cytokine secretion assay as a highâ€throughput alternative for assessing the cellâ€mediated immunity profile after two doses of an adjuvanted SARSâ€CoVâ€2 recombinant protein vaccine candidate. Clinical and Translational Immunology, 2022, 11, e1360.	1.7	14
46	SARS-CoV-2 BNT162b2 vaccine–induced humoral response and reactogenicity in individuals with prior COVID-19 disease. JCl Insight, 2022, 7, .	2.3	5
47	Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response. Cell Host and Microbe, 2022, 30, 83-96.e4.	5.1	64
48	TNFα-Producing CD4 ⁺ T Cells Dominate the SARS-CoV-2-Specific T Cell Response in COVID-19 Outpatients and Are Associated with Durable Antibodies. SSRN Electronic Journal, 0, , .	0.4	0
49	SARS-CoV-2 Variants, Vaccines, and Host Immunity. Frontiers in Immunology, 2021, 12, 809244.	2.2	176
50	Determinants of early antibody responses to COVID-19 mRNA vaccines in a cohort of exposed and naÃ ⁻ ve healthcare workers. EBioMedicine, 2022, 75, 103805.	2.7	60
51	T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature, 2022, 603, 488-492.	13.7	430
53	T-cell immune responses following vaccination with mRNA BNT162b2 against SARS-CoV-2 in patients with chronic lymphocytic leukemia: results from a prospective open-label clinical trial. Haematologica, 2022, 107, 1000-1003.	1.7	14
54	Serum Level of Anti-Nucleocapsid, but Not Anti-Spike Antibody, Is Associated with Improvement of Long COVID Symptoms. Vaccines, 2022, 10, 165.	2.1	5
55	Heterologous immunization with BNT162b2 followed by mRNA-1273 in dialysis patients: seroconversion and presence of neutralizing antibodies. Nephrology Dialysis Transplantation, 2022, 37, 1132-1139.	0.4	12

#	Article	IF	CITATIONS
56	Persistence of Anti-SARS-CoV-2 Antibodies in Long Term Care Residents Over Seven Months After Two COVID-19 Outbreaks. Frontiers in Immunology, 2021, 12, 775420.	2.2	8
58	Antibody Response to SARS-CoV-2 Vaccination in Patients following Allogeneic Hematopoietic Cell Transplantation. Transplantation and Cellular Therapy, 2022, 28, 214.e1-214.e11.	0.6	32
59	The T cell immune response against SARS-CoV-2. Nature Immunology, 2022, 23, 186-193.	7.0	785
60	Antibody Course and Memory B-Cell Response in the First Year After Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Journal of Infectious Diseases, 2022, 226, 664-672.	1.9	14
61	What the Omicron wave is revealing about human immunity. Nature, 2022, 602, 22-25.	13.7	35
62	Immunity to SARS-CoV-2 up to 15Âmonths after infection. IScience, 2022, 25, 103743.	1.9	56
63	Seroprevalence of anti-SARS-CoV-2 antibodies in a population living in Bomassa village, Republic of Congo. IJID Regions, 2022, 2, 130-136.	0.5	9
64	Development of a TÂcell-based immunodiagnostic system to effectively distinguish SARS-CoV-2 infection and COVID-19 vaccination status. Cell Host and Microbe, 2022, 30, 388-399.e3.	5.1	26
65	Robust and Functional Immune Memory Up to 9 Months After SARS-CoV-2 Infection: A Southeast Asian Longitudinal Cohort. Frontiers in Immunology, 2022, 13, 817905.	2.2	10
66	Antibody Response to SARS-CoV-2 Infection and Vaccination in COVID-19-naÃ ⁻ ve and Experienced Individuals. Viruses, 2022, 14, 370.	1.5	5
67	Escape from recognition of SARS-CoV-2 variant spike epitopes but overall preservation of T cell immunity. Science Translational Medicine, 2022, 14, .	5.8	77
