Nanoparticle synthesis assisted by machine learning

Nature Reviews Materials 6, 701-716 DOI: 10.1038/s41578-021-00337-5

Citation Report

#	Article	IF	CITATIONS
1	Selfâ€Ðriving Platform for Metal Nanoparticle Synthesis: Combining Microfluidics and Machine Learning. Advanced Functional Materials, 2021, 31, 2106725.	14.9	57
2	New trends in nonconventional carbon dot synthesis. Trends in Chemistry, 2021, 3, 943-953.	8.5	28
3	Rapid synthesis of supported single metal nanoparticles and effective removal of stabilizing ligands. Journal of Materials Chemistry A, 2021, 9, 24283-24289.	10.3	7
4	Automated COVID-19 and Heart Failure Detection Using DNA Pattern Technique with Cough Sounds. Diagnostics, 2021, 11, 1962.	2.6	18
5	Machine learning for next-generation nanotechnology in healthcare. Matter, 2021, 4, 3078-3080.	10.0	5
6	Bright Future of Gold Nanoclusters in Theranostics. ACS Applied Materials & Interfaces, 2021, 13, 49581-49588.	8.0	35
7	Machine learning and materials informatics approaches in the analysis of physical properties of carbon nanotubes: A review. Computational Materials Science, 2022, 201, 110939.	3.0	41
8	Machine learningâ€based analysis and prediction of the interfacial corrosion processes of copper cathode plates during the electrolytic production of copper powders. Materials and Corrosion - Werkstoffe Und Korrosion, 2022, 73, 811-825.	1.5	0
9	Graphene Quantum Dots with Improved Fluorescence Activity via Machine Learning: Implications for Fluorescence Monitoring. ACS Applied Nano Materials, 2022, 5, 2728-2737.	5.0	7
10	Computational modelling and microfluidics as emerging approaches to synthesis of silver nanoparticles – A review. Chemical Engineering Journal, 2022, 436, 135178.	12.7	25
11	Regulating the Tip Effect on Singleâ€Atom and Cluster Catalysts: Forming Reversible Oxygen Species with High Efficiency in Chlorine Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	76
12	Regulating the Tip Effect on Singleâ€Atom and Cluster Catalysts: Forming Reversible Oxygen Species with High Efficiency in Chlorine Evolution Reaction. Angewandte Chemie, 2022, 134, .	2.0	25
13	Recent advances in biomaterial-boosted adoptive cell therapy. Chemical Society Reviews, 2022, 51, 1766-1794.	38.1	29
14	Smart materials: rational design in biosystems via artificial intelligence. Trends in Biotechnology, 2022, 40, 987-1003.	9.3	26
15	Autonomous Nanocrystal Doping by Selfâ€Driving Fluidic Microâ€Processors. Advanced Intelligent Systems, 2022, 4, .	6.1	16
16	Autonomous high-throughput computations in catalysis. Chem Catalysis, 2022, 2, 940-956.	6.1	14
17	Merging data curation and machine learning to improve nanomedicines. Advanced Drug Delivery Reviews, 2022, 183, 114172.	13.7	34
18	Artificial intelligence to bring nanomedicine to life. Advanced Drug Delivery Reviews, 2022, 184, 114194.	13.7	39

#	Article	IF	CITATIONS
19	Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coordination Chemistry Reviews, 2022, 460, 214486.	18.8	39
20	Controlling Nucleation Pathways in Zeolite Crystallization: Seeding Conceptual Methodologies for Advanced Materials Design. Journal of the American Chemical Society, 2021, 143, 21446-21460.	13.7	56
21	Sizeâ€Controllable Euâ€MOFs through Machine Learning Technology: Application for High Sensitive Ions and Smallâ€Molecular Identification. Small Methods, 2022, , 2200208.	8.6	5
22	Materials Data toward Machine Learning: Advances and Challenges. Journal of Physical Chemistry Letters, 2022, 13, 3965-3977.	4.6	12
23	Prediction and Design of Nanozymes using Explainable Machine Learning. Advanced Materials, 2022, 34, e2201736.	21.0	42
24	Trends in Droplet Microfluidics: From Droplet Generation to Biomedical Applications. Langmuir, 2022, 38, 6233-6248.	3.5	30
