Land subsidence: A global challenge

Science of the Total Environment 778, 146193

DOI: 10.1016/j.scitotenv.2021.146193

Citation Report

#	Article	IF	CITATIONS
1	Application of Gray-Markov Model to Land Subsidence Monitoring of a Mining Area. IEEE Access, 2021, 9, 118716-118725.	4.2	6
2	Land Subsidence Estimation for Aquifer Drainage Induced by Underground Mining. Energies, 2021, 14, 4658.	3.1	14
3	Exploring the multiple land degradation pathways across the planet. Earth-Science Reviews, 2021, 220, 103689.	9.1	104
4	Projecting the effects of land subsidence and sea level rise on storm surge flooding in Coastal North Carolina. Scientific Reports, 2021, 11, 21679.	3.3	15
5	Accuracy of Sentinel-1 PSI and SBAS InSAR Displacement Velocities against GNSS and Geodetic Leveling Monitoring Data. Remote Sensing, 2021, 13, 4800.	4.0	38
6	Urban growth and land subsidence: Multi-decadal investigation using human settlement data and satellite InSAR in Morelia, Mexico. Science of the Total Environment, 2022, 811, 152211.	8.0	27
7	Progress or Regress? A Systematic Review on Two Decades of Monitoring and Addressing Land Subsidence Hazards in Semarang City. Sustainability, 2021, 13, 13755.	3.2	5
8	The effect of policy incoherence on the emergence of groundwater-related subsidence phenomena: a case study from Iran. Water International, 2022, 47, 181-204.	1.0	7
9	Apps for Smart Groundwater Monitoring and Assessments: A Case Study of Regideso Catchment in Kimbanseke. Applied Sciences (Switzerland), 2022, 12, 3243.	2.5	0
10	Efficient, parallelized global optimization of groundwater pumping in a regional aquifer with land subsidence constraints. Journal of Environmental Management, 2022, 310, 114753.	7.8	7
11	Hydrochemical and isotopic characterization of the Region CarbonÃfera aquifer: An example of hydrogeological systems in the semi-arid climates of northeastern Mexico. Applied Geochemistry, 2022, 141, 105307.	3.0	1
12	Fluid Production Dataset for the Assessment of the Anthropogenic Subsidence in the Po Plain Area (Northern Italy). Resources, 2022, 11, 53.	3.5	2
13	Shrinking aquifers and land subsidence in Iran. Science, 2022, 376, 1279-1279.	12.6	4
14	Groundwater Rise and Associated Flooding in Coastal Settlements Due To Seaâ€Level Rise: A Review of Processes and Methods. Earth's Future, 2022, 10, .	6.3	18
15	Monitoring of geohazards using differential interferometric satellite aperture radar in Australia. International Journal of Remote Sensing, 2022, 43, 3769-3802.	2.9	5
16	Does flood protection affect urban expansion in the coastal flood-prone area of China?. Frontiers in Earth Science, 0, 10, .	1.8	O
17	The influence of groundwater levels on land subsidence in Karaman (Turkey) using the PS-InSAR technique. Advances in Space Research, 2022, 70, 3568-3581.	2.6	8
18	Dewatering-Induced Stratified Settlement around Deep Excavation: Physical Model Study. Applied Sciences (Switzerland), 2022, 12, 8929.	2.5	5

