Seismic detection of the martian core

Science 373, 443-448

DOI: 10.1126/science.abi7730

Citation Report

#	Article	IF	Citations
1	The interior of Mars revealed. Science, 2021, 373, 388-389.	6.0	3
2	Upper mantle structure of Mars from InSight seismic data. Science, 2021, 373, 434-438.	6.0	105
3	Equation of state and sound wave velocities of fayalite at high pressures and temperatures: implications for the seismic properties of the martian mantle. European Journal of Mineralogy, 2021, 33, 519-535.	0.4	2
4	Timing of Martian core formation from models of Hf–W evolution coupled with N-body simulations. Geochimica Et Cosmochimica Acta, 2022, 316, 295-308.	1.6	5
5	Low Velocity Zones in the Martian Upper Mantle Highlighted by Sound Velocity Measurements. Geophysical Research Letters, 2021, 48, e2021GL093977.	1.5	4
6	A seismometer maps Mars's anatomy. Physics Today, 2021, 74, 17-19.	0.3	2
7	Potential Pitfalls in the Analysis and Structural Interpretation of Seismic Data from the Mars <i>InSight</i> Mission. Bulletin of the Seismological Society of America, 2021, 111, 2982-3002.	1.1	42
8	Influence of Thermal Stratification on the Structure and Evolution of the Martian Core. Geophysical Research Letters, 2021, 48, e2021GL095198.	1.5	7
9	Improving Constraints on Planetary Interiors With PPs Receiver Functions. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006983.	1.5	34
10	Effects of Hydrogen on the Phase Relations in Feâ€FeS at Pressures of Marsâ€Sized Bodies. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006942.	1.5	3
11	Atomic transport properties of liquid iron at conditions of planetary cores. Journal of Chemical Physics, 2021, 155, 194505.	1.2	9
14	The Determination of the Rotational State and Interior Structure of Venus with VERITAS. Planetary Science Journal, 2021, 2, 220.	1.5	18
15	The Tharsis mantle source of depleted shergottites revealed by 90 million impact craters. Nature Communications, 2021, 12, 6352.	5.8	31
16	Questions to Heaven. Astronomy and Geophysics, 2021, 62, 6.22-6.25.	0.1	2
17	The Fourâ€Stage Evolution of Martian Mantle Inferred From Numerical Simulation of the Magmatismâ€Mantle Upwelling Feedback. Journal of Geophysical Research E: Planets, 2021, 126, .	1.5	4
18	Dynamos in the Inner Solar System. Annual Review of Earth and Planetary Sciences, 2022, 50, 99-122.	4.6	9
19	Geometry and Segmentation of Cerberus Fossae, Mars: Implications for Marsquake Properties. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	20
20	Early planetary processes and light elements in iron-dominated cores. Acta Geochimica, 0, , .	0.7	4