25	Roadmap to next-generation cancer vaccines. Journal of Controlled Release, 2022, 347, 308-313.	9.9	7
26	Multivariate analysis of peptide-driven nucleation and growth of Au nanoparticles. , 2022, 1, 427-439.		5
27	High-Throughput Computational Discovery and Intelligent Design of Two-Dimensional Functional Materials for Various Applications. Accounts of Materials Research, 2022, 3, 572-583.	11.7	21
28	Engineered 2D materials for optical bioimaging and path toward therapy and tissue engineering. Journal of Materials Research, 2022, 37, 1689-1713.	2.6	12
29	Emerging Chemical Sensing Technologies: Recent Advances and Future Trends. Surfaces, 2022, 5, 318-320.	2.3	0
30	Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis?. ACS Applied Bio Materials, 2022, 5, 2507-2535.	4.6	4
31	Enhanced Aggregation-Induced Emission Activity of Metal–Organic Frameworks by Using Machine Learning Technology. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	0
32	Electron-phonon coupling strength from <i>ab initio</i> frozen-phonon approach. Physical Review Materials, 2022, 6, .	2.4	10
33	Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chemical Reviews, 2022, 122, 13478-13515.	47.7	120
34	The application of principal components analysis for the comparison of chemical and physical properties among activated carbon models. Materials Letters, 2022, 325, 132864.	2.6	9
35	Microwave synthesis of upconverting nanoparticles with bis(2-ethylhexyl) adipate. RSC Advances, 2022, 12, 23026-23038.	3.6	2
36	Cascade integration of nonlinear phenomena exhibited by monometallic nanoparticles. Journal of Physics: Conference Series, 2022, 2313, 012016.	0.4	0

#	Article	IF	CITATIONS
37	Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture. Advanced Functional Materials, 2022, 32, .	14.9	32
38	Intelligent control of nanoparticle synthesis on microfluidic chips with machine learning. NPG Asia Materials, 2022, 14, .	7.9	24
39	Slotted metallic nanospheres with both electric and magnetic resonances for solar thermal conversion. Renewable Energy, 2022, 197, 79-88.	8.9	9
40	Nanocomposites based on doped ZnO nanoparticles for antibacterial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129871.	4.7	10
41	Factors affecting the growth formation of nanostructures and their impact on electrode materials: A systematic review. Materials Today Physics, 2022, 27, 100844.	6.0	28
42	Accelerating colloidal quantum dot innovation with algorithms and automation. Materials Advances, 2022, 3, 6950-6967.	5.4	7
43	Emerging nanosensor platforms and machine learning strategies toward rapid, point-of-need small-molecule metabolite detection and monitoring. Chemical Science, 2022, 13, 11009-11029.	7.4	8
45	Exploiting nano-iron binding with aptamers for the specific sensing of cancer biomarkers in the terahertz frequencies. , 2022, , .		1
46	Gökkuşağı alabalığı gonad hücre hattı-2 (RTG-2) üzerinde Eruca vesicaria'dan elde edilen gür nanoparçacıkların sitotoksisitesi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	nüş 0.0	0
47	Biogenic Synthesis of Copper-Based Nanomaterials Using Plant Extracts and Their Applications: Current and Future Directions. Nanomaterials, 2022, 12, 3312.	4.1	14
48	Where Nanosensors Meet Machine Learning: Prospects and Challenges in Detecting Disease X. ACS Nano, 2022, 16, 13279-13293.	14.6	16
49	Machine Learning Assisted Graphdiyne-Based Nanozyme Discovery. , 2022, 4, 2134-2142.		12
50	An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials. Science Advances, 2022, 8, .	10.3	41
51	Machine Learning-Aided Design of Gold Core–Shell Nanocatalysts toward Enhanced and Selective Photooxygenation. ACS Applied Materials & Interfaces, 2022, 14, 46471-46480.	8.0	4
52	The optical properties of dumbbell-type nanorods for solar photothermal conversion. Physical Chemistry Chemical Physics, 2022, 24, 27949-27956.	2.8	6