68	Lower persistence of anti-nucleocapsid compared to anti-spike antibodies up to one year after SARS-CoV-2 infection. Diagnostic Microbiology and Infectious Disease, 2022, 103, 115659.	0.8	44
70	SARS-CoV-2–Specific Vaccine Candidates; the Contribution of Structural Vaccinology. Vaccines, 2022, 10, 236.	2.1	14
71	Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)–Specific Memory B Cells From Individuals With Diverse Disease Severities Recognize SARS-CoV-2 Variants of Concern. Journal of Infectious Diseases, 2022, 225, 947-956.	1.9	13
72	Reduced Magnitude and Durability of Humoral Immune Responses to COVID-19 mRNA Vaccines Among Older Adults. Journal of Infectious Diseases, 2022, 225, 1129-1140.	1.9	65
74	Comparison of the Development of SARS-Coronavirus-2-Specific Cellular Immunity, and Central Memory CD4+ T-Cell Responses Following Infection versus Vaccination. Vaccines, 2021, 9, 1439.	2.1	8
75	SARS-CoV-2 antibody and T cell responses one year after COVID-19 and the booster effect of vaccination: A prospective cohort study. Journal of Infection, 2022, 84, 171-178.	1.7	25
76	T cell responses to SARS-CoV-2 in humans and animals. Journal of Microbiology, 2022, 60, 276-289.	1.3	8

#	Article	IF	CITATIONS
77	SARS-CoV-2-specific antibody and T-cell responses 1 year after infection in people recovered from COVID-19: a longitudinal cohort study. Lancet Microbe, The, 2022, 3, e348-e356.	3.4	107
78	Immune durability and protection against SARS-CoV-2 re-infection in Syrian hamsters. Emerging Microbes and Infections, 2022, 11, 1103-1114.	3.0	11
79	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	13.7	117
81	Pre-existing SARS-CoV-2 immunity influences potency, breadth, and durability of the humoral response to SARS-CoV-2 vaccination. Cell Reports Medicine, 2022, 3, 100603.	3.3	27
82	Natural SARS-CoV-2 Infection Affects Neutralizing Activity in Saliva of Vaccinees. Frontiers in Immunology, 2022, 13, 820250.	2.2	20
83	Enhanced SARS-CoV-2-Specific CD4+ T Cell Activation and Multifunctionality in Late Convalescent COVID-19 Individuals. Viruses, 2022, 14, 511.	1.5	2
84	Establishment and recall of SARS-CoV-2 spike epitope-specific CD4+ T cell memory. Nature Immunology, 2022, 23, 768-780.	7.0	41
85	COVID-19 vaccination: The road ahead. Science, 2022, 375, 1127-1132.	6.0	134
86	Surfing Corona waves – instead of breaking them: Rethinking the role of natural immunity in COVID-19 policy. F1000Research, 0, 11, 337.	0.8	0
88	T cell response against SARS-CoV-2 persists after one year in patients surviving severe COVID-19. EBioMedicine, 2022, 78, 103967.	2.7	21
89	Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Naturally Acquired Immunity versus Vaccine-induced Immunity, Reinfections versus Breakthrough Infections: A Retrospective Cohort Study. Clinical Infectious Diseases, 2022, 75, e545-e551.	2.9	130
90	Hybrid immunity against COVID-19 in different countries with a special emphasis on the Indian scenario during the Omicron period. International Immunopharmacology, 2022, 108, 108766.	1.7	12
91	mRNA COVID-19 Vaccines and Long-Lived Plasma Cells: A Complicated Relationship. Vaccines, 2021, 9, 1503.	2.1	23
92	SARS-CoV-2 spike-specific memory B cells express higher levels of T-bet and FcRL5 after non-severe COVID-19 as compared to severe disease. PLoS ONE, 2021, 16, e0261656.	1.1	16
94	Editorial: Comparison of antibody and T cell responses elicited by BBIBP-CorV (Sinopharm) and BNT162b2 (Pfizer-BioNTech) vaccines against SARS-CoV-2 in healthy adult humans. GeroScience, 2022, 44, 57-61.	2.1	3
