Machine learning for alloys

Nature Reviews Materials 6, 730-755

DOI: 10.1038/s41578-021-00340-w

Citation Report

#	Article	IF	CITATIONS
1	Settling the matter of the role of vibrations in the stability of high-entropy carbides. Nature Communications, 2021, 12, 5747.	5.8	28
2	Materials Informatics for Mechanical Deformation: A Review of Applications and Challenges. Materials, 2021, 14, 5764.	1.3	20
3	Machine learning for next-generation nanotechnology in healthcare. Matter, 2021, 4, 3078-3080.	5.0	5
4	A machine learning-based alloy design system to facilitate the rational design of high entropy alloys with enhanced hardness. Acta Materialia, 2022, 222, 117431.	3.8	112
5	Machine learning and materials informatics approaches in the analysis of physical properties of carbon nanotubes: A review. Computational Materials Science, 2022, 201, 110939.	1.4	41
6	Prediction of Magnesium Alloy Corrosion Based on Machine Learning Method. SSRN Electronic Journal, 0, , .	0.4	O
7	Machine-Learning Prediction of Vegard's Law Factor and Volume Size Factor for Binary Substitutional Metallic Solid Solutions. SSRN Electronic Journal, 0, , .	0.4	0
8	Efficient parametrization of the atomic cluster expansion. Physical Review Materials, 2022, 6, .	0.9	23
9	Design high-entropy carbide ceramics from machine learning. Npj Computational Materials, 2022, 8, .	3.5	37
10	Predicting elastic properties of hard-coating alloys using ab-initio and machine learning methods. Npj Computational Materials, 2022, 8, .	3.5	16
11	Grain Knowledge Graph Representation Learning: A New Paradigm for Microstructure-Property Prediction. Crystals, 2022, 12, 280.	1.0	14
12	Phase transitions of zirconia: Machine-learned force fields beyond density functional theory. Physical Review B, 2022, 105, .	1.1	21
13	Using Featureâ€Assisted Machine Learning Algorithms to Boost Polarity in Leadâ€Free Multicomponent Niobate Alloys for Highâ€Performance Ferroelectrics. Advanced Science, 2022, 9, e2104569.	5.6	11
14	Microstructure Representation Knowledge Graph to Explore the Twinning Formation. Crystals, 2022, 12, 466.	1.0	4
15	Recent advances in the application of machine-learning algorithms to predict adsorption energies. Trends in Chemistry, 2022, 4, 347-360.	4.4	4
16	Machine learning prediction of the mechanical properties of \hat{I}^3 -TiAl alloys produced using random forest regression model. Journal of Materials Research and Technology, 2022, 18, 520-530.	2.6	32
17	Electrical resistivity as a descriptor for classification of amorphous versus crystalline phases of alloys. Acta Materialia, 2022, 231, 117861.	3.8	15
18	Deep machine learning unravels the structural origin of midâ€gap states in chalcogenide glass for highâ€density memory integration. InformaÄnÃ-Materiály, 2022, 4, .	8.5	34

#	Article	IF	CITATIONS
19	A modified method for calculating the viscosity of multicomponent slags based on Kriging interpolation. Ceramics International, 2022, 48, 21803-21811.	2.3	3
20	Microstructural Evolution and Mechanical Properties of FCAW Joints in 9% Ni Steel Prepared with Two Types of Ni-Based Weld Metals. International Journal of Advanced Manufacturing Technology, 2022, 120, 6735-6746.	1.5	3
21	Preparation and property optimization of FeCrAl-based ODS alloy by machine learning combined with wedge-shaped hot-rolling. Materials Characterization, 2022, 188, 111894.	1.9	15
22	Dataâ€Driven Materials Innovation and Applications. Advanced Materials, 2022, 34, e2104113.	11.1	51
23	Atomistic and machine learning studies of solute segregation in metastable grain boundaries. Scientific Reports, 2022, 12, 6673.	1.6	11
24	Perspectives in the new era of materials intelligent design. , 0, 1 , .		2
25	Insights on phase formation from thermodynamic calculations and machine learning of 2436 experimentally measured high entropy alloys. Journal of Alloys and Compounds, 2022, 915, 165173.	2.8	10
26	Materials Data toward Machine Learning: Advances and Challenges. Journal of Physical Chemistry Letters, 2022, 13, 3965-3977.	2.1	12
27	Composition design of high-entropy alloys with deep sets learning. Npj Computational Materials, 2022, 8, .	3.5	22
28	Machine Learning Interatomic Potential for High-Throughput Screening of High-Entropy Alloys. Jom, 2022, 74, 2908-2920.	0.9	2
29	Machine-Learning-Based phase diagram construction for high-throughput batch experiments. Science and Technology of Advanced Materials Methods, 2022, 2, 153-161.	0.4	3
30	Prediction of Phase Diagrams and Associated Phase Structural Properties. Industrial & Engineering Chemistry Research, 2022, 61, 8378-8389.	1.8	3
31	Screening for shape memory alloys with narrow thermal hysteresis using combined XGBoost and DFT calculation. Computational Materials Science, 2022, 211, 111519.	1.4	4
32	Machine Learning Force Field Aided Cluster Expansion Approach to Configurationally Disordered Materials: Critical Assessment of Training Set Selection and Size Convergence. Journal of Chemical Theory and Computation, 2022, 18, 3795-3804.	2.3	6
33	Machine learning for design principles for single atom catalysts towards electrochemical reactions. Journal of Materials Chemistry A, 2022, 10, 15309-15331.	5.2	28
34	Creep rupture life prediction of nickel-based superalloys based on data fusion. Computational Materials Science, 2022, 211, 111560.	1.4	13
35	Prediction of Mg Alloy Corrosion Based on Machine Learning Models. Advances in Materials Science and Engineering, 2022, 2022, 1-8.	1.0	6
36	Prediction of stable Li-Sn compounds: boosting ab initio searches with neural network potentials. Npj Computational Materials, 2022, 8, .	3.5	7