53	Creating ground truth for nanocrystal morphology: a fully automated pipeline for unbiased transmission electron microscopy analysis. Nanoscale, 2022, 14, 15327-15339.	5.6	1
54	Machine learning-driven advanced development of carbon-based luminescent nanomaterials. Journal of Materials Chemistry C, 2022, 10, 17431-17450.	5.5	6
55	Machine Learning Guided Discovery of Superoxide Dismutase Nanozymes for Androgenetic Alopecia. Nano Letters, 2022, 22, 8592-8600.	9.1	21

#	Article	IF	CITATIONS
56	Nanomaterial and Interface Advances in Immunoassay Biosensors. Journal of Physical Chemistry C, 2022, 126, 17804-17815.	3.1	6
57	Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chemical Reviews, 2022, 122, 17397-17478.	47.7	23
58	A Nanomedicine Structure–Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano, 2022, 16, 17497-17551.	14.6	10
59	Textâ€based representations with interpretable machine learning reveal structure–property relationships of polybenzenoid hydrocarbons. Journal of Physical Organic Chemistry, 2023, 36, .	1.9	6
60	Machine learning methods for aerosol synthesis of single-walled carbon nanotubes. Carbon, 2023, 202, 76-82.	10.3	6
61	Biomass-based materials for solar-powered seawater evaporation. Science of the Total Environment, 2023, 858, 160003.	8.0	13
62	Fluorescent Multifunctional Organic Nanoparticles for Drug Delivery and Bioimaging: A Tutorial Review. Pharmaceutics, 2022, 14, 2498.	4.5	7
63	Development of coarse-grained models of liquid water by deep neural networks for simulating acoustic vibrations of nanostructures in aqueous environment. International Journal for Multiscale Computational Engineering, 2022, , .	1.2	0
64	Machine learning utilized for the development of proton exchange membrane electrolyzers. Journal of Power Sources, 2023, 556, 232389.	7.8	6
65	The Application of Artificial Intelligence in Magnetic Hyperthermia Based Research. Future Internet, 2022, 14, 356.	3.8	4
66	Photonic Crystalâ€Integrated Optoelectronic Devices with Nakedâ€Eye Visualization and Digital Readout for Highâ€Resolution Detection of Ultratrace Analytes. Advanced Materials, 2023, 35, .	21.0	4
67	Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols. Journal of the American Chemical Society, 2022, 144, 22337-22351.	13.7	26
68	Recent Development of Fluorescent Nanodiamonds for Optical Biosensing and Disease Diagnosis. Biosensors, 2022, 12, 1181.	4.7	19
69	Experimental and Computational Approaches to Sulfonated Poly(arylene ether sulfone) Synthesis Using Different Halogen Atoms at the Reactive Site. Membranes, 2022, 12, 1286.	3.0	0
70	Re-envisioning the design of nanomedicines: harnessing automation and artificial intelligence. Expert Opinion on Drug Delivery, 2023, 20, 241-257.	5.0	6
71	Oriented Assembled Prussian Blue Analogue Framework for Confined Catalytic Decomposition of Ammonium Perchlorate. Small, 2023, 19, .	10.0	8
72	Machine Learning Analysis of Reaction Parameters in UV-Mediated Synthesis of Gold Nanoparticles. Journal of Physical Chemistry C, 2023, 127, 1097-1108.	3.1	6
73	Machine and quantum learning for diamond-based quantum applications. Materials for Quantum Technology, 2023, 3, 012001.	3.1	2

ARTICLE IF CITATIONS # Validating and Utilizing Machine Learning Methods to Investigate the Impacts of Synthesis Parameters in Gold Nanoparticle Synthesis. Journal of Physical Chemistry C, 2023, 127, 1117-1125. 3.15 74 Machineâ€Learningâ€Assisted Nanozyme Design: Lessons from Materials and Engineered Enzymes. Advanced 21.0 14 Materials, 2024, 36, . Lattice Oxygen Activation for Enhanced Electrochemical Oxygen Evolution. Journal of Physical 76 3.1 6 Chemistry C, 2023, 127, 2147-2159. The rise of self-driving labs in chemical and materials sciences. , 2023, 2, 483-492. Machine learning for nanoplasmonics. Nature Nanotechnology, 2023, 18, 111-123. 