Combining Machine Learning and Computational Chem Chemical Systems

Chemical Reviews 121, 9816-9872

DOI: 10.1021/acs.chemrev.1c00107

Citation Report

#	Article	IF	CITATIONS
1	Higher-Order Explanations of Graph Neural Networks via Relevant Walks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 7581-7596.	13.9	58
2	Topological Characterization and Graph Entropies of Tessellations of Kekulene Structures: Existence of Isentropic Structures and Applications to Thermochemistry, Nuclear Magnetic Resonance, and Electron Spin Resonance. Journal of Physical Chemistry A, 2021, 125, 8140-8158.	2.5	46
3	Automated Exploration of Prebiotic Chemical Reaction Space: Progress and Perspectives. Life, 2021, 11, 1140.	2.4	6
4	Constructing and representing exchange–correlation holes through artificial neural networks. Journal of Chemical Physics, 2021, 155, 174121.	3.0	9
5	Three decades of unveiling the complex chemistry of <i>C</i> -nitroso species with computational chemistry. Organic Chemistry Frontiers, 2021, 9, 223-264.	4.5	11
6	Application of density functional theory and machine learning in heterogenous-based catalytic reactions for hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 2245-2267.	7.1	22
7	How to Use Machine Learning to Improve the Discrimination between Signal and Background at Particle Colliders. Applied Sciences (Switzerland), 2021, 11, 11076.	2.5	3
8	Application of computational chemistry in chemical reactivity: a review. Journal of the Nigerian Society of Physical Sciences, 0, , .	0.0	4
9	Coming of Age of Computational Chemistry from a Resilient Past to a Promising Future. Israel Journal of Chemistry, 0, , .	2.3	2
10	Simulation of deep eutectic solvents: Progress to promises. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1598.	14.6	22
11	Molecular docking studies for Vitex negundo (L) leaf extract compounds against Wnt- signalling proteins towards the treatment of colon cancer. Chemical Data Collections, 2022, 38, 100829.	2.3	2
12	SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects. Nature Communications, 2021, 12, 7273.	12.8	108
13	BenchML: an extensible pipelining framework for benchmarking representations of materials and molecules at scale. Machine Learning: Science and Technology, 2022, 3, 040501.	5.0	2
14	Evaluating quantum alchemy of atoms with thermodynamic cycles: Beyond ground electronic states. Journal of Chemical Physics, 2022, 156, 064106.	3.0	5
15	Toward Excellence of Electrocatalyst Design by Emerging Descriptorâ€Oriented Machine Learning. Advanced Functional Materials, 2022, 32, .	14.9	43
16	Dimensionality reduction in machine learning for nonadiabatic molecular dynamics: Effectiveness of elemental sublattices in lead halide perovskites. Journal of Chemical Physics, 2022, 156, 054110.	3.0	4
17	Natural language processing models that automate programming will transform chemistry research and teaching. , 2022, 1, 79-83.		19
18	A Concise Review on Recent Developments of Machine Learning for the Prediction of Vibrational Spectra. Journal of Physical Chemistry A, 2022, 126, 801-812.	2.5	19

