Stimulus-Responsive Room Temperature Phosphoresco Design Strategy, and Potential Application

Accounts of Materials Research 2, 644-654

DOI: 10.1021/accountsmr.1c00084

Citation Report

#	Article	IF	CITATIONS
1	Achieving visible-light-excited organic room-temperature phosphorescence by manipulating p–π conjugation. Journal of Materials Chemistry C, 2021, 9, 14623-14627.	5.5	8
2	A tunable phosphorescence supramolecular switch by an anthracene photoreaction in aqueous solution. Journal of Materials Chemistry C, 2022, 10, 2623-2630.	5.5	17
3	Colorâ€Tunable Supramolecular Luminescent Materials. Advanced Materials, 2022, 34, e2105405.	21.0	74
4	Ultrahigh Supramolecular Cascaded Roomâ€Temperature Phosphorescence Capturing System. Angewandte Chemie, 2021, 133, 27377-27383.	2.0	13
5	Ultrahigh Supramolecular Cascaded Roomâ€Temperature Phosphorescence Capturing System. Angewandte Chemie - International Edition, 2021, 60, 27171-27177.	13.8	79
6	Gaining New Insights into Trace Guest Doping Role in Manipulating Organic Crystal Phosphorescence. Journal of Physical Chemistry Letters, 2021, 12, 11616-11621.	4.6	11
7	Ultraviolet Light Detectable Circularly Polarized Room Temperature Phosphorescence in Chiral Naphthalimide Self-Assemblies. ACS Nano, 2021, 15, 20192-20202.	14.6	30
8	Multicolour Fluorescence Based on Excitationâ€Dependent Electron Transfer Processes in <i>o</i> à€Carborane Dyads. Angewandte Chemie - International Edition, 2022, 61, e202115551.	13.8	26
9	A Universal Strategy for Tunable Persistent Luminescent Materials via Radiative Energy Transfer. Angewandte Chemie - International Edition, 2022, 61, e202115748.	13.8	70
10	Halogen Bonding: A New Platform for Achieving Multiâ€Stimuliâ€Responsive Persistent Phosphorescence. Angewandte Chemie, 2022, 134, .	2.0	20
11	Organometallic Complexes for Optoelectronic Applications. , 2022, , .		0
12	A Universal Strategy for Tunable Persistent Luminescent Materials via Radiative Energy Transfer. Angewandte Chemie, 2022, 134, .	2.0	6
13	Multicolour Fluorescence Based on Excitationâ€Dependent Electron Transfer Processes in o â€Carborane Dyads. Angewandte Chemie, 0, , .	2.0	10
14	Halogen Bonding: A New Platform for Achieving Multiâ€Stimuliâ€Responsive Persistent Phosphorescence. Angewandte Chemie - International Edition, 2022, 61, .	13.8	111
15	Multivalent supramolecular assembly with ultralong organic room temperature phosphorescence, high transfer efficiency and ultrahigh antenna effect in water. Chemical Science, 2022, 13, 573-579.	7.4	30
16	Room-Temperature Phosphorescence of Nicotinic Acid and Isonicotinic Acid: Efficient Intermolecular Hydrogen-Bond Interaction in Molecular Array. Journal of Physical Chemistry Letters, 2022, 13, 1652-1659.	4.6	9
17	Folding-Induced Spin–Orbit Coupling Enhancement for Efficient Pure Organic Room-Temperature Phosphorescence. Journal of Physical Chemistry Letters, 2022, 13, 1563-1570.	4.6	14
18	From aggregation-induced emission to organic room temperature phosphorescence through suppression of molecular vibration. Cell Reports Physical Science, 2022, 3, 100771.	5.6	18