78 31.5 15 Out-of-oven rapid synthesis of entropy stabilized oxides using radio frequency heating. Journal of Materials Research and Technology, 2023, 24, 1150-1161. 79 5.8 AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic 80 12.8 32 lab guided by reinforcement learning. Nature Communications, 2023, 14, . Ytterbium-Doped Lead–Halide Perovskite Nanocrystals: Synthesis, Near-Infrared Emission, and Open-Source Machine Learning Model for Prediction of Optical Properties. Nanomaterials, 2023, 13, 4.1 744. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale 82 16 simulation methods., 2023, 18, . Closed-loop optimization of nanoparticle synthesis enabled by robotics and machine learning. Matter, 10.0 2023, 6, 677-690. Review of roll-to-roll fabrication techniques for colloidal quantum dot solar cells. Journal of 2 84 3.6 Electronic Science and Technology, 2023, 21, 100189. In silico approaches for polymeric nanocomposites., 2023, 503-531. Retrosynthesis from transforms to predictive sustainable chemistry and nanotechnology: a brief 86 9.0 3 tutorial review. Green Chemistry, 2023, 25, 2971-2991. Carbon Dots for Electroluminescent Lightâ€Emitting Diodes: Recent Progress and Future Prospects. 87 21.0 Advanced Materials, 2023, 35, . Combinatorial synthesis for Al-driven materials discovery., 2023, 2, 493-504. 88 11 Machine Learning Enhanced Optical Microscopy for the Rapid Morphology Characterization of Silver Nanoparticles. AČS Applied Materials & amp; Interfaces, 2023, 15, 18244-18251. Knowledge-Based Design of Multifunctional Polymeric Nanoparticles. Handbook of Experimental 90 1.8 0 Pharmacology, 2023, ,. Artificial Scanning Electron Microscopy Images Created by Generative Adversarial Networks from 6.1 Simulated Particle Assemblies. Advanced Intelligent Systems, 2023, 5, .

#	Article	IF	Citations
92	Artificial Intelligence in Material Engineering: A Review on Applications of Artificial Intelligence in Material Engineering. Advanced Engineering Materials, 2023, 25, .	3.5	5
93	Nanomaterial-based contrast agents. Nature Reviews Methods Primers, 2023, 3, .	21.2	9
94	Lithium-ion battery thermal management via advanced cooling parameters: State-of-the-art review on application of machine learning with exergy, economic and environmental analysis. Journal of the Taiwan Institute of Chemical Engineers, 2023, 148, 104854.	5.3	3
95	Demonstration of graphene-assisted tunable surface plasmonic resonance sensor using machine learning model. Applied Physics A: Materials Science and Processing, 2023, 129, .	2.3	2
96	The role of machine learning in carbon neutrality: Catalyst property prediction, design, and synthesis for carbon dioxide reduction. EScience, 2023, 3, 100136.	41.6	5
97	Machine Learningâ€Assisted Clustering of Nanoparticleâ€Binding Peptides and Prediction of Their Properties. Advanced Theory and Simulations, 0, , .	2.8	1
98	Recent advances in atomically precise metal nanoclusters for electrocatalytic applications. Inorganic Chemistry Frontiers, 2023, 10, 3995-4007.	6.0	5
99	Achieving Digital Catalysis: Strategies for Data Acquisition, Storage and Use. Angewandte Chemie, 2023, 135, .	2.0	1
100	Achieving Digital Catalysis: Strategies for Data Acquisition, Storage and Use. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
101	Al for Nanomaterials Development in Clean Energy and Carbon Capture, Utilization and Storage (CCUS). ACS Nano, 2023, 17, 9763-9792.	14.6	5
102	Silicon nanoparticles: Comprehensive review on biogenic synthesis and applications in agriculture. Environmental Research, 2023, 232, 116292.	7.5	11
103	Comparison of Derivative-Free Optimization: Energy Optimization of Steam Methane Reforming Process. International Journal of Energy Research, 2023, 2023, 1-20.	4.5	1