#	Article	IF	CITATIONS
19	Explaining and Predicting Allostery with Allosteric Database and Modern Analytical Techniques. Journal of Molecular Biology, 2022, 434, 167481.	4.2	10
20	Molecular Simulations of Aqueous Electrolytes: Role of Explicit Inclusion of Charge Transfer into Force Fields. Journal of Physical Chemistry B, 2021, 125, 13069-13076.	2.6	6
21	Detection of multi-reference character imbalances enables a transfer learning approach for virtual high throughput screening with coupled cluster accuracy at DFT cost. Chemical Science, 2022, 13, 4962-4971.	7.4	9
22	Providing direction for mechanistic inferences in radical cascade cyclization using a Transformer model. Organic Chemistry Frontiers, 2022, 9, 2498-2508.	4.5	6
23	Understanding the interactions between lithium polysulfides and anchoring materials in advanced lithium–sulfur batteries using density functional theory. Physical Chemistry Chemical Physics, 2022, 24, 8604-8623.	2.8	10
24	Quantum alchemy beyond singlets: Bonding in diatomic molecules with hydrogen. Journal of Chemical Physics, 2022, 156, .	3.0	2
25	Inverse design of 3d molecular structures with conditional generative neural networks. Nature Communications, 2022, 13, 973.	12.8	70
26	Finite-field coupling via learning the charge response kernel. Electronic Structure, 2022, 4, 014012.	2.8	6
27	Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer. Chemical Reviews, 2022, 122, 10599-10650.	47.7	83
28	Deep Generative Models for Materials Discovery and Machine Learning-Accelerated Innovation. Frontiers in Materials, 2022, 9, .	2.4	19
29	Machine learning potential for interacting dislocations in the presence of free surfaces. Scientific Reports, 2022, 12, 3760.	3.3	4
30	A genetic mixed-integer optimization of neural network hyper-parameters. Journal of Supercomputing, 2022, 78, 14680-14702.	3.6	2
31	New Insights and Predictions into Complex Homogeneous Reactions Enabled by Computational Chemistry in Synergy with Experiments: Isotopes and Mechanisms. Accounts of Chemical Research, 2022, 55, 1109-1123.	15.6	18
32	Significance of the Chemical Environment of an Element in Nonadiabatic Molecular Dynamics: Feature Selection and Dimensionality Reduction with Machine Learning. Journal of Physical Chemistry Letters, 2021, 12, 12026-12032.	4.6	11
33	Seeking the Optimal Descriptor for S _N 2 Reactions through Statistical Analysis of Density Functional Theory Results. Journal of Organic Chemistry, 2022, 87, 363-372.	3.2	3
34	Atomistic modeling of Li- and post-Li-ion batteries. Physical Review Materials, 2022, 6, .	2.4	17
35	Alchemical geometry relaxation. Journal of Chemical Physics, 2022, 156, 184801.	3.0	6
36	Fragmentation Method for Computing Quantum Mechanics and Molecular Mechanics Gradients for Force Matching: Validation with Hydration Free Energy Predictions Using Adaptive Force Matching. Journal of Physical Chemistry A, 2022, 126, 2609-2617.	2.5	2

#	Article	IF	CITATIONS
37	Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics. Nature Communications, 2022, 13, 1930.	12.8	21
38	Thermal Stability of Metal–Organic Frameworks (MOFs): Concept, Determination, and Model Prediction Using Computational Chemistry and Machine Learning. Industrial & Engineering Chemistry Research, 2022, 61, 5853-5862.	3.7	21
39	Exploring the robust extrapolation of high-dimensional machine learning potentials. Physical Review B, 2022, 105, .	3.2	17
40	Machine learning of material properties: Predictive and interpretable multilinear models. Science Advances, 2022, 8, eabm7185.	10.3	25
41	Exploring Complex Reaction Networks Using Neural Network-Based Molecular Dynamics Simulation. Journal of Physical Chemistry Letters, 2022, 13, 4052-4057.	4.6	14
42	High-fidelity molecular dynamics trajectory reconstruction with bi-directional neural networks. Machine Learning: Science and Technology, 2022, 3, 025011.	5.0	6
43	Deeper learning in electrocatalysis: realizing opportunities and addressing challenges. Current Opinion in Chemical Engineering, 2022, 36, 100824.	7.8	6
44	Delving into guest-free and He-filled sI and sII clathrate hydrates: a first-principles computational study. Physical Chemistry Chemical Physics, 2022, 24, 13119-13129.	2.8	4
45	Forecasting molecular dynamics energetics of polymers in solution from supervised machine learning. Chemical Science, 2022, 13, 7021-7033.	7.4	5
46	Mechanistic Insights into Enzyme Catalysis from Explaining Machine-Learned Quantum Mechanical and Molecular Mechanical Minimum Energy Pathways. ACS Physical Chemistry Au, 2022, 2, 316-330.	4.0	5
47	Machine learning for design principles for single atom catalysts towards electrochemical reactions. Journal of Materials Chemistry A, 2022, 10, 15309-15331.	10.3	28
48	Data-Driven Mapping of Inorganic Chemical Space for the Design of Transition Metal Complexes and Metal-Organic Frameworks. ACS Symposium Series, 0, , 127-179.	0.5	0
49	Mechanistic Inference from Statistical Models at Different Data-Size Regimes. ACS Catalysis, 2022, 12, 7886-7906.	11.2	12
50	Simple Model and Spectral Analysis for a Fluxional Catalyst: Intermediate Abundances, Pathway Fluxes, Rates, and Transients. ACS Catalysis, 2022, 12, 8038-8047.	11.2	4
51	Machine learning analysis of dynamicâ€dependent bond formation in trajectories with consecutive transition states. Journal of Physical Organic Chemistry, 2022, 35, .	1.9	8
52	A focus on simulation and machine learning as complementary tools for chemical space navigation. Chemical Science, 2022, 13, 8221-8223.	7.4	5
54	Data-driven chemistry. , 2022, , 233-240.		0
55	BIGDML—Towards accurate quantum machine learning force fields for materials. Nature Communications, 2022, 13, .	12.8	29