3

#	Article	IF	CITATIONS
37	Data-Driven Construction Method of Material Mechanical Behavior Model. Metals, 2022, 12, 1086.	1.0	1
38	Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses. Scientific Reports, 2022, 12, .	1.6	3
39	Machine-learning prediction of Vegard's law factor and volume size factor for binary substitutional metallic solid solutions. Acta Materialia, 2022, 237, 118166.	3.8	5
40	The Use of Machine Learning Model in the Evaluation of College Students' Employment and Entrepreneurship Level. Wireless Communications and Mobile Computing, 2022, 2022, 1-10.	0.8	5
41	A comparison of explainable artificial intelligence methods in the phase classification of multi-principal element alloys. Scientific Reports, 2022, 12 , .	1.6	10
42	Electron-phonon coupling strength from <i>ab initio</i> frozen-phonon approach. Physical Review Materials, 2022, 6, .	0.9	10
43	Crystal Structure Prediction via Efficient Sampling of the Potential Energy Surface. Accounts of Chemical Research, 2022, 55, 2068-2076.	7.6	18
44	Highâ€Throughput Generation of 3D Graphene Metamaterials and Property Quantification Using Machine Learning. Small Methods, 2022, 6, .	4.6	12
46	ML-guided design and screening of chalcogenide catalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 31321-31329.	3.8	6
47	Self-adaptable materials structure descriptor based on graph attention network for machine learning. Materials and Design, 2022, 223, 111162.	3.3	1
48	A feasibility study of machine learning-assisted alloy design using wrought aluminum alloys as an example. Computational Materials Science, 2022, 215, 111783.	1.4	8
49	Machine learning for high-entropy alloys: Progress, challenges and opportunities. Progress in Materials Science, 2023, 131, 101018.	16.0	54
50	Spinel nitride solid solutions: charting properties in the configurational space with explainable machine learning., 2022, 1, 665-678.		1
51	Reversible assembly of nanoparticles: theory, strategies and computational simulations. Nanoscale, 2022, 14, 14385-14432.	2.8	14
52	Machine learning prediction on intermetallic compounds with implemented virtual-center-atom structural descriptor. Science and Technology of Advanced Materials Methods, 2022, 2, 334-344.	0.4	0
53	Experimental study and machine learning model to predict formability of magnesium alloy sheet. F1000Research, 0, 11 , 1118 .	0.8	1
54	Machine Learning for Harnessing Thermal Energy: From Materials Discovery to System Optimization. ACS Energy Letters, 2022, 7, 3204-3226.	8.8	11
55	Correlation between microstructure and mechanical properties of welding joint in 9% Ni steel with two types of Ni-based superalloy filler metals. International Journal of Advanced Manufacturing Technology, 2022, 122, 2761-2773.	1.5	1