#	Article	IF	Citations
21	Geophysical and cosmochemical evidence for a volatile-rich Mars. Earth and Planetary Science Letters, 2022, 578, 117330.	1.8	42
22	Molten iron in Earth-like exoplanet cores. Science, 2022, 375, 146-147.	6.0	5
23	The tidal–thermal evolution of the Pluto–Charon system. Icarus, 2022, 376, 114871.	1.1	5
24	Seismology on Mars: An analysis of direct, reflected, and converted seismic body waves with implications for interior structure. Physics of the Earth and Planetary Interiors, 2022, 325, 106851.	0.7	45
25	Reconsideration of the anelasticity parameters of the martian mantle: Preliminary estimates based on the latest geodetic parameters and seismic models. Icarus, 2022, 383, 114917.	1,1	2
26	Stable hexagonal ternary alloy phase in Fe-Si-H at 28.6–42.2 GPa and 3000 K. Physical Review B, 2022, 105,	1.1	6
27	The Detection of Seismicity on Icy Ocean Worlds by Singleâ€Station and Smallâ€Aperture Seismometer Arrays. Earth and Space Science, 2022, 9, .	1.1	3
28	Repetitive marsquakes in Martian upper mantle. Nature Communications, 2022, 13, 1695.	5 . 8	20
29	Highâ€Temperature Equation of State of FeH: Implications for Hydrogen in Earth's Inner Core. Geophysical Research Letters, 2022, 49, .	1.5	16
30	Thermal Properties of Liquid Iron at Conditions of Planetary Cores. Journal of Geophysical Research E: Planets, 0, , .	1.5	3
31	Introduction to the Special Issue on Mars Seismology. Bulletin of the Seismological Society of America, 2021, 111, 2883-2888.	1.1	1
32	Interiors of Earth-Like Planets and Satellites of the Solar System. Surveys in Geophysics, 0, , 1.	2.1	5
33	Boulder Fall Ejecta: Present Day Activity on Mars. Geophysical Research Letters, 2022, 49, .	1.5	5
34	Effect of nickel on the high-pressure phases in FeH. Physical Review B, 2021, 104, .	1.1	5
35	A spectral element approach to computing normal modes. Geophysical Journal International, 2022, 229, 915-932.	1.0	4
36	Mars as a time machine to Precambrian Earth. Journal of the Geological Society, 2022, 179, .	0.9	1
37	The Far Side of Mars: Two Distant Marsquakes Detected by InSight. The Seismic Record, 2022, 2, 88-99.	1.3	29
38	Magma oceans, iron and chromium redox, and the origin of comparatively oxidized planetary mantles. Geochimica Et Cosmochimica Acta, 2022, 328, 221-241.	1.6	14

#	Article	IF	CITATIONS
39	InSight Constraints on the Global Character of the Martian Crust. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	45
40	L'exploration de Mars : état des lieux et nouveaux enjeux. , 2022, , 4-9.	0.1	0
41	Low-Frequency Marsquakes and Where to Find Them: Back Azimuth Determination Using a Polarization Analysis Approach. Bulletin of the Seismological Society of America, 2022, 112, 1787-1805.	1.1	24
42	Water storage capacity of the martian mantle through time. Icarus, 2022, 385, 115113.	1.1	1
43	The Martian Crustal Magnetic Field. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	9
44	The History of Water in Martian Magmas From Thorium Maps. Geophysical Research Letters, 2022, 49, .	1.5	7
45	Highâ€Pressure Melting Curve of FeH: Implications for Eutectic Melting Between Fe and Nonâ€Magnetic FeH. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	7
46	Seismic sources of InSight marsquakes and seismotectonic context of Elysium Planitia, Mars. Tectonophysics, 2022, 837, 229434.	0.9	18
47	Evidence for crustal seismic anisotropy at the InSight lander site. Earth and Planetary Science Letters, 2022, 593, 117654.	1.8	21
48	Constraining the Internal Structures of Venus and Mars from the Gravity Response to Atmospheric Loading. Planetary Science Journal, 2022, 3, 164.	1.5	6
49	GlitchNet: A Glitch Detection and Removal System for SEIS Records Based on Deep Learning. Seismological Research Letters, 2022, 93, 2804-2817.	0.8	5
50	The iron spin transition of deep nitrogen-bearing mineral Fe3N1.2 at high pressure. American Mineralogist, 2022, , .	0.9	0
51	Late Amazonian dike-fed distributed volcanism in the Tharsis volcanic province on Mars. Icarus, 2022, 386, 115151.	1.1	5
52	High-pressure melting experiments of Fe3S and a thermodynamic model of the Fe-S liquids for the Earthâ \in^{TM} s core. Journal of Physics Condensed Matter, 0, , .	0.7	0
53	Achievements and Prospects of Global Broadband Seismographic Networks After 30ÂYears of Continuous Geophysical Observations. Reviews of Geophysics, 2022, 60, .	9.0	22
55	The Effects of Methane Clathrates on the Thermal and Seismic Profile of Titan's Icy Lithosphere. Planetary Science Journal, 2022, 3, 167.	1.5	3
56	A Re-examination of ellipticity corrections for seismic phases. Geophysical Journal International, 0, , .	1.0	0
58	High pressure-temperature phase equilibrium studies on Martian basalts: Implications for the failure of plate tectonics on Mars. Earth and Planetary Science Letters, 2022, 594, 117751.	1.8	2