#	Article	IF	CITATIONS
56	Applications of Artificial Intelligence and Machine Learning Algorithms to Crystallization. Chemical Reviews, 2022, 122, 13006-13042.	47.7	28
57	Toward Explainable Artificial Intelligence for Regression Models: A methodological perspective. IEEE Signal Processing Magazine, 2022, 39, 40-58.	5.6	30
58	Exploiting Ligand Additivity for Transferable Machine Learning of Multireference Character across Known Transition Metal Complex Ligands. Journal of Chemical Theory and Computation, 2022, 18, 4836-4845.	5.3	4
59	<i>Ab initio</i> machine learning of phase space averages. Journal of Chemical Physics, 2022, 157, .	3.0	4
60	Efficiently searching extreme mechanical properties via boundless objective-free exploration and minimal first-principles calculations. Npj Computational Materials, 2022, 8, .	8.7	8
61	Heterogeneous catalyst design by generative adversarial network and first-principles based microkinetics. Scientific Reports, 2022, 12, .	3.3	3
62	Microscopic principles of chemical engineering after fossil fuels. , 2022, 1, 222-229.		1
63	Design, Synthesis, Docking, DFT, MD Simulation Studies of a New Nicotinamide-Based Derivative: In Vitro Anticancer and VEGFR-2 Inhibitory Effects. Molecules, 2022, 27, 4606.	3.8	69
64	Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chemical Reviews, 2022, 122, 13478-13515.	47.7	120
65	Machine Learning for Designing Mixed Metal Halides for Efficient Ammonia Separation and Storage. Journal of Physical Chemistry C, 2022, 126, 12184-12196.	3.1	5
66	Extending machine learning beyond interatomic potentials for predicting molecular properties. Nature Reviews Chemistry, 2022, 6, 653-672.	30.2	33
67	Accurate large-scale simulations of siliceous zeolites by neural network potentials. Npj Computational Materials, 2022, 8, .	8.7	12
68	Tackling Disorder in $\hat{I}^3 \hat{a} {\in} {\bf G}_a < sub>2 < /sub>0 < sub>3 < /sub>. Advanced Materials, 2022, 34, .$	21.0	10
69	Data-driven models for ground and excited states for Single Atoms on Ceria. Npj Computational Materials, 2022, 8, .	8.7	5
70	Quantitatively Determining Surface–Adsorbate Properties from Vibrational Spectroscopy with Interpretable Machine Learning. Journal of the American Chemical Society, 2022, 144, 16069-16076.	13.7	23
71	Machine learning-facilitated multiscale imaging for energy materials. Cell Reports Physical Science, 2022, 3, 101008.	5.6	4
72	Toward full ab initio modeling of soot formation in a nanoreactor. Carbon, 2022, 199, 87-95.	10.3	9
73	Heterogeneous catalysis mediated by light, electricity and enzyme via machine learning: Paradigms, applications and prospects. Chemosphere, 2022, 308, 136447.	8.2	9