104	Equivariant Graph-Representation-Based Actor–Critic Reinforcement Learning for Nanoparticle Design. Journal of Chemical Information and Modeling, 2023, 63, 3731-3741.	5.4	1
105	Synthesis of nanoparticles via microfluidic devices and integrated applications. Mikrochimica Acta, 2023, 190, .	5.0	3
106	Recent Advances and Clinical Potential of Near Infrared Photothermal Conversion Materials for Photothermal Hepatocellular Carcinoma Therapy. Advanced Functional Materials, 2023, 33, .	14.9	8
107	Machine Learning-Directed Predictive Models: Deciphering Complex Energy Transfer in Mn-Doped CsPb(Cl _{1–<i>y</i>} Br _{<i>y</i>}) ₃ Perovskite Nanocrystals. Chemistry of Materials, 2023, 35, 5401-5411.	6.7	3
108	Synthesis of pure MgFe2O4 nanoparticles: an intelligent prediction approach and experimental validation. Journal of Sol-Gel Science and Technology, 2023, 107, 620-628.	2.4	1
109	Tailoring the Inherent Properties of Biobased Nanoparticles for Nanomedicine. ACS Biomaterials Science and Engineering, 2023, 9, 3972-3986.	5.2	1

#	Article	IF	CITATIONS
110	Robotic platform for accelerating the high-throughput study of silver nanocrystals in sensitive/selective Hg2+ detection. Chemical Engineering Journal, 2023, 466, 143225.	12.7	5
111	Prediction and analysis of preparation of cellulose nanocrystals with machine learning. Cellulose, 2023, 30, 6273-6287.	4.9	2
112	Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation. Chemical Reviews, 2023, 123, 8575-8637.	47.7	10
113	Prospects of Using Machine Learning and Diamond Nanosensing for High Sensitivity SARS-CoV-2 Diagnosis. Magnetochemistry, 2023, 9, 171.	2.4	1
114	SLI-GNN: A Self-Learning-Input Graph Neural Network for Predicting Crystal and Molecular Properties. Journal of Physical Chemistry A, 2023, 127, 5921-5929.	2.5	2
115	Synthesis of CsPbBr ₃ in Micro Total Reaction System: Fast Operation Space Mapping and Subsecond Growth Process Monitoring. Small Methods, 2023, 7, .	8.6	0
116	Hydrogel-Based Electrodeposition of Copper Nanoparticles for Selective Detection for Hydrogen Peroxide. Chemosensors, 2023, 11, 384.	3.6	4
117	Structural Transformation of Unconventional-Phase Materials. ACS Nano, 2023, 17, 12935-12954.	14.6	5
118	Artificial Intelligence and Evolutionary Approaches in Particle Technology. KONA Powder and Particle Journal, 2024, 41, 3-25.	1.7	1
119	Design, characterization and applications of nanocolloidal hydrogels. Chemical Society Reviews, 2023, 52, 5317-5339.	38.1	8
120	Applications of machine learning in supercritical fluids research. Journal of Supercritical Fluids, 2023, 202, 106051.	3.2	4
121	Evaluation of the effects of chitosan nanoparticles on polyhydroxy butyrate electrospun scaffolds for cartilage tissue engineering applications. International Journal of Biological Macromolecules, 2023, 249, 126064.	7.5	3
122	Carbonâ€Based Electrochemicalâ€Free Chlorine Sensors. Advanced Materials Technologies, 2023, 8, .	5.8	0
123	3D-printed microfluidic system for the in situ diagnostics and screening of nanoparticles synthesis parameters. Micro and Nano Engineering, 2023, 20, 100224.	2.9	2
124	Nanomedicine in cancer therapy. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	30
125	CO2 Hydrogenation to Gasoline and Aromatics: Mechanistic and Predictive Insights from DFT, DRIFTS and Machine Learning. ChemPlusChem, 0, , .	2.8	0
126	Explainable Machine-Learning Approach for Revealing Complex Synthesis Path–Property Relationships of Nanomaterials. Nanoscale, 0, , .	5.6	0
127	Application of Machine Learning in Material Synthesis and Property Prediction. Materials, 2023, 16, 5977.	2.9	3

#	Article	IF	CITATIONS
128	The ScholarNet and Artificial Intelligence (AI) Supervisor in Material Science Research. Journal of Physical Chemistry Letters, 0, , 7981-7991.	4.6	1