#	ARTICLE	IF	CITATIONS
56	Perspective on optimal strategies of building cluster expansion models for configurationally disordered materials. Journal of Chemical Physics, 2022, 157, .	1.2	4
57	A Knowledge Transfer Framework for General Alloy Materials Properties Prediction. Materials, 2022, 15, 7442.	1.3	1
58	Controlled Synthesis of Multicolor Carbon Dots Assisted by Machine Learning. Advanced Functional Materials, 2023, 33, .	7.8	16
59	Crucial feature space for ductile bcc high-entropy alloys. Applied Physics Letters, 2022, 121, .	1.5	2
60	Artificial intelligence automates the characterization of reversibly actuating planar-flow-casted NiTi shape memory alloy foil. PLoS ONE, 2022, 17, e0275485.	1.1	3
61	Machine learning versus human learning in predicting glass-forming ability of metallic glasses. Acta Materialia, 2023, 243, 118497.	3.8	14
62	Multilayer atomic cluster expansion for semilocal interactions. Physical Review Research, 2022, 4, .	1.3	8
63	Designing catalysts via evolutionary-based optimization techniques. Computational Materials Science, 2023, 216, 111833.	1.4	4
64	Rational Design for Efficient Bifunctional Oxygen Electrocatalysts by Artificial Intelligence. Journal of Physical Chemistry C, 2022, 126, 19091-19100.	1.5	1
65	Toward autonomous laboratories: Convergence of artificial intelligence and experimental automation. Progress in Materials Science, 2023, 132, 101043.	16.0	19
66	Data-driven pitting evolution prediction for corrosion-resistant alloys by time-series analysis. Npj Materials Degradation, 2022, 6, .	2.6	7
67	Phase Stability Through Machine Learning. Journal of Phase Equilibria and Diffusion, 2022, 43, 606-628.	0.5	2
68	Machine learning of carbon vacancy formation energy in high-entropy carbides. Journal of the European Ceramic Society, 2023, 43, 1315-1321.	2.8	6
69	Design of Light-Metal Alloys Using Machine Learning Techniques. Materials Horizons, 2023, , 3-24.	0.3	0
70	Machine learning assisted design of aluminum-lithium alloy with high specific modulus and specific strength. Materials and Design, 2023, 225, 111483.	3.3	13
71	Interpretable machine learning workflow for evaluation of the transformation temperatures of TiZrHfNiCoCu high entropy shape memory alloys. Materials and Design, 2023, 225, 111513.	3.3	8
72	Hardness Predicting of Additively Manufactured Highâ€Entropy Alloys Based on Fabrication Parameterâ€Dependent Machine Learning. Advanced Engineering Materials, 0, , 2201369.	1.6	0
73	Exploiting Machine Learning in Multiscale Modelling of Materials. Journal of the Institution of Engineers (India): Series D, O, , .	0.6	2

#	ARTICLE	IF	CITATIONS
74	A Neural Network Approach to Predict Gibbs Free Energy of Ternary Solid Solutions. Journal of Phase Equilibria and Diffusion, 2022, 43, 916-930.	0.5	0
75	Prediction of mechanical properties for deep drawing steel by deep learning. International Journal of Minerals, Metallurgy and Materials, 2023, 30, 156-165.	2.4	4
76	Evolutionary computation-based machine learning for Smart City high-dimensional Big Data Analytics. Applied Soft Computing Journal, 2023, 133, 109955.	4.1	3
77	Element-wise representations with ECNet for material property prediction and applications in high-entropy alloys. Npj Computational Materials, 2022, 8, .	3 . 5	3
78	Gaussian process regressions on hot deformation behaviors of FGH98 nickel-based powder superalloy. Journal of Materials Science and Technology, 2023, 146, 177-185.	5.6	10
79	A deep transfer learning-based protocol accelerates full quantum mechanics calculation of protein. Briefings in Bioinformatics, 2023, 24, .	3.2	3
80	Accelerated design of electrodes for liquid metal battery by machine learning. Energy Storage Materials, 2023, 56, 205-217.	9.5	8
81	Data Augmentation of Micrographs and Prediction of Impact Toughness for Cast Austenitic Steel by Machine Learning. Metals, 2023, 13, 107.	1.0	1
82	Machine learning based nonlinear adaptive optimal control of capacitive micro-actuator subjected to electrostatic field. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45, .	0.8	0
83	Classification of Wall Following Robot Movements Using Genetic Programming Symbolic Classifier. Machines, 2023, 11, 105.	1.2	3
84	Ensemble Learning for Predicting the Tensile Strength of Alloy Steels from Chemical Composition and Processing Parameters. , 2022, , .		0
85	Data-driven design of electrocatalysts: principle, progress, and perspective. Journal of Materials Chemistry A, 2023, 11, 3849-3870.	5.2	8
86	A generative deep learning framework for inverse design of compositionally complex bulk metallic glasses. Npj Computational Materials, 2023, 9, .	3.5	10
87	Corrosion-Resistant Coating Based on High-Entropy Alloys. Metals, 2023, 13, 205.	1.0	7
88	A critical examination of robustness and generalizability of machine learning prediction of materials properties. Npj Computational Materials, 2023, 9, .	3.5	16
89	Rational design of high-entropy ceramics based on machine learning – A critical review. Current Opinion in Solid State and Materials Science, 2023, 27, 101057.	5.6	6
90	Machine learning in coastal bridge hydrodynamics: A state-of-the-art review. Applied Ocean Research, 2023, 134, 103511.	1.8	8
91	Graph neural networks predict energetic and mechanical properties for models of solid solution metal alloy phases. Computational Materials Science, 2023, 224, 112141.	1.4	3