#	ARTICLE	IF	Citations
19	Surface Deformation Mechanism Analysis in Shanghai Areas Based on TS-InSAR Technology. Remote Sensing, 2022, 14, 4368.	4.0	10
20	Effect of bedrock ridges on formation of earth fissures due to land subsidence. Bulletin of Engineering Geology and the Environment, 2022, 81, .	3.5	0
21	Impact of Storm Surge on the Yellow River Delta: Simulation and Analysis. Water (Switzerland), 2022, 14, 3439.	2.7	1
22	Experimental Study on Prevention and Control of Ground Fissures in Coal Mining Subsidence in Huaibei Plain of China. Sustainability, 2022, 14, 12932.	3.2	0
23	Evaluating Capability of Green Stormwater Infrastructure on Large Properties toward Adaptive Flood Mitigation: The HLCA+C Methodology. Land, 2022, 11, 1765.	2.9	1
24	Land subsidence susceptibility assessment using advanced artificial intelligence models. Geocarto International, 2024, 37, 18067-18093.	3.5	3
25	Governing spillovers of agricultural land use through voluntary sustainability standards: A coverage analysis of sustainability requirements. Earth System Governance, 2022, 14, 100158.	3.4	1
26	Land subsidence caused by seasonal groundwater level fluctuations in Kawajima (Japan) and one-dimensional numerical modeling with an evolutionary algorithm. Hydrogeology Journal, 2023, 31, 147-165.	2.1	4
27	Land Subsidence Time Series Prediction Method Based on LSTM-AMSGD. Journal of Physics: Conference Series, 2022, 2404, 012035.	0.4	1
28	Assessment and delineation of potential groundwater recharge zones in areas prone to saltwater intrusion hazard: a case from Central Iran. Environmental Monitoring and Assessment, 2023, 195, .	2.7	6
29	Experimental study on consolidation characteristics of deep clayey soil in a typical subsidence area of the North China Plain. Frontiers in Environmental Science, 0, 10, .	3.3	0
30	An integrated approach for risk assessment of land subsidence in Xi'an, China using optical and radar satellite images. Engineering Geology, 2023, 314, 106983.	6.3	7
31	Land Subsidence Characteristics and Numerical Analysis of the Impact on Major Infrastructure in Ningbo, China. Sustainability, 2023, 15, 543.	3.2	2
32	Time Series Land Subsidence Analysis Based on Persistent Scattered Interferometric Synthetic Aperture Radar Method of Jakarta City Region Using Terra SAR X Spaceborne Data. , 2022, , .		1
33	A Numerical Assessment and Prediction for Meeting the Demand for Agricultural Water and Sustainable Development in Irrigation Area. Remote Sensing, 2023, 15, 571.	4.0	1
34	Numerical investigation of processes, features, and control of land subsidence caused by groundwater extraction and coal mining: a case study from eastern China. Environmental Earth Sciences, 2023, 82, .	2.7	7
35	The Importance of Groundwater Sustainability. , 2022, , 1-20.		0
36	InSAR-derived surface deformation of Chaoshan Plain, China: Exploring the role of human activities in the evolution of coastal landscapes. Geomorphology, 2023, 426, 108606.	2.6	6

#	Article	IF	CITATIONS
37	Impact of Modern Irrigation Methods on Groundwater Storage and Land Subsidence in High-water Stress Regions. Water Resources Management, 2023, 37, 1827-1840.	3.9	5
38	An overview of the methods for evaluating the resilience of groundwater systems. MethodsX, 2023, 10, 102134.	1.6	7
39	Data, knowledge, and modeling challenges for science-informed management of river deltas. One Earth, 2023, 6, 216-235.	6.8	1
40	Land Subsidence Susceptibility Mapping Using Interferometric Synthetic Aperture Radar (InSAR) and Machine Learning Models in a Semiarid Region of Iran. Land, 2023, 12, 843.	2.9	6
41	The Issue of Land Subsidence in Coastal and Alluvial Plains: A Bibliometric Review. Remote Sensing, 2023, 15, 2409.	4.0	1
42	Drawdownâ€induced consolidation of aquifer systems considering waterâ€ŧable decline. International Journal for Numerical and Analytical Methods in Geomechanics, 2023, 47, 2049-2063.	3.3	1
43	Assessing the vulnerability of Iran to subsidence hazard using a hierarchical FUCOM-GIS framework. Remote Sensing Applications: Society and Environment, 2023, 31, 100989.	1.5	0
44	Multi-sensor InSAR time series fusion for long-term land subsidence monitoring. Geo-Spatial Information Science, 0, , 1-17.	5.3	5
45	Coastal vulnerability assessment for the megacity of Jakarta, Indonesia under enhanced sea-level rise and land subsidence., 2023,, 433-450.		0
46	Research and Evaluation on Dynamic Maintenance of an Elevation Datum Based on CORS Network Deformation. Remote Sensing, 2023, 15, 2935.	4.0	0
47	The prospects of integrated use of high-precision geometric and GNSS leveling for studying neotectonic processes at geodynamic polygons. Ukrainian Journal of Applied Economics, 2023, 8, 180-186.	0.1	0
48	Land Subsidence in a Coastal City Based on SBAS-InSAR Monitoring: A Case Study of Zhuhai, China. Remote Sensing, 2023, 15, 2424.	4.0	5
49	Future socioeconomic development along the West African coast forms a larger hazard than sea level rise. Communications Earth & Environment, 2023, 4, .	6.8	3
50	Mapping the environmental impacts from land subsidence hazard in Pekalongan City and its correlation with the subsurface condition. IOP Conference Series: Earth and Environmental Science, 2023, 1201, 012044.	0.3	1
52	Effects of Sky View Factor on Thermal Environment in Different Local Climate Zoning Building Scenarios—A Case Study of Beijing, China. Buildings, 2023, 13, 1882.	3.1	0
53	Scrutinization of land subsidence rate using a supportive predictive model: Incorporating radar interferometry and ensemble soft-computing. Journal of Environmental Management, 2023, 345, 118685.	7.8	1
54	Experimental investigation on the deformation coordination between an optical fibre and backfilling sand of borehole. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 0, , 1-27.	1.6	0
55	Land subsidence simulation based on Extremely Randomized Trees combined with Monte Carlo algorithm. Computers and Geosciences, 2023, 178, 105415.	4.2	1