96	Differential Antibody Response to Inactivated COVID-19 Vaccines in Healthy Subjects. Frontiers in Cellular and Infection Microbiology, 2021, 11, 791660.	1.8	32
99	T cell receptor sequencing identifies prior SARS-CoV-2 infection and correlates with neutralizing antibodies and disease severity. JCI Insight, 2022, 7, .	2.3	26
100	Observations and perspectives on adaptive immunity to SARS-CoV-2. Clinical Infectious Diseases, 2022, ,	2.9	10

#	Article	IF	CITATIONS
101	Research progress on vaccine efficacy against SARS-CoV-2 variants of concern. Human Vaccines and Immunotherapeutics, 2022, 18, 1-12.	1.4	10
102	Quantitation of SARS-CoV-2 neutralizing antibodies with a virus-free, authentic test. , 2022, 1, .		5
103	Long-Term, CD4+ Memory T Cell Response to SARS-CoV-2. Frontiers in Immunology, 2022, 13, 800070.	2.2	12
104	Humoral Responses Against SARS-CoV-2 and Variants of Concern After mRNA Vaccines in Patients With Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2022, 40, 3020-3031.	0.8	26
105	COVID-19 breakthrough infections and humoral immune response among BNT162b2 vaccinated healthcare workers in Malaysia. Emerging Microbes and Infections, 2022, 11, 1262-1271.	3.0	21
106	T cells in COVID-19 — the kids are all right. Nature Immunology, 2022, 23, 647-649.	7.0	2
107	Escape from recognition of SARS-CoV-2 Beta variant spike epitopes but overall preservation of T cell immunity Science Translational Medicine, 2021, , eabj6824.	5.8	11
108	Covid-19: virology, variants, and vaccines. , 2022, 1, e000040.		24
109	The Effect of Waning on Antibody Levels and Memory B Cell Recall following SARS-CoV-2 Infection or Vaccination. Vaccines, 2022, 10, 696.	2.1	11
110	Decoupling between SARS-CoV-2 transmissibility and population mobility associated with increasing immunity from vaccination and infection in South America. Scientific Reports, 2022, 12, 6874.	1.6	7
111	Immunouniverse of SARS-CoV-2. Immunological Medicine, 2022, 45, 186-224.	1.4	8
112	An efficient immunoassay for the B cell help function of SARS-CoV-2-specific memory CD4+ TÂcells. Cell Reports Methods, 2022, 2, 100224.	1.4	5
113	TNF-α+ CD4+ TÂcells dominate the SARS-CoV-2 specific T cell response in COVID-19 outpatients and are associated with durable antibodies. Cell Reports Medicine, 2022, 3, 100640.	3.3	15
114	Skewed Cellular Distribution and Low Activation of Functional T-Cell Responses in SARS-CoV-2 Non-Seroconvertors. Frontiers in Immunology, 2022, 13, .	2.2	2
115	Fitness of B-Cell Responses to SARS-CoV-2 WT and Variants Up to One Year After Mild COVID-19 – A Comprehensive Analysis. Frontiers in Immunology, 2022, 13, 841009.	2.2	0
116	The COVID-19 pandemic in the African continent. BMC Medicine, 2022, 20, 167.	2.3	43
118	Presence of SARS-CoV-2 antibodies following COVID-19 diagnosis: a longitudinal study of patients at a major urgent care provider in New York. Diagnostic Microbiology and Infectious Disease, 2022, 103, 115720.	0.8	2
119	Dispelling the Myth of a Pandemic of the Unvaccinated. , 2021, 2, 267-286.		0

#	Article	IF	CITATIONS
121	Demographic and clinical characteristics associated with variations in antibody response to BNT162b2 COVID-19 vaccination among healthcare workers at an academic medical centre: a longitudinal cohort analysis. BMJ Open, 2022, 12, e059994.	0.8	17