129	STING agonist-boosted mRNA immunization via intelligent design of nanovaccines for enhancing cancer immunotherapy. National Science Review, 2023, 10, .	9.5	1
130	Machine learning assisted phase and size-controlled synthesis of iron oxide particles. Chemical Engineering Journal, 2023, 473, 145216.	12.7	1
131	Averaging Strategy for Interpretable Machine Learning on Small Datasets to Understand Element Uptake after Seed Nanotreatment. Environmental Science & Technology, 2023, 57, 12760-12770.	10.0	0
132	Communicating Supraparticles to Enable Perceptual, Informationâ€Providing Matter. Advanced Materials, 2023, 35, .	21.0	1
133	Bâ€Site Doping of Metal Halide Perovskite Nanoplatelets Influences Their Optical Properties. Advanced Optical Materials, 0, , .	7.3	2
134	A narrative review of the synthesis, characterization, and applications of iron oxide nanoparticles. , 2023, 18, .		4
135	Incorporation of carbon quantum dots with PEDOT:PSS for high-performance inverted organic solar cells. Synthetic Metals, 2023, 298, 117430.	3.9	3
136	Intelligent nanomaterials for cancer therapy: recent progresses and future possibilities. Medical Review, 2023, .	1.2	0
137	Determination of Thallium in Tea with Preconcentration by Microwave-Assisted Synthesized Molybdenum Disulfide Nanoparticles and Flame Atomic Absorption Spectrometry (FAAS) Analysis. Analytical Letters, 0, , 1-12.	1.8	0
138	How Amorphous Nanomaterials Enhanced Electrocatalytic, SERS, and Mechanical Properties. Jacs Au, 2023, 3, 2660-2676.	7.9	3
139	Glucosylated Hybrid TiO ₂ /Polymer Nanomaterials for Actively Targeted Sonodynamic Therapy of Cancer. Small, 2024, 20, .	10.0	0
140	Accelerated room temperature synthesis of desired cesium lead halide perovskite nanocrystals via automated microfluidic meta learner. Chemical Engineering Science, 2023, 282, 119318.	3.8	1
141	Artificial neural network modelling hydrodenticity for optimal design by microfluidics of polymer nanoparticles to apply in magnetic resonance imaging. Acta Biomaterialia, 2023, 171, 440-450.	8.3	0
142	Evaluating metal oxide nanoparticle (MeOx NP) toxicity with different types of nano descriptors mainly focusing on simple periodic table-based descriptors: a mini-review. Environmental Science: Nano, 2023, 10, 2989-3011.	4.3	2
143	Mechanistic Insights into Copper(I) and Copper(II) Cation Exchange Reactions in CdSe Nanoplatelets. Chemistry of Materials, 0, , .	6.7	0
144	Artificial Intelligence for Surfaceâ€Enhanced Raman Spectroscopy. Small Methods, 2024, 8, .	8.6	1
145	Synthesis Strategy Guided by Decision Tree for Morphology Control of Metal Phosphonates. Inorganic Chemistry, 2023, 62, 18758-18766.	4.0	0

#	Article	IF	CITATIONS
146	Advanced optical imaging for the rational design of nanomedicines. Advanced Drug Delivery Reviews, 2024, 204, 115138.	13.7	1
147	Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles. Advanced Functional Materials, 2024, 34, .	14.9	0
148	Highly sensitive detection of circulating tumour cells based on an ASV/CV dual-signal electrochemical strategy. RSC Advances, 2023, 13, 33038-33046.	3.6	0
149	Navigating the Expansive Landscapes of Soft Materials: A User Guide for High-Throughput Workflows. ACS Polymers Au, 2023, 3, 406-427.	4.1	1
150	Harnessing data augmentation to quantify uncertainty in the early estimation of single-photon source quality. Machine Learning: Science and Technology, 2023, 4, 045042.	5.0	0
151	Virtually Possible: Enhancing Quality Control of 3D-Printed Medicines with Machine Vision Trained on Photorealistic Images. Pharmaceutics, 2023, 15, 2630.	4.5	0
152	Accelerated Chemical Science with Al. , 0, , .		0
153	Modeling Biodegradable Free Chlorine Sensor Performance Using Artificial Neural Networks. Advanced Materials Technologies, 2024, 9, .	5.8	0