#	Article	IF	CITATIONS
56	PS-InSAR data, key to understanding and quantifying the hydromechanical processes underlying the compaction of aquifer systems. Case of West- and East-Flanders, Belgium. Journal of Hydrology, 2023, 624, 129980.	5.4	1
57	Geological Disaster: An Overview. , 2023, , 1-23.		0
58	Development and application of multi-field coupled high-pressure triaxial apparatus for soil. , 2023, 11, 308-316.		0
59	Predictive Modelling of Land Subsidence Due to Groundwater Level Decline in Gedebage District, Bandung, Indonesia. IOP Conference Series: Earth and Environmental Science, 2023, 1227, 012016.	0.3	0
60	A spatiotemporal inference model for hazard chains based on weighted dynamic Bayesian networks for ground subsidence in mining areas. Spatial Statistics, 2023, 58, 100782.	1.9	0
61	Hydrogeological characteristics and water chemistry in a coastal aquifer of Korea: implications for land subsidence. Environmental Monitoring and Assessment, 2023, 195, .	2.7	0
62	Integrating multi-source data to assess land subsidence sensitivity and management policies. Environmental Impact Assessment Review, 2024, 104, 107315.	9.2	0
63	Groundwater Storage Variations in the Main Karoo Aquifer Estimated Using GRACE and GPS. Water (Switzerland), 2023, 15, 3675.	2.7	0
64	Understanding spatially nonstationary effects of natural and human-induced factors on land subsidence based on multi-temporal InSAR and multi-source geospatial data: a case study in the Guangdong-Hong Kong-Macao Greater Bay Area. International Journal of Digital Earth, 2023, 16, 4404-4427.	3.9	0
66	A Fusion of Geothermal and InSAR Data with Machine Learning for Enhanced Deformation Forecasting at the Geysers. Land, 2023, 12, 1977.	2.9	0
68	Integrated satellite imagery and electrical resistivity analysis of underground mine-induced subsidence and associated risk assessment of Barapukuria coal mine, Bangladesh. Environmental Earth Sciences, 2023, 82, .	2.7	0
69	Caracterización de aguas subterráneas someras y clasificación de hidrogramas en la ciudad costera de Ōtautahi/Christchurch, Nueva Zelanda. Hydrogeology Journal, 2024, 32, 577-600.	2.1	2
70	Modeling the optimal management of land subsidence due to aquifers overexploitation. Journal of Environmental Management, 2024, 349, 119333.	7.8	1
71	Land subsidence susceptibility mapping in urban settlements using time-series PS-InSAR and random forest model. Gondwana Research, 2024, 125, 406-424.	6.0	2
72	A Persistent Subsidence in the Jakarta Metropolitan Region from 2017 to 2022, with CPT-InSAR Using Sentinel-1 Data. , 2023, , .		0
73	Sentinel-1 InSAR-derived land subsidence assessment along the Texas Gulf Coast. International Journal of Applied Earth Observation and Geoinformation, 2023, 125, 103544.	1.9	1
74	Monitoring of groundwater generated land subsidence by persistent scatterer analysis $\hat{a} \in A$ case study of the Kolkata Municipal Corporation (KMC), West Bengal. Journal of Earth System Science, 2023, 132, .	1.3	0
75	Ground Subsidence. , 2023, , 177-190.		0