124	Robust SARS-CoV-2-specific and heterologous immune responses in vaccine-naÃ ⁻ ve residents of long-term care facilities who survive natural infection. Nature Aging, 0, , .	5.3	4
126	Correlates of protection against <scp>SARS</scp> â€ <scp>CoV</scp> â€2 infection and COVIDâ€19 disease. Immunological Reviews, 2022, 310, 6-26.	2.8	138
127	An intranasally administrated SARS-CoV-2 beta variant subunit booster vaccine prevents beta variant replication in rhesus macaques. , 2022, 1, .		10
128	Remodeling of T Cell Dynamics During Long COVID Is Dependent on Severity of SARS-CoV-2 Infection. Frontiers in Immunology, 0, 13, .	2.2	48
129	Time-dependent contraction of the SARS-CoV-2–specific T-cell responses in convalescent individuals. , 2022, , .		0
130	Antibody and T cell responses to COVID-19 vaccination in patients receiving anticancer therapies. , 2022, 10, e004766.		11
131	Inactivated whole-virion vaccine BBV152/Covaxin elicits robust cellular immune memory to SARS-CoV-2 and variants of concern. Nature Microbiology, 2022, 7, 974-985.	5.9	30
132	Immunological memory to <scp>SARSâ€CoV</scp> â€2 infection and <scp>COVID</scp> â€19 vaccines. Immunological Reviews, 2022, 310, 27-46.	2.8	137
133	Cellular immunity in patients with COVID-19: molecular biology, pathophysiology, and clinical implications. Journal of Clinical Practice, 2022, 13, 66-87.	0.2	1
134	COVID-19 pandemic in Saint Petersburg, Russia: Combining population-based serological study and surveillance data. PLoS ONE, 2022, 17, e0266945.	1.1	6
135	Long-term antibody response following SPUTNIK V primary vaccination in healthcare workers with and without history of SARS-CoV-2 infection: Prospective cohort study from a hospital in Argentina. Vaccine: X, 2022, 11, 100187.	0.9	4
136	A one-year follow-up study on dynamic changes of leukocyte subsets and virus-specific antibodies of patients with COVID-19 in Sichuan, China. International Journal of Medical Sciences, 2022, 19, 1122-1130.	1.1	0
137	Modeling Incorporating the Severity-Reducing Long-term Immunity: Higher Viral Transmission Paradoxically Reduces Severe COVID-19 During Endemic Transition. Immune Network, 2022, 22, .	1.6	1
138	Projecting the SARS-CoV-2 transition from pandemicity to endemicity: Epidemiological and immunological considerations. PLoS Pathogens, 2022, 18, e1010591.	2.1	20
139	The Robustness of Cellular Immunity Determines the Fate of SARS-CoV-2 Infection. Frontiers in Immunology, 0, 13, .	2.2	28
140	Early and Polyantigenic CD4 T Cell Responses Correlate with Mild Disease in Acute COVID-19 Donors. International Journal of Molecular Sciences, 2022, 23, 7155.	1.8	31
141	Tissue immunity to SARS oVâ€2: Role in protection and immunopathology*. Immunological Reviews, 2022, 309, 25-39.	2.8	11

#	Δρτιςι ε	IF	CITATIONS
	Immunogenicity and efficacy of Ad26. <scp>COV2</scp> .S: An adenoviral vector–based		CHAHONS
142	<scp>COVID</scp> â€19 vaccine. Immunological Reviews, 2022, 310, 47-60.	2.8	10
143	Persistence of immunity and impact of third dose of inactivated COVID-19 vaccine against emerging variants. Scientific Reports, 2022, 12, .	1.6	23
144	Immunity after COVID-19 Recovery and Vaccination: Similarities and Differences. Vaccines, 2022, 10, 1068.	2.1	9
145	CoVITEST: A Fast and Reliable Method to Monitor Anti-SARS-CoV-2 Specific T Cells From Whole Blood. Frontiers in Immunology, 0, 13, .	2.2	2