154	Machine learning-driven approaches for synthesizing carbon dots and their applications in photoelectrochemical sensors. Inorganic Chemistry Communication, 2024, 159, 111859.	3.9	0
155	Accelerating the Design of Multishell Upconverting Nanoparticles through Bayesian Optimization. Nano Letters, 2023, 23, 11129-11136.	9.1	0
156	Machine learning-based prediction and generation model for creep rupture time of Nickel-based alloys. Computational Materials Science, 2024, 233, 112736.	3.0	0
157	Artificial intelligence-powered electronic skin. Nature Machine Intelligence, 2023, 5, 1344-1355.	16.0	4
159	Machine learning aided design of Bi2WO6/MIL-53(Al) nanocomposites. Computational Materials Science, 2024, 233, 112737.	3.0	0
160	Metal oxide -based electrical/electrochemical sensors for health monitoring systems. TrAC - Trends in Analytical Chemistry, 2024, 171, 117509.	11.4	1
161	Simulation-based approaches for drug delivery systems: Navigating advancements, opportunities, and challenges. Journal of Molecular Liquids, 2024, 395, 123888.	4.9	2
162	The application of nanomaterials in designing promising diagnostic, preservation, and therapeutic strategies in combating male infertility: A review. Journal of Drug Delivery Science and Technology, 2024, 92, 105356.	3.0	0
163	Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review. Materials Today Chemistry, 2024, 35, 101894.	3.5	0
164	Al-enhanced biomedical micro/nanorobots in microfluidics. Lab on A Chip, 2024, 24, 1419-1440.	6.0	Ο

#	Article	IF	CITATIONS
165	Recent advancement of hybrid nanoparticles synthesis and applications in lung cancer management. , 2024, , 179-212.		0
166	Expanding the Horizons of Machine Learning in Nanomaterials to Chiral Nanostructures. Advanced Materials, 2024, 36, .	21.0	1
167	Artificial intelligence generates novel 3D printing formulations. Applied Materials Today, 2024, 36, 102061.	4.3	1
168	Decoding Nanomaterialâ€Biosystem Interactions through Machine Learning. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
169	Decoding Nanomaterialâ€Biosystem Interactions through Machine Learning. Angewandte Chemie, 2024, 136, .	2.0	0
170	Experimental Study of a Prototype of a Superconducting Sigma Neuron for Adiabatic Neural Networks. Journal of Experimental and Theoretical Physics, 2023, 137, 888-898.	0.9	0
171	Novel trends in mixed oxide electrodes for photoelectrocatalytic wastewater treatment. Current Opinion in Electrochemistry, 2024, 44, 101448.	4.8	0
172	Facilitating excited-state plasmonics and photochemical reaction dynamics. Chemical Physics Reviews, 2024, 5, .	5.7	0
173	Perspectives on Development of Optoelectronic Materials in Artificial Intelligence Age. Chemistry - an Asian Journal, 2024, 19, .	3.3	0
174	Machine Learning Techniques for Improving Nanosensors in Agroenvironmental Applications. Agronomy, 2024, 14, 341.	3.0	1
175	Microbial lipid synthesis based on visible light-driven oxygen doped-graphitic carbon nitride /oleaginous yeast hybrid system. Bioresource Technology, 2024, 397, 130476.	9.6	0
176	Transferring hydroformylation reaction into high-pressure gas–liquid microfluidic systems: Key achievements and perspectives. Journal of Industrial and Engineering Chemistry, 2024, , .	5.8	0
177	Turmeric extract-mediated biogenic synthesis of Ag@SeO ₂ magnetic nanoparticles: characterization, optimization, antibacterial and antioxidant activities. RSC Advances, 2024, 14, 7088-7111.	3.6	0
178	Bespoke Metal Nanoparticle Synthesis at Room Temperature and Discovery of Chemical Knowledge on Nanoparticle Growth via Autonomous Experimentations. Advanced Functional Materials, 0, , .	14.9	0
179	Nitrogen-based nanofertilizers: raw materials, nitrogen assimilation by the plant, and physicochemical variables that affect their release. , 2024, , 161-178.		0