Simulation and burst validation of 70Â MPa type IV hydreinforcement

International Journal of Hydrogen Energy 46, 23779-23794 DOI: 10.1016/j.ijhydene.2021.04.186

Citation Report

#	Article	IF	CITATIONS
1	Thickness-Prediction Method Involving Tow Redistribution for the Dome of Composite Hydrogen Storage Vessels. Polymers, 2022, 14, 902.	4.5	5
2	Review on optimization design, failure analysis and non-destructive testing of composite hydrogen storage vessel. International Journal of Hydrogen Energy, 2022, 47, 38862-38883.	7.1	24
3	Chemisorption solid materials for hydrogen storage near ambient temperature: a review. Frontiers in Energy, 2023, 17, 72-101.	2.3	5
4	Experiment, simulation, optimization design, and damage detection of composite shell of hydrogen storage vessel-A review. Journal of Reinforced Plastics and Composites, 0, , 073168442211327.	3.1	2
5	Effects of geodesic dome trajectories on the specific strength of composite overwrapped pressure vessels: FE modelling. International Journal of Hydrogen Energy, 2023, 48, 13669-13681.	7.1	4
6	High pressure and long-term gas diffusion coupled damage of composites through a multi-physical phase field framework. Computer Methods in Applied Mechanics and Engineering, 2023, 410, 116006.	6.6	0
7	A novel multi-filament winding technique for type III composite pressure vessel: From CFRP cross-undulation concept to structural performance validation. International Journal of Hydrogen Energy, 2023, 48, 17237-17250.	7.1	6
8	Continuum damage mechanics behavior of a carbon-fiber-reinforced epoxy composite fabricated by filament winding with different material and manufacturing conditions. Mechanics of Advanced Materials and Structures, 0, , 1-11.	2.6	2
9	A novel modeling and virtual testing method of hydrogen storage COPV considering stochastic wrinkle defects. International Journal of Hydrogen Energy, 2023, , .	7.1	0
10	Numerical study on the influence of liner geometry and lay-up sequence on the fatigue life of composite hydrogen storage vessel. International Journal of Pressure Vessels and Piping, 2023, 205, 104986.	2.6	2
11	Hydrogenation of High-Density Polyethylene during Decompression of Pressurized Hydrogen at 90 MPa: A Molecular Perspective. Polymers, 2023, 15, 2880.	4.5	3
12	A Review on the Cost Analysis of Hydrogen Gas Storage Tanks for Fuel Cell Vehicles. Energies, 2023, 16, 5233.	3.1	5
13	Nonconventional tow-steered pressure vessels for hydrogen storage. Composite Structures, 2024, 334, 117970.	5.8	0