147	Persistent Maintenance of Intermediate Memory B Cells Following SARS-CoV-2 Infection and Vaccination Recall Response. Journal of Virology, 2022, 96, .	1.5	11
150	Molecular mechanisms involved in pathogenicity of SARS-CoV-2: Immune evasion and implications for therapeutic strategies. Biomedicine and Pharmacotherapy, 2022, 153, 113368.	2.5	6
151	Post-vaccination T cell immunity to omicron. Frontiers in Immunology, 0, 13, .	2.2	20
152	Humoral and Cellular Immune Responses of COVID-19 vaccines against SARS-Cov-2 Omicron variant: a systemic review. International Journal of Biological Sciences, 2022, 18, 4629-4641.	2.6	24
153	Longitudinal Immune Response to 3 Doses of Messenger RNA Vaccine Against Coronavirus Disease 2019 (COVID-19) in Pediatric Patients Receiving Chemotherapy for Cancer. Clinical Infectious Diseases, 2023, 76, e510-e513.	2.9	8
154	Immunological memory to common cold coronaviruses assessed longitudinally over a three-year period pre-COVID19 pandemic. Cell Host and Microbe, 2022, 30, 1269-1278.e4.	5.1	21
155	Cross-sectional analysis of the humoral response after SARS-CoV-2 vaccination in Sardinian multiple sclerosis patients, a follow-up study. Frontiers in Immunology, 0, 13, .	2.2	2
156	T cell perturbations persist for at least 6 months following hospitalization for COVID-19. Frontiers in Immunology, 0, 13, .	2.2	16
157	(E1)levating COVID-19 vaccine efficiency with adenoviral E1 proteins. Science Advances, 2022, 8, .	4.7	0
158	Self-Selected COVID-19 "Unvaccinated―Cohort Reports Favorable Health Outcomes and Unjustified Discrimination in Global Survey. , 2022, 2, 321-354.		3
160	Heterogenous humoral and cellular immune responses with distinct trajectories post-SARS-CoV-2 infection in a population-based cohort. Nature Communications, 2022, 13, .	5.8	18
161	Loss of Pfizer (BNT162b2) Vaccine-Induced Antibody Responses against the SARS-CoV-2 Omicron Variant in Adolescents and Adults. Journal of Virology, 2022, 96, .	1.5	13
162	Decrease in CD8+CD45+CCR7+CD62L+ T cells in individuals vaccinated with Sinovac-CoronaVac following COVID-19 infection. Clinical Immunology, 2022, 242, 109092.	1.4	2
163	Antibody and T-cellular response to COVID-19 booster vaccine in SARS-CoV-1 survivors. Clinical Immunology, 2022, 244, 109103.	1.4	3

# 164	ARTICLE Performance and validation of an adaptable multiplex assay for detection of serologic response to SARS-CoV-2 infection or vaccination. Journal of Immunological Methods, 2022, 510, 113345.	IF 0.6	CITATIONS
165	T cells in SARS-CoV-2 infection and vaccination. , 2022, 10, 251513552211150.	1.4	4
166	Accumulation of mutations in antibody and CD8 T cell epitopes in a B cell depleted lymphoma patient with chronic SARS-CoV-2 infection. Nature Communications, 2022, 13, .	5.8	8
167	Differences in systemic and mucosal SARS-CoV-2 antibody prevalence in a prospective cohort of Dutch children. Frontiers in Immunology, 0, 13, .	2.2	5
168	Adaptive SIR model with vaccination: simultaneous identification of rates and functions illustrated with COVID-19. Scientific Reports, 2022, 12, .	1.6	18
169	New insights into human immune memory from <scp>SARS oV</scp> â€2 infection and vaccination. Allergy: European Journal of Allergy and Clinical Immunology, 0, , .	2.7	5
170	Kinetics of humoral immune response over 17Âmonths of COVID-19 pandemic in a large cohort of healthcare workers in Spain: the ProHEpiC-19 study. BMC Infectious Diseases, 2022, 22, .	1.3	5