#	Article	IF	CITATIONS
19	Stimulus-responsive room temperature phosphorescence materials with full-color tunability from pure organic amorphous polymers. Science Advances, 2022, 8, eabl8392.	10.3	143
20	Room temperature phosphorescence achieved by aromatic/perfluoroaromatic interactions. Science China Chemistry, 2022, 65, 918-925.	8.2	41
21	Biaxial pseudorotaxane secondary assembly for phosphorescent cellular imaging. Materials Advances, 2022, 3, 4693-4698.	5.4	3
22	Ultralong blue room-temperature phosphorescence by cycloalkyl engineering. Materials Chemistry Frontiers, 2022, 6, 1606-1614.	5.9	15
23	Ultralong Organic Phosphorescence Modulation of Aromatic Carbonyls and <scp>Multiâ€Component</scp> Systems. Chinese Journal of Chemistry, 2022, 40, 1987-2000.	4.9	9
24	Multimode stimuli responsive dual-state organic room temperature phosphorescence from a phenanthrene derivative. Chemical Engineering Journal, 2022, 444, 136629.	12.7	32
25	Reversible Multilevel Stimuliâ€Responsiveness and Multicolor Roomâ€Temperature Phosphorescence Emission Based on a Singleâ€Component System. Angewandte Chemie - International Edition, 2022, 61, .	13.8	75
26	Reversible Multilevel Stimuliâ€Responsiveness and Multicolor Roomâ€Temperature Phosphorescence Emission Based on a Singleâ€Component System. Angewandte Chemie, 2022, 134, .	2.0	6
27	Red aqueous room-temperature phosphorescence modulated by anion–i€ and intermolecular electronic coupling interactions. Chemical Science, 2022, 13, 7247-7255.	7.4	13
28	The influence of π–π stacking on the room temperature phosphorescence of phenothiazine 5,5-dioxide derivatives. Journal of Materials Chemistry C, 2022, 10, 13741-13746.	5.5	13
29	Crossâ€linking enhanced roomâ€temperature phosphorescence of carbon dots. SmartMat, 2022, 3, 337-348.	10.7	42
30	Influence of molecular packing on the color-tunable emissive behavior of viologen derivatives. Results in Chemistry, 2022, 4, 100392.	2.0	0
31	Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging. Chemical Science, 2022, 13, 7976-7989.	7.4	57
32	Anionâ^Ï€-Induced Room Temperature Phosphorescence from Emissive Charge-Transfer States . Journal of the American Chemical Society, 2022, 144, 10854-10861.	13.7	46
33	Room-Temperature Phosphorescence of Pure Axially Chiral Bicarbazoles. Journal of Physical Chemistry Letters, 2022, 13, 5838-5844.	4.6	18
34	Thermally Activated and Aggregationâ€Regulated Excitonic Coupling Enable Emissive High‣ying Triplet Excitons**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
35	Thermally Activated and Aggregationâ€Regulated Excitonic Coupling Enable Emissive Highâ€Lying Triplet Excitons**. Angewandte Chemie, 2022, 134, .	2.0	5
36	A Benzene Ringâ€Linked Dimethylamino and Borate Esterâ€Based Molecule and Organic Crystal: Efficient Dual Roomâ€Temperature Phosphorescence with Responsive Property. Advanced Optical Materials, 2022, 10, .	7.3	3