#	Article	IF	CITATIONS
74	Density functional theory based computational investigations on the stability of highly active trimetallic PtPdCu nanoalloys for electrochemical oxygen reduction. Faraday Discussions, 0, , .	3.2	1
75	Revealing the thermal decomposition mechanism of RDX crystals by a neural network potential. Physical Chemistry Chemical Physics, 2022, 24, 25885-25894.	2.8	3
76	Fast exploration of potential energy surfaces with a joint venture of quantum chemistry, evolutionary algorithms and unsupervised learning. , 2022, 1, 790-805.		10
77	From Skeptic to Believer: The Power of Models. SSRN Electronic Journal, 0, , .	0.4	0
78	A machine learning approach for predicting the empirical polarity of organic solvents. New Journal of Chemistry, 2022, 46, 16981-16989.	2.8	6
79	Auto Machine Learning Assisted Preparation of Carboxylic Acid by <scp>TEMPOâ€Catalyzed</scp> Primary Alcohol Oxidation. Chinese Journal of Chemistry, 2023, 41, 143-150.	4.9	4
80	From skeptic to believer: The power of models. Tetrahedron, 2022, 123, 132984.	1.9	1
81	Machine Learning for Efficient Prediction of Protein Redox Potential: The Flavoproteins Case. Journal of Chemical Information and Modeling, 2022, 62, 4748-4759.	5.4	5
82	Orbital Mixer: Using Atomic Orbital Features for Basis-Dependent Prediction of Molecular Wavefunctions. Journal of Chemical Theory and Computation, 0, , .	5.3	2
83	Machine Learning Assisted Graphdiyne-Based Nanozyme Discovery. , 2022, 4, 2134-2142.		12
84	An online education course recommendation method based on knowledge graphs and reinforcement learning. Journal of Circuits, Systems and Computers, 0, , .	1.5	0
85	Machine Learning Accelerated Discovery of Promising Thermal Energy Storage Materials with High Heat Capacity. ACS Applied Materials & Interfaces, 2022, 14, 43277-43289.	8.0	10
86	Benchmarking PESâ€Learn's machine learning models predicting accurate potential energy surface for quantum scattering. International Journal of Quantum Chemistry, 2023, 123, .	2.0	8
87	Selective functionalization of hindered meta-C–H bond of o-alkylaryl ketones promoted by automation and deep learning. CheM, 2022, 8, 3275-3287.	11.7	12
89	Uncertainty quantification for predictions of atomistic neural networks. Chemical Science, 2022, 13, 13068-13084.	7.4	7
90	Leveraging genetic algorithms to maximise the predictive capabilities of the SOAP descriptor. Molecular Systems Design and Engineering, 2023, 8, 300-315.	3.4	4
91	Machine learning-driven advanced development of carbon-based luminescent nanomaterials. Journal of Materials Chemistry C, 2022, 10, 17431-17450.	5.5	6
92	Towards fully ab initio simulation of atmospheric aerosol nucleation. Nature Communications, 2022, 13, .	12.8	6