171	A comparison between SARS-CoV-1 and SARS-CoV2: an update on current COVID-19 vaccines. DARU, Journal of Pharmaceutical Sciences, 0, , .	0.9	5
172	Long-term memory CD8+ T cells specific for SARS-CoV-2 in individuals who received the BNT162b2 mRNA vaccine. Nature Communications, 2022, 13, .	5.8	11
173	An Update on Complications Associated with SARS-CoV-2 Infection and COVID-19 Vaccination. Vaccines, 2022, 10, 1639.	2.1	1
175	SARS-CoV-2-specicific humoral immunity in convalescent patients with mild COVID-19 is supported by CD4+ T-cell help and negatively correlated with Alphacoronavirus-specific antibody titer. Immunology Letters, 2022, 251-252, 38-46.	1.1	2
176	Vaccine-Induced T-Cell and Antibody Responses at 12 Months after Full Vaccination Differ with Respect to Omicron Recognition. Vaccines, 2022, 10, 1563.	2.1	4
177	Methodology to estimate natural- and vaccine-induced antibodies to SARS-CoV-2 in a large geographic region. PLoS ONE, 2022, 17, e0273694.	1.1	1
178	Vaccine models predict rules for updating vaccines against evolving pathogens such as SARS-CoV-2 and influenza in the context of pre-existing immunity. Frontiers in Immunology, 0, 13, .	2.2	4
181	SARS-CoV-2—The Role of Natural Immunity: A Narrative Review. Journal of Clinical Medicine, 2022, 11, 6272.	1.0	12
182	Rates of Asymptomatic COVID-19 Infection and Associated Factors in Olmsted County, MN in the Pre-Vaccination Era. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2022, , .	1.2	0
183	Surfing Corona waves – instead of breaking them: Rethinking the role of natural immunity in COVID-19 policy. F1000Research, 0, 11, 337.	0.8	0
186	A novel RBD-protein/peptide vaccine elicits broadly neutralizing antibodies and protects mice and macaques against SARS-CoV-2. Emerging Microbes and Infections, 2022, 11, 2724-2734.	3.0	21

#	Article	IF	CITATIONS
187	SARS-CoV-2 Serosurveys: How antigen, isotype and threshold choices affect the outcome. Journal of Infectious Diseases, 0, , .	1.9	2
188	Longitudinal Analyses after COVID-19 Recovery or Prolonged Infection Reveal Unique Immunological Signatures after Repeated Vaccinations. Vaccines, 2022, 10, 1815.	2.1	0
189	Symptomatology during previous SARS-CoV-2 infection and serostatus before vaccination influence the immunogenicity of BNT162b2 COVID-19 mRNA vaccine. Frontiers in Immunology, 0, 13, .	2.2	4
192	Bamlanivimab therapy for acute COVID-19 does not blunt SARS-CoV-2–specific memory T cell responses. JCI Insight, 2022, 7, .	2.3	5
193	Adaptive Immunity to Viruses: What Did We Learn from SARS-CoV-2 Infection?. International Journal of Molecular Sciences, 2022, 23, 13951.	1.8	5
194	Influencing factors of anti‣ARS oVâ€2â€spikeâ€ŀgG antibody titers in healthcare workers: A crossâ€section study. Journal of Medical Virology, 2023, 95, .	2.5	7
195	Current understanding of T cell immunity against SARS-CoV-2. Inflammation and Regeneration, 2022, 42, .	1.5	11
196	Characterization of Three Variants of SARS-CoV-2 In Vivo Shows Host-Dependent Pathogenicity in Hamsters, While Not in K18-hACE2 Mice. Viruses, 2022, 14, 2584.	1.5	6
197	Longitudinal single-cell analysis of SARS-CoV-2–reactive B cells uncovers persistence of early-formed, antigen-specific clones. JCI Insight, 2023, 8, .	2.3	6