#	ARTICLE	lF	Citations
59	A primordial atmospheric origin of hydrospheric deuterium enrichment on Mars. Earth and Planetary Science Letters, 2022, 595, 117772.	1.8	4
60	High P-T experimental perspective on Cr isotopic fractionation during planetary core formation. Earth and Planetary Science Letters, 2022, 595, 117701.	1.8	0
63	Tidal insights into rocky and icy bodies: an introduction and overview. Advances in Geophysics, 2022, , 231-320.	1.1	12
64	Seismology in the solar system. Advances in Geophysics, 2022, , 9-64.	1.1	4
65	Interior dynamics and thermal evolution of Mars – a geodynamic perspective. Advances in Geophysics, 2022, , 179-230.	1.1	4
66	Mars from the InSight: Seismology Beyond Earth. Springer Proceedings in Earth and Environmental Sciences, 2022, , 74-89.	0.2	2
67	Planetary core radii: from Plato towards PLATO. Advances in Geophysics, 2022, , 65-178.	1.1	2
68	The marsquake catalogue from InSight, sols O–1011. Physics of the Earth and Planetary Interiors, 2022, 333, 106943.	0.7	29
69	Autocorrelation R ₂ on Mars. Geophysical Research Letters, 2022, 49, .	1.5	4
70	Marsquake Locations and $1\hat{a} \in \mathbb{D}$ Seismic Models for Mars From InSight Data. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	31
71	The theory of compression–shear coupled composite wave propagation in rock. , 2022, 1, 77-86.		4
72	Investigating metallic cores using experiments on the physical properties of liquid iron alloys. Frontiers in Earth Science, 0, 10 , .	0.8	6
73	In Situ Regolith Seismic Velocity Measurement at the InSight Landing Site on Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	6
74	Newly formed craters on Mars located using seismic and acoustic wave data from InSight. Nature Geoscience, 2022, 15, 774-780.	5.4	31
75	Tidal Constraints on the Martian Interior. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	6
76	Scanning for planetary cores with single-receiver intersource correlations. Nature Astronomy, 2022, 6, 1272-1279.	4.2	7
77	Tectonics of Cerberus Fossae unveiled by marsquakes. Nature Astronomy, 2022, 6, 1376-1386.	4.2	22
78	Structural and Electronic Transitions in Liquid FeO Under High Pressure. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	6

#	ARTICLE	IF	CITATIONS
79	Crustal Structure Constraints From the Detection of the SsPp Phase on Mars. Earth and Space Science, 2023, 10 , .	1.1	5
80	Surface waves and crustal structure on Mars. Science, 2022, 378, 417-421.	6.0	36
81	Largest recent impact craters on Mars: Orbital imaging and surface seismic co-investigation. Science, 2022, 378, 412-417.	6.0	43
83	Seismic detection of a deep mantle discontinuity within Mars by InSight. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
84	Deployment and surface operations of the SEIS instrument onboard the InSight mission. Acta Astronautica, 2023, 202, 772-781.	1.7	2
85	A seismic meteor strike on Mars. Science, 2022, 378, 360-361.	6.0	1
86	The Seismicity of Mars Observed by the NASA InSight Mission. European Review, 2022, 30, 639-656.	0.4	1
87	Observation of a Coreâ€Diffracted Pâ€Wave From a Farside Impact With Implications for the Lowerâ€Mantle Structure of Mars. Geophysical Research Letters, 2022, 49, .	1.5	11
88	Early differentiation processes on Mars inferred from silicon isotopes. Geochimica Et Cosmochimica Acta, 2022, 338, 11-23.	1.6	0
89	Using the second-degree coefficients of gravity field models and the new precession rate to constrain the size and density of Martian inner core. Wuli Xuebao/Acta Physica Sinica, 2023, .	0.2	2
90	From science questions to Solar System exploration. , 2023, , 65-175.		0
91	MarsQuakeNet: A More Complete Marsquake Catalog Obtained by Deep Learning Techniques. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	5
92	Strength and seismic anisotropy of textured FeSi at planetary core conditions. Frontiers in Earth Science, $0,10,1$	0.8	0
93	Fe isotope fractionation caused by phase transition of FeS and implications for Fe isotope signatures of the mantle and core. Geochimica Et Cosmochimica Acta, 2023, 340, 38-50.	1.6	1
94	Investigating the feasibility of an impact-induced Martian Dichotomy. Icarus, 2023, 392, 115395.	1.1	3
95	å㜰ç£ï¼šä»Žåœ°ç∮å^°ç«æ⁻Ÿ. Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - Journal of China Univ Geosciences, 2022, 47, 3736.	versity of	O
96	A Positive Feedback Between Crustal Thickness and Melt Extraction for the Origin of the Martian Dichotomy. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	3
97	The InSight HP3 Penetrator (Mole) on Mars: Soil Properties Derived from the Penetration Attempts and Related Activities. Space Science Reviews, 2022, 218, .	3.7	12