3

#	ARTICLE	IF	CITATIONS
37	Room temperature phosphorescence of heavy-atom-free indole carboxylic acid/polyacrylamide: Low cost, long lifetime and good luminescent efficiency. Dyes and Pigments, 2022, 205, 110481.	3.7	6
38	NearlyÂUnity Quantum Yield Persistent Room Temperature Phosphorescence from Heavy Atomâ€Free Rigid Inorganic/Organic Hybrid Frameworks. Angewandte Chemie, 0, , .	2.0	0
39	Macrocyclic Confined Purely Organic Roomâ€Temperature Phosphorescence Threeâ€Photon Targeted Imaging. Advanced Optical Materials, 2022, 10, .	7.3	10
40	Nearly Unity Quantum Yield Persistent Roomâ€Temperature Phosphorescence from Heavy Atomâ€Free Rigid Inorganic/Organic Hybrid Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	41
41	A Dihydroazuleneâ€Based Photofluorochromic AIE System for Rewritable 4D Information Encryption. Angewandte Chemie - International Edition, 2022, 61, .	13.8	43
42	A Dihydroazuleneâ€Based Photofluorochromic AIE System for Rewritable 4D Information Encryption. Angewandte Chemie, 2022, 134, .	2.0	6
43	Piezochromic Tetracoordinate Boron Complex: Blueâ€Shifted and Enhanced Luminescence. Angewandte Chemie - International Edition, 2022, 61, .	13.8	18
44	Piezochromic Tetracoordinate Boron Complex: Blueâ€Shifted and Enhanced Luminescence. Angewandte Chemie, 2022, 134, .	2.0	3
45	Molecular Thermal Motion Modulated Room-Temperature Phosphorescence for Multilevel Encryption. Research, 2022, 2022, .	5.7	8
46	Wavelength‶unable Circularly Polarized Laser Arrays for Multidimensional Information Encryption. Advanced Optical Materials, 2023, 11, .	7.3	15
47	The mechanism of intramolecular halogen bonding enhanced the quantum efficiency of ultralong organic phosphorescence in the aggregated state. Physical Chemistry Chemical Physics, 2022, 24, 22905-22917.	2.8	8
48	Thermally crosslinkable second-order nonlinear optical polymer networks: high stability, good transparency, and large second-order nonlinear optical effects. Materials Chemistry Frontiers, 0, , .	5.9	3
49	The key role of molecular aggregation in rechargeable organic cathodes. Matter, 2022, 5, 4467-4479.	10.0	7
50	Steroid-Aromatics Clathrates as Chiroptical Materials with Circularly Polarized Luminescence and Phosphorescence. ACS Applied Materials & Samp; Interfaces, 2022, 14, 44902-44908.	8.0	9
51	Generation of Tunable Ultrastrong Whiteâ€Light Emission by Activation of a Solid Supramolecule through Bromonaphthylpyridinium Polymerization. Angewandte Chemie, 2022, 134, .	2.0	2
52	Generation of Tunable Ultrastrong Whiteâ€Light Emission by Activation of a Solid Supramolecule through Bromonaphthylpyridinium Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
53	From single molecule to molecular aggregation science. Coordination Chemistry Reviews, 2023, 475, 214872.	18.8	29
54	Efficient ultralong and color-tunable room-temperature phosphorescence from polyacrylamide platform by introducing sulfanilic acid. Chemical Engineering Journal, 2023, 453, 139753.	12.7	11

#	Article	IF	CITATIONS
55	Ultralong room temperature phosphorescence and reversible mechanochromic luminescence in ionic crystals with structural isomerism. Chemical Engineering Journal, 2023, 453, 139806.	12.7	18
56	Color-Tunable Binary Copolymers Manipulated by Intramolecular Aggregation and Hydrogen Bonding. ACS Applied Materials & Distribution (2022), 14, 53359-53369.	8.0	10
57	Recent advances in room temperature phosphorescence materials: design strategies, internal mechanisms and intelligent optical applications. Physical Chemistry Chemical Physics, 2023, 25, 1457-1475.	2.8	9
58	Fabrication of nano-objects with morphology-correlated room-temperature phosphorescence and their application in information encryption. Polymer Chemistry, 0, , .	3.9	O
59	Fullâ€color Persistent Roomâ€temperature Phosphorescence from Carbon Dot Composites Based on a Single Nonaromatic Carbon Source. Chemistry - an Asian Journal, 2023, 18, .	3.3	8
60	The Effect of Molecular Conformations and Simulated "Selfâ€Doping―in Phenothiazine Derivatives on Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2023, 62, .	13.8	25
61	The Effect of Molecular Conformations and Simulated "Selfâ€Doping―in Phenothiazine Derivatives on Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2023, 135, .	2.0	5
62	Recent advances in room-temperature phosphorescent materials by manipulating intermolecular interactions. Science China Chemistry, 2023, 66, 304-314.	8.2	42
63	Temperature-Regulated Dual Phosphorescence and Mechanical Strain-Induced Luminescence Modulation in a Plastically Bendable and Twistable Organic Crystal. Chemistry of Materials, 2023, 35, 709-718.	6.7	9
64	Color-tunable and ultralong organic room temperature phosphorescence from poly(acrylic) Tj ETQq1 1 0.78431 1960-1970.	4 rgBT /Ov 5.5	verlock 10 Tf
65	Host–Guest Doping in Flexible Organic Crystals for Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2023, 62, .	13.8	23
66	Host–Guest Doping in Flexible Organic Crystals for Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2023, 135, .	2.0	3
67	Exciplex-induced TADF, persistent RTP and ML in a host–guest doping system. Materials Chemistry Frontiers, 2023, 7, 1093-1099.	5.9	6
68	Bioinspired HOF-based luminescent skin sensor with triple mechanochromism responses for the recognition and collection of human biophysical signals. Materials Horizons, 2023, 10, 2062-2074.	12.2	9
69	Five-in-one: Dual-mode ultralong persistent luminescence with multiple responses from amorphous polymer films. Chemical Engineering Journal, 2023, 463, 142506.	12.7	16
70	Solvent-induced MultiStimuli-Responsive properties of cyano-substituted Oligo(p-phenylene vinylene) derivatives. Dyes and Pigments, 2023, 214, 111195.	3.7	2
71	Stimulus-Responsive Organic Phosphorescence Materials Based on Small Molecular Host–Guest Doped Systems. Journal of Physical Chemistry Letters, 2023, 14, 1794-1807.	4.6	17
72	Recent progress with the application of organic room-temperature phosphorescent materials. , 2023, 1, 582-594.		20