198	Longevity of memory B cells and antibodies, as well as the polarization of effector memory helper T cells, are associated with disease severity in patients with COVID-19 in Bangladesh. Frontiers in Immunology, 0, 13, .	2.2	3
199	Unique properties of tissue-resident memory T cells in the lungs: implications for COVID-19 and other respiratory diseases. Nature Reviews Immunology, 2023, 23, 329-335.	10.6	11
200	Adaptive immune responses and cytokine immune profiles in humans following prime and boost vaccination with the SARS-CoV-2 CoronaVac vaccine. Virology Journal, 2022, 19, .	1.4	5
201	Immune repertoire sequencing reveals an abnormal adaptive immune system in COVIDâ€19 survivors. Journal of Medical Virology, 2023, 95, .	2.5	2
202	Infant rhesus macaques immunized against SARS-CoV-2 are protected against heterologous virus challenge 1 year later. Science Translational Medicine, 2023, 15, .	5.8	10
203	In-depth analysis of T cell immunity and antibody responses in heterologous prime-boost-boost vaccine regimens against SARS-CoV-2 and Omicron variant. Frontiers in Immunology, 0, 13, .	2.2	3
204	Antibody Binding and Neutralization of Live SARS-CoV-2 Variants Including BA.4/5 Following Booster Vaccination of Patients with B-cell Malignancies. Cancer Research Communications, 2022, 2, 1684-1692.	0.7	3
206	Progress of the COVID-19: Persistence, Effectiveness, and Immune Escape of the Neutralizing Antibody in Convalescent Serum. Pathogens, 2022, 11, 1531.	1.2	2
207	Impaired SARS-CoV-2 Variant Neutralization and CD8+ T-cell Responses Following 3 Doses of mRNA Vaccines in Myeloma: Correlation with Breakthrough Infections. Blood Cancer Discovery, 2023, 4, 106-117.	2.6	14

#	Article	IF	CITATIONS
208	Mutations in SARS-CoV-2 spike protein impair epitope-specific CD4+ T cell recognition. Nature Immunology, 2022, 23, 1726-1734.	7.0	11
209	Attenuated humoral responses in HIV after SARS-CoV-2 vaccination linked to B cell defects and altered immune profiles. IScience, 2023, 26, 105862.	1.9	8
210	HIV and SARS-CoV-2 infection in postpartum Kenyan women and their infants. PLoS ONE, 2023, 18, e0278675.	1.1	3
211	Six-month longitudinal immune kinetics after mRNA-1273 vaccination: Correlation of peak antibody response with long-term, cross-reactive immunity. Frontiers in Immunology, 0, 13, .	2.2	2
212	Rapidly shifting immunologic landscape and severity of SARS-CoV-2 in the Omicron era in South Africa. Nature Communications, 2023, 14, .	5.8	15
213	Persistent humoral and CD4+ TH cell immunity after mild SARS-COV-2 infection—The CoNAN long-term study. Frontiers in Immunology, 0, 13, .	2.2	0
214	SARS-CoV-2 escape from cytotoxic T cells during long-term COVID-19. Nature Communications, 2023, 14,	5.8	18
215	Heterologous prime-boost immunization with ChAdOx1-S and BNT162b2: reactogenicity and immunogenicity in a prospective cohort study. International Journal of Infectious Diseases, 2023, 128, 166-175.	1.5	6
216	The race to understand immunopathology in COVID-19: Perspectives on the impact of quantitative approaches to understand within-host interactions. ImmunoInformatics, 2023, 9, 100021.	1.2	1
219	SARS-CoV-2 infection and immune responses. AIMS Microbiology, 2023, 9, 245-276.	1.0	2
220	Cohort profile: A Québec-based plasma donor biobank to study COVID-19 immunity (PlasCoV). BMJ Open, 2023, 13, e068803.	0.8	4
221	Defending against SARS-CoV-2: The T cell perspective. Frontiers in Immunology, 0, 14, .	2.2	20