#	Article	IF	CITATIONS
93	SELFIES and the future of molecular string representations. Patterns, 2022, 3, 100588.	5.9	49
94	Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and <i>N</i> -Wave-Mixing Signals. Chemical Reviews, 2022, 122, 17339-17396.	47.7	19
95	AugLiChem: data augmentation library of chemical structures for machine learning. Machine Learning: Science and Technology, 2022, 3, 045015.	5.0	9
96	Ligand additivity relationships enable efficient exploration of transition metal chemical space. Journal of Chemical Physics, 2022, 157, .	3.0	6
97	Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields. Journal of Physical Chemistry Letters, 2022, 13, 10183-10189.	4.6	5
98	Obtaining Electronic Properties of Molecules through Combining Density Functional Tight Binding with Machine Learning. Journal of Physical Chemistry Letters, 2022, 13, 10132-10139.	4.6	10
99	Homogeneous Electrocatalytic Reduction of CO ₂ by a CrN ₃ O Complex: Electronic Coupling with a Redox-Active Terpyridine Fragment Favors Selectivity for CO. Inorganic Chemistry, 2022, 61, 16963-16970.	4.0	5
100	The fourth-order expansion of the exchange hole and neural networks to construct exchange–correlation functionals. Journal of Chemical Physics, 2022, 157, 171103.	3.0	1
101	Textâ€based representations with interpretable machine learning reveal structure–property relationships of polybenzenoid hydrocarbons. Journal of Physical Organic Chemistry, 2023, 36, .	1.9	6
102	How robust are modern graph neural network potentials in long and hot molecular dynamics simulations?. Machine Learning: Science and Technology, 2022, 3, 045010.	5.0	24
103	Modeling, optimization and understanding of adsorption process for pollutant removal via machine learning: Recent progress and future perspectives. Chemosphere, 2023, 311, 137044.	8.2	27
104	Atom hybridization of metallic elements: Emergence of subnano metallurgy for the post-nanotechnology. Coordination Chemistry Reviews, 2023, 474, 214826.	18.8	3
105	Excited-state response theory within the context of the coupled-cluster formalism. Physical Review A, 2022, 106, .	2.5	1
106	A New Theobromine-Based EGFRWT and EGFRT790M Inhibitor and Apoptosis Inducer: Design, Semi-Synthesis, Docking, DFT, MD Simulations, and In Vitro Studies. Processes, 2022, 10, 2290.	2.8	10
107	Crystal twins: self-supervised learning for crystalline material property prediction. Npj Computational Materials, 2022, 8, .	8.7	15
108	The Local Vibrational Mode Theory and Its Place in the Vibrational Spectroscopy Arena. Journal of Physical Chemistry A, 2022, 126, 8781-8798.	2.5	28
109	Neural network potentials for chemistry: concepts, applications and prospects. , 2023, 2, 28-58.		17
110	Molecular modeling, DFT studies and biological evaluation of methyl 2,8-dichloro-1,2-dihydroquinoline-3-carboxylate. Chemical Physics Impact, 2023, 6, 100146.	3.5	11

#	Article	IF	CITATIONS
111	Recent advances in machine learning for electronic excited state molecular dynamics simulations. Chemical Modelling, 2022, , 178-200.	0.4	0
112	Dataâ€Driven Machine Learning for Understanding Surface Structures of Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2023, 62, .	13.8	26
113	Dataâ€Driven Machine Learning for Understanding Surface Structures of Heterogeneous Catalysts. Angewandte Chemie, 2023, 135, .	2.0	5
114	Machine Learning-Based Analytical Systems: Food Forensics. ACS Omega, 2022, 7, 47518-47535.	3.5	4
115	Sustainability in Wood Products: A New Perspective for Handling Natural Diversity. Chemical Reviews, 2023, 123, 1889-1924.	47.7	15
116	Accurate global machine learning force fields for molecules with hundreds of atoms. Science Advances, 2023, 9, .	10.3	27
117	Machine Learning Potential Model Based on Ensemble Bispectrum Feature Selection and Its Applicability Analysis. Metals, 2023, 13, 169.	2.3	2
118	Multitask Deep Ensemble Prediction of Molecular Energetics in Solution: From Quantum Mechanics to Experimental Properties. Journal of Chemical Theory and Computation, 2023, 19, 659-668.	5.3	1
119	Categorical Variable Mapping Considerations in Classification Problems: Protein Application. Mathematics, 2023, 11, 279.	2.2	0
121	Inferring the Physics of Structural Evolution of Multicomponent Polymers via Machine-Learning-Accelerated Method. Chinese Journal of Polymer Science (English Edition), 2023, 41, 1377-1385.	3.8	1
122	Collective Variables for Conformational Polymorphism in Molecular Crystals. Journal of Physical Chemistry Letters, 2023, 14, 971-976.	4.6	5
123	Application of artificial intelligence and machine learning in natural products-based drug discovery. , 2023, , 335-355.		0
124	Adsorption at Nanoconfined Solid–Water Interfaces. Annual Review of Physical Chemistry, 2023, 74, 169-191.	10.8	5
125	Recent advances in probing electrode processes at well-defined electrified solid–liquid interfaces. , 2024, , 124-135.		Ο
126	Accurate and Interpretable Dipole Interaction Model-Based Machine Learning for Molecular Polarizability. Journal of Chemical Theory and Computation, 2023, 19, 1207-1217.	5.3	2
127	Machine Learning Advances in Predicting Peptide/Proteinâ€Protein Interactions Based on Sequence Information for Lead Peptides Discovery. Advanced Biology, 2023, 7, .	2.5	5
128	Revealing Structural and Physical Properties of Polylactide: What Simulation Can Do beyond the Experimental Methods. Polymer Reviews, 2024, 64, 80-118.	10.9	3
129	Machine Learning Interatomic Potentials and Long-Range Physics. Journal of Physical Chemistry A, 2023, 127, 2417-2431.	2.5	19