#	Article	IF	Citations
73	A gated strategy stabilizes roomâ€temperature phosphorescence. Aggregate, 2023, 4, .	9.9	5
74	Photoâ€Response with Radical Afterglow by Regulation of Spin Populations and Holeâ€Electron Distributions. Angewandte Chemie - International Edition, 2023, 62, .	13.8	7
75	Photoâ€Response with Radical Afterglow by Regulation of Spin Populations and Holeâ€Electron Distributions. Angewandte Chemie, 2023, 135, .	2.0	0
76	Organic room-temperature phosphorescence materials for bioimaging. Chemical Communications, 2023, 59, 5329-5342.	4.1	17
77	Realizing near-infrared mechanophosphorescence from an organic host/guest system. Journal of Materials Chemistry C, 2023, 11, 5725-5730.	5 . 5	1
78	Achieving Tunable Organic Afterglow and UVâ€Irradiationâ€Responsive Ultralong Roomâ€Temperature Phosphorescence from Pyridineâ€Substituted Triphenylamine Derivatives. Advanced Materials, 2023, 35, .	21.0	37
79	Clusterizationâ€Triggered Room Temperature Phosphorescence Supramolecular Assembly with Extraordinary Stimulusâ€responsive Features from Nonaromatic Amino Acids. Chemistry - A European Journal, 0, , .	3.3	0
80	An elastic organic crystal with multilevel stimuli-responsive room temperature phosphorescence. Matter, 2023, 6, 2005-2018.	10.0	19
81	Ultralong organic room-temperature phosphorescence, multiple stimulus responsiveness and high-level anti-counterfeiting based on multifunctional carbazolyl imidazolopyridine. Materials Today Chemistry, 2023, 30, 101548.	3 . 5	0
82	Dynamic organic room-temperature phosphorescent systems. CheM, 2023, 9, 2446-2480.	11.7	16
83	Light-Responsible Room-Temperature Phosphorescence Materials Based on Diarylethene $<$ sup $>$ \hat{a} $<$ sup $>$. Acta Chimica Sinica, 2023, 81, 445.	1.4	0
84	Thermally Activated Delayed Fluorescent Solventâ€free Organic Liquid Hybrids for Tunable Emission Applications. Chemistry - an Asian Journal, 2023, 18, .	3.3	1
85	High-performance room temperature phosphorescence prompted by hydrogen-bonded organic frameworks. Cell Reports Physical Science, 2023, 4, 101494.	5.6	7
86	Switching Singlet Exciton to Triplet for Efficient Pure Organic Room-Temperature Phosphorescence by Rational Molecular Design. Jacs Au, 2023, 3, 1835-1842.	7.9	3
87	Conformationally confined three-armed supramolecular folding for boosting near-infrared biological imaging. Chemical Science, 2023, 14, 8401-8407.	7.4	1
88	pH-Tunable phosphorescence and light harvesting in cucurbit[8]uril host-guest assemblies. Chemical Communications, 0, , .	4.1	0
89	Multiâ€Responsive Afterglows from Aqueous Processable Amorphous Polysaccharide Films. Small Methods, 2024, 8, .	8.6	3
90	TADF-Type Organic Afterglow Nanoparticles with Temperature and Oxygen Dual-Responsive Property for Bimodal Sensing. ACS Applied Nano Materials, 2023, 6, 15138-15146.	5.0	6