222	Multimodal single-cell analyses of peripheral blood mononuclear cells of COVID-19 patients in Japan. Scientific Reports, 2023, 13, .	1.6	0
224	Role of T cells in severe COVID-19 disease,Âprotection, and long term immunity. Immunogenetics, 2023, 75, 295-307.	1.2	14
226	T Cell Responses to SARS-CoV-2. Annual Review of Immunology, 2023, 41, 343-373.	9.5	48
227	Detailed characterization of SARS-CoV-2-specific T and B cells after infection or heterologous vaccination. Frontiers in Immunology, 0, 14, .	2.2	4
228	Viral Mitigation: Weak Theoretical Underpinnings. Studies in Public Choice, 2023, , 9-58.	0.0	0
229	Ruxolitinib treatment in myelofibrosis and polycythemia vera causes suboptimal humoral immune response following standard and booster vaccination with BNT162b2 mRNA COVID-19 vaccine. Frontiers in Oncology, 0, 13, .	1.3	5

#	Article	IF	CITATIONS
230	Receptorâ€binding domainâ€based SARSâ€CoVâ€2 vaccine adjuvanted with cyclic diâ€adenosine monophosphat enhances humoral and cellular immunity in mice. Journal of Medical Virology, 2023, 95, .	^{.e} 2.5	2
231	Evaluation of QuantiFERON SARS-CoV-2 interferon-Î ³ release assay following SARS-CoV-2 infection and vaccination. Clinical and Experimental Immunology, 2023, 212, 249-261.	1.1	8
232	Drug Cocktail Formulation via Circuit Design. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2023, 9, 28-48.	1.4	1
234	SARS-CoV-2 versus Influenza A Virus: Characteristics and Co-Treatments. Microorganisms, 2023, 11, 580.	1.6	1
235	Immunogenicity against wild-type and Omicron SARS-CoV-2 after a third dose of inactivated COVID-19 vaccine in healthy adolescents. Frontiers in Immunology, 0, 14, .	2.2	6
236	SARS-CoV-2 epitope-specific T cells: Immunity response feature, TCR repertoire characteristics and cross-reactivity. Frontiers in Immunology, 0, 14, .	2.2	1
237	Mechanistic insight into the protective and pathogenic immune-responses against SARS-CoV-2. Molecular Immunology, 2023, 156, 111-126.	1.0	5
238	Oral Administration of Universal Bacterium-Vectored Nucleocapsid-Expressing COVID-19 Vaccine is Efficacious in Hamsters. Microbiology Spectrum, 2023, 11, .	1.2	3
240	Vector-based SARS-CoV-2 vaccination is associated with improved T-cell responses in hematological neoplasia. Blood Advances, 0, , .	2.5	1
241	Response and duration of serum antiâ€SARSâ€CoVâ€2 antibodies induced by the third dose of an inactivated vaccine: A prospective longitudinal cohort study at 21 serial time points over 641 days. Journal of Medical Virology, 2023, 95, .	2.5	0
242	Humoral and T Cell Immune Responses against SARS-CoV-2 after Primary and Homologous or Heterologous Booster Vaccinations and Breakthrough Infection: A Longitudinal Cohort Study in Malaysia. Viruses, 2023, 15, 844.	1.5	3
244	The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection. Cell, 2023, 186, 2392-2409.e21.	13.5	24
245	SARS-CoV-2: Immunity, Challenges with Current Vaccines, and a Novel Perspective on Mucosal Vaccines. Vaccines, 2023, 11, 849.	2.1	12
246	Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. Frontiers in Immunology, 0, 14, .	2.2	7
	Immuno dominant SADSAECoVIAECIAEconosifia CD4 (ours) selector and CD9 (ours) selector TaCcolling and the selector		

 $\label{eq:248} Immunodominant SARSâ \in CoVâ \in 2a \in specific CD4 < sup > + </sup > and CD8 < sup > + </sup > Tâ \in cell responses elicited by 2.5 a matching of Medical Virology, 2023, 95, . 3$