#	Article	IF	CITATIONS
92	Active learning sensitivity analysis of $\hat{I}^{3'}(L12)$ precipitate morphology of ternary co-based superalloys. Materialia, 2023, 28, 101760.	1.3	0
93	Knowledge-aware design of high-strength aviation aluminum alloys via machine learning. Journal of Materials Research and Technology, 2023, 24, 346-361.	2.6	10
94	Machine learning assisted advanced battery thermal management system: A state-of-the-art review. Journal of Energy Storage, 2023, 60, 106688.	3.9	12
95	A Stateâ€ofâ€Art Review on Prediction Model for Fatigue Performance of Welded Joints via Dataâ€Driven Method. Advanced Engineering Materials, 2023, 25, .	1.6	3
96	Unsupervised machine learning discovers classes in aluminium alloys. Royal Society Open Science, 2023, 10, .	1.1	5
97	A machine learning study of grain boundary damage in Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 867, 144721.	2.6	1
98	A Critical Review of Machine Learning Techniques on Thermoelectric Materials. Journal of Physical Chemistry Letters, 2023, 14, 1808-1822.	2.1	9
99	Machine Learning for Perovskite Solar Cells and Component Materials: Key Technologies and Prospects. Advanced Functional Materials, 2023, 33, .	7.8	19
100	Machine Learning Interatomic Potentials and Long-Range Physics. Journal of Physical Chemistry A, 2023, 127, 2417-2431.	1.1	19
102	Prediction of phase selection of amorphous alloys and high entropy alloys by artificial neural network. Computational Materials Science, 2023, 223, 112129.	1.4	2
103	Improving machine learning based phase and hardness prediction of high-entropy alloys by using Gaussian noise augmented data. Computational Materials Science, 2023, 223, 112140.	1.4	7
104	Comprehensive <1>ab initio 1 study of effects of alloying elements on generalized stacking fault energies of Ni and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Ni</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mi< td=""><td>0.9</td><td>0</td></mml:mi<></mml:math>	0.9	0
105	Lithium-ion battery thermal management via advanced cooling parameters: State-of-the-art review on application of machine learning with exergy, economic and environmental analysis. Journal of the Taiwan Institute of Chemical Engineers, 2023, 148, 104854.	2.7	3
106	Application of machine learning to guide efficient metal leaching from spent lithium-ion batteries and comprehensively reveal the process parameter influences. Journal of Cleaner Production, 2023, 410, 137188.	4.6	3
107	Representations of Materials for Machine Learning. Annual Review of Materials Research, 2023, 53, 399-426.	4.3	6
108	Advances in machine learning- and artificial intelligence-assisted material design of steels. International Journal of Minerals, Metallurgy and Materials, 2023, 30, 1003-1024.	2.4	14
109	Artificial Intelligence in Physical Sciences: Symbolic Regression Trends and Perspectives. Archives of Computational Methods in Engineering, 2023, 30, 3845-3865.	6.0	13
110	CoSMoR: Decoding decision-making process along continuous composition pathways in machine learning models trained for material properties. Physical Review Materials, 2023, 7, .	0.9	1

#	Article	IF	CITATIONS
129	Microstructure, Microhardness and Tribological Properties of Electrodeposited Ni–Co Based Particle Reinforced Composite Coatings. Materials Horizons, 2023, , 359-395.	0.3	0
130	A Review on Nickel Composite Coatings Deposited by Jet Electrodeposition. Materials Horizons, 2023, , 333-358.	0.3	2
137	Research Study: Data Preprocessing Using Machine Learning for Prediction of Booking Cancellations. Communications in Computer and Information Science, 2023, , 164-182.	0.4	0
147	Machine Learning-Assisted Low-Dimensional Electrocatalysts Design for Hydrogen Evolution Reaction. Nano-Micro Letters, 2023, 15, .	14.4	7
156	Neural Networks for Constitutive Modeling: From Universal Function Approximators to Advanced Models and the Integration of Physics. Archives of Computational Methods in Engineering, 2024, 31, 1097-1127.	6.0	2
169	Artificial intelligence-powered electronic skin. Nature Machine Intelligence, 2023, 5, 1344-1355.	8.3	4
183	Fuzzy Mathematical Reliability Modeling Based on Robustness Analysis. , 2023, , .		0
185	Nucleation and growth of metallic crystals in metallurgy and materials processing. , 2024, , 101-118.		0
192	AFLOW for Alloys. Journal of Phase Equilibria and Diffusion, 0, , .	0.5	O