#	Article	IF	CITATIONS
91	Multiâ€stimulus Room Temperature Phosphorescent Polymers Sensitive to Light and Acid cyclically with Energy Transfer. Angewandte Chemie, 2023, 135, .	2.0	2
92	Multiâ€stimulus Room Temperature Phosphorescent Polymers Sensitive to Light and Acid cyclically with Energy Transfer. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
93	Thermal annealing promoted room temperature phosphorescence: motion models and internal mechanism. National Science Review, 2023, 10, .	9.5	3
94	Acid–base responsive multifunctional poly(formyl sulfide)s through a facile catalyst-free click polymerization of aldehyde-activated internal diynes and dithiols. Chemical Science, 2023, 14, 10718-10726.	7.4	0
95	Photophysical investigation into room-temperature emission from xanthene derivatives. Physical Chemistry Chemical Physics, 2023, 25, 24829-24837.	2.8	0
96	Preparation and performance evaluation of humidity-sensitive color-changing materials via hyperspectral imaging. Sensors and Actuators A: Physical, 2023, 362, 114660.	4.1	0
97	Emerging Luminescent Materials for Information Encryption and Anti-Counterfeiting: Stimulus-Response AlEgens and Room-Temperature Phosphorescent Materials. Chemosensors, 2023, 11, 489.	3.6	0
98	Design of mechanical-robust phosphorescence materials through covalent click reaction. Nature Communications, 2023, 14, .	12.8	11
99	The afterglow of carbon dots shining in inorganic matrices. Materials Horizons, 2024, 11, 113-133.	12.2	2
100	Roomâ€Temperature Multiple Phosphorescence from Functionalized Corannulenes: Temperature Sensing and Afterglow Organic Lightâ€Emitting Diode**. Angewandte Chemie, 2023, 135, .	2.0	0
101	Roomâ€Temperature Multiple Phosphorescence from Functionalized Corannulenes: Temperature Sensing and Afterglow Organic Lightâ€Emitting Diode**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
102	Coordination Trap Induced Structural and Luminescent Property Transformation of Low Dimensional Organicâ€Inorganic Hybrid Perovskites. Advanced Optical Materials, 2024, 12, .	7.3	2
103	Highly Efficient Blue Organic Light Emitting Diodes Based on Cyclohexane-Fused Quinoxaline Acceptor. Journal of Physical Chemistry Letters, 2023, 14, 6982-6989.	4.6	2
105	Efficient room-temperature phosphorescence with tunable lifetime through light modulation from flexible polymer films. Chemical Engineering Journal, 2023, 475, 146178.	12.7	1
106	Flexible Crystal Heterojunctions of Low-Dimensional Organic Metal Halides Enabling Color-Tunable Space-Resolved Optical Waveguides. Research, 2023, 6, .	5.7	1
107	A new sensitization strategy for achieving organic RTP in aqueous solution: tunable RTP and UC emission in supramolecular TTA-UC systems. Science China Chemistry, 2023, 66, 3546-3554.	8.2	3
108	Evolution of organic phosphor through precision regulation of nonradiative decay. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	0
109	A new insight into aggregation structure of organic solids and its relationship to roomâ€temperature phosphorescence effect. Aggregate, 0, , .	9.9	2