#	ARTICLE	IF	CITATIONS
98	Constraints on the martian crust away from the InSight landing site. Nature Communications, 2022, $13, \ldots$	5.8	5
99	Crustal Anisotropy in the Martian Lowlands From Surface Waves. Geophysical Research Letters, 2022, 49, .	1.5	18
100	Structure Along the Martian Dichotomy Constrained by Rayleigh and Love Waves and Their Overtones. Geophysical Research Letters, 2023, 50, .	1.5	13
101	S1222aâ€"The Largest Marsquake Detected by InSight. Geophysical Research Letters, 2023, 50, .	1.5	24
102	A "Floatilla―of Airborne Seismometers for Venus. Geophysical Research Letters, 2023, 50, .	1.5	4
103	Different Martian Crustal Seismic Velocities Across the Dichotomy Boundary From Multiâ€Orbiting Surface Waves. Geophysical Research Letters, 2023, 50, .	1.5	12
104	Constraints on the lunar core viscosity from tidal deformation. Icarus, 2023, 394, 115426.	1.1	3
105	Anatomy of rocky planets formed by rapid pebble accretion. Astronomy and Astrophysics, 2023, 671, A74.	2.1	8
106	Machine learning and marsquakes: a tool to predict atmospheric-seismic noise for the NASA InSight mission. Geophysical Journal International, 2023, 233, 978-998.	1.0	2
107	An Ancient Martian Dynamo Driven by Hemispheric Heating: Effect of Thermal Boundary Conditions. Planetary Science Journal, 2023, 4, 11.	1.5	2
108	The history of global strain and geodynamics on Mars. Icarus, 2023, 395, 115476.	1.1	4
109	China's deep space exploration into Martian and lunar deep interior. Chinese Science Bulletin, 2023, 68, 573-575.	0.4	0
110	Synergies Between Venus & Synergies Between	3.7	8
111	Mars Seismology. Annual Review of Earth and Planetary Sciences, 2023, 51, 643-670.	4.6	13
113	Thermoelastic Properties of Liquid Feâ€Rich Alloys Under Martian Core Conditions. Geophysical Research Letters, 2023, 50, .	1.5	2
114	Serpentinisation is required for the magnetisation of the Martian crust. Research in Astronomy and Astrophysics, 0 , , .	0.7	0
115	Investigation of Martian Regional Crustal Structure Near the Dichotomy Using S1222a Surfaceâ€Wave Group Velocities. Geophysical Research Letters, 2023, 50, .	1.5	5
116	Earth shaped by primordial H2 atmospheres. Nature, 2023, 616, 306-311.	13.7	16

CITATION REPORT

#	Article	IF	CITATIONS
117	Model Variations of the Crust Thickness of Mars and Venus Using the Love Numbers Method. Solar System Research, 2023, 57, 25-34.	0.3	0
118	Using Wind Dispersion Effects During the InSight Tether Burial Activities to Better Constrain the Regolith Grain Size Distribution. Journal of Geophysical Research E: Planets, 2023, 128, .	1.5	3
119	Mineralogy of Planetary Cores. Springer Mineralogy, 2023, , 207-247.	0.4	0
152	Deep Mars is surprisingly soft. Nature, 2023, 622, 699-700.	13.7	0