#	Article	IF	CITATIONS
76	Harnessing Soil Ecosystem Services for Achieving Soil-Based SDGs in Indian Himalaya., 2023, , 147-169.		0
77	Land Subsidence and Groundwater Seepage. Environmental Earth Sciences, 2023, , 45-74.	0.2	0
78	Long-term spatiotemporal evolution of land subsidence in the urban area of Bologna, Italy. Bulletin of Engineering Geology and the Environment, 2024, 83, .	3.5	1
79	Ground subsidence risk assessment method using PS-InSAR and LightGBM: a case study of Shanghai metro network. International Journal of Digital Earth, 2024, 17, .	3.9	0
80	Analytical solution to quickly assess ground displacement for a pressurized or depleted deep reservoir intersected by a fault in a half space. International Journal of Rock Mechanics and Minings Sciences, 2024, 174, 105641.	5.8	0
81	Assessing surface deformation in the Chengdu Plain: A comprehensive time-series InSAR study of urban development and natural environmental factors. Advances in Space Research, 2024, 73, 1780-1798.	2.6	0
82	Numerical modeling of groundwater system with tunnel construction in an urban area of Korea: implications for land subsidence and mitigation measures. Environmental Earth Sciences, 2024, 83, .	2.7	0
83	Estimation of land subsidence using coupled particle swarm optimization and genetic algorithm: The case of Damghan aquifer. Water Science and Technology: Water Supply, 2024, 24, 416-435.	2.1	0
84	Machine learning-based techniques for land subsidence simulation in an urban area. Journal of Environmental Management, 2024, 352, 120078.	7.8	2
85	Sentinel-1 Based Land Deformation Mapping in Bali Island Indonesia Using Persistent Scatterer Interferometry SAR. , 2023, , .		0
86	Unveiling the driving factors of urban land subsidence in Beijing, China. Science of the Total Environment, 2024, 916, 170134.	8.0	0
87	Remote Data for Mapping and Monitoring Coastal Phenomena and Parameters: A Systematic Review. Remote Sensing, 2024, 16, 446.	4.0	0
88	InSAR time series analysis of natural and anthropogenic coastal plain subsidence: A case of Hangjiahu plain. Geodesy and Geodynamics, 2024, , .	2.2	0
89	Surface Deformation and Seismicity Linked to Fluid Injection in the Raton Basin. Ground Water, 0, , .	1.3	0
90	Land subsidence susceptibility mapping: a new approach to improve decision stump classification (DSC) performance and combine it with four machine learning algorithms. Environmental Science and Pollution Research, 2024, 31, 15443-15466.	5.3	1
91	Optimized GNSS Cal/Val Site Selection for Expanding InSAR Viability in Areas With Low Phase Coherence: A Case Study for Southern Louisiana. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17, 4875-4889.	4.9	0
92	Flood Detection with SAR: A Review of Techniques and Datasets. Remote Sensing, 2024, 16, 656.	4.0	0
93	Declining groundwater and its impacts along Ganga riverfronts using combined Sentinel-1, GRACE, water levels, and rainfall data. Science of the Total Environment, 2024, 920, 170932.	8.0	1

CITATION REPORT

#	Article	IF	CITATIONS
94	Land subsidence in Beijing: response to the joint influence of the South-to-North Water Diversion Project and ecological water replenishment, observed by satellite radar interferometry. GIScience and Remote Sensing, 2024, 61, .	5.9	0
95	Unveiling the Global Extent of Land Subsidence: The Sinking Crisis. Geophysical Research Letters, 2024, 51, .	4.0	0
97	Estimating urban land subsidence with satellite data using a spatially multiscale geographically weighted regression approach. Measurement: Journal of the International Measurement Confederation, 2024, 228, 114387.	5.0	0
98	Evaluating Machine Learning-Based Approaches in Land Subsidence Susceptibility Mapping. Land, 2024, 13, 322.	2.9	O
99	Earth fissure susceptibility mapping: Application of random subspaceâ€based novel ensemble approaches. Geological Journal, 2024, 59, 1384-1400.	1.3	0
100	Groundwater sustainability in the face of urban expansion: A case study on Kolkata's ongoing challenge. Groundwater for Sustainable Development, 2024, 25, 101162.	4.6	0
101	Effective Hydraulic Head Control Rule Identification for Unrecoverable Subsidence Mitigation. Water Resources Management, 0, , .	3.9	0
102	Arsenic and other geogenic contaminants in global groundwater. Nature Reviews Earth & Environment, 2024, 5, 312-328.	29.7	0