CITATION	DEDODT
CHAIION	KEPORT

#	Article	IF	CITATIONS
130	The Artificial Intelligence Explanatory Trade-Off on the Logic of Discovery in Chemistry. Philosophies, 2023, 8, 17.	0.7	0
131	Imaginary components of out-of-time-order correlator and information scrambling for navigating the learning landscape of a quantum machine learning model. Physical Review Research, 2023, 5, .	3.6	7
132	Uncertainty-driven dynamics for active learning of interatomic potentials. Nature Computational Science, 2023, 3, 230-239.	8.0	19
133	Aiming beyond slight increases in accuracy. Nature Reviews Chemistry, 2023, 7, 227-228.	30.2	4
134	Continuum Modeling with Functional Lennard–Jones Parameters for DNAâ€Graphene Interactions. Advanced Theory and Simulations, 0, , 2200896.	2.8	0
135	SchNetPack 2.0: A neural network toolbox for atomistic machine learning. Journal of Chemical Physics, 2023, 158, .	3.0	8
136	Machine-Learning-Based Prediction of the Glass Transition Temperature of Organic Compounds Using Experimental Data. ACS Omega, 2023, 8, 12298-12309.	3.5	4
137	Deep learning metal complex properties with natural quantum graphs. , 2023, 2, 618-633.		6
138	Carbon Dots for Electroluminescent Lightâ€Emitting Diodes: Recent Progress and Future Prospects. Advanced Materials, 2023, 35, .	21.0	26
139	A Perspective on Explanations of Molecular Prediction Models. Journal of Chemical Theory and Computation, 2023, 19, 2149-2160.	5.3	13
140	Atomistic modeling of the mechanical properties: the rise of machine learning interatomic potentials. Materials Horizons, 2023, 10, 1956-1968.	12.2	17
141	A Unified View of Vibrational Spectroscopy Simulation through Kernel Density Estimations. Journal of Physical Chemistry Letters, 2023, 14, 3691-3697.	4.6	0
142	Multifidelity Neural Network Formulations for Prediction of Reactive Molecular Potential Energy Surfaces. Journal of Chemical Information and Modeling, 2023, 63, 2281-2295.	5.4	2
143	An Expedited Route to Optical and Electronic Properties at Finite Temperature via Unsupervised Learning. Molecules, 2023, 28, 3411.	3.8	3
144	Application of machine learning to guide efficient metal leaching from spent lithium-ion batteries and comprehensively reveal the process parameter influences. Journal of Cleaner Production, 2023, 410, 137188.	9.3	3
145	Reconstructing Kernel-Based Machine Learning Force Fields with Superlinear Convergence. Journal of Chemical Theory and Computation, 0, , .	5.3	0
146	A cavity formation energy formula for hard spheres in simple electrolyte solutions. Physical Chemistry Chemical Physics, 2023, 25, 13080-13087.	2.8	1
147	Analyzing drop coalescence in microfluidic devices with a deep learning generative model. Physical Chemistry Chemical Physics, 2023, 25, 15744-15755.	2.8	1

#	Article	IF	CITATIONS
148	