#	Article	IF	CITATIONS
110	Phosphorescence resonance energy transfer from purely organic supramolecular assembly. Nature Reviews Chemistry, 2023, 7, 854-874.	30.2	9
111	Developing Bright Afterglow Materials via Manipulation of Higher Triplet Excited States and Relay Synthesis in Difluoroboron ⟨i⟩β⟨/i⟩â€Diketonate Systems. Advanced Optical Materials, 0, , .	7.3	0
112	Polymerization Based on Modified $\hat{l}^2\hat{a}\in C$ yclodextrin Achieves Efficient Phosphorescence Energy Transfer for Anti $\hat{a}\in C$ ounterfeiting. Small, 0, , .	10.0	0
113	Anti-Kasha triplet energy transfer and excitation wavelength dependent persistent luminescence from host-guest doping systems. Nature Communications, 2023, 14, .	12.8	1
114	Cucurbit[8]uril Confinement-Based Secondary Coassembly for High-Efficiency Phosphorescence Energy Transfer Behavior. Jacs Au, 0, , .	7.9	0
116	Water stimulus-responsive room temperature afterglow materials with color tunability based on inorganic/organic H–G hybrid systems. Journal of Materials Chemistry C, 2024, 12, 717-723.	5.5	0
117	Molecular Engineering Enables Multi olor Room Temperature Phosphorescence of Carbon Dots Composites Derived In Situ, Facilitating their Utilization for Advanced Information Encryption. Advanced Optical Materials, 0, , .	7.3	0
118	Stepwise phosphorescence energy transfer for NIR cell imaging based on macrocycle disaggregated amphiphile. Dyes and Pigments, 2024, 223, 111962.	3.7	O
119	Sunlightâ€Activated Hourâ€Long Afterglow from Transparent and Flexible Polymers. Advanced Materials, 2024, 36, .	21.0	0
120	Regulation Strategies of Dynamic Organic Room-Temperature Phosphorescence Materials. , 2024, 1, 13-25.		0
121	Dual-state emissive imidazo [1,2-î±] pyridines with full color emission, acidochromism, viscosity-dependent fluorescence, and bioimaging applications. Dyes and Pigments, 2024, 224, 112004.	3.7	0
122	Twisted Phosphors that Violate Kasha's Exciton Model in Organic Systems. Chinese Journal of Chemistry, 2024, 42, 1237-1246.	4.9	0
123	Achieving Ultralong Room-Temperature Phosphorescence in Covalent Organic Framework System. Journal of Physical Chemistry Letters, 2024, 15, 1658-1667.	4.6	0
124	Targeting Compact and Ordered Emitters by Supramolecular Dynamic Interactions for Highâ€performance Organic Ambient Phosphorescence. Advanced Materials, 0, , .	21.0	1
125	Phenothiazine Derivatives as Smallâ€Molecule Organic Cathodes with Adjustable Dropout Voltage and Cycle Performance. Advanced Materials, 0, , .	21.0	0
126	3D-Printable Room Temperature Phosphorescence Polymer Materials with On-Demand Modulation for Modulus Visualization and Anticounterfeiting Applications. , 2024, 1, 133-140.		0
127	Multi-stimuli-responsive aggregation-induced emission copper iodide cluster. Science China Chemistry, 2024, 67, 1193-1197.	8.2	0
128	Tailoring raloxifene into single-component molecular crystals possessing multilevel stimuli-responsive room-temperature phosphorescence. Science Bulletin, 2024, 69, 1237-1248.	9.0	0

#	Article	IF	CITATIONS
129	Double-Model Decay Strategy Integrating Persistent Photogenic Radicaloids with Dynamic Circularly Polarized Doublet Radiance and Triplet Afterglow. Journal of the American Chemical Society, 2024, 146, 7668-7678.	13.7	0
130	Near-infrared long-lifetime emission via triplet-to-singlet FÃ \P rster resonance energy transfer. Green Chemical Engineering, 2024, , .	6.3	0
131	Naphthoic Acid Derivatives@Boric Acid Based Fast Photoâ€Activated Roomâ€Temperature Phosphorescence Materials with Dynamic Changed Emission Color. Advanced Optical Materials, 0, , .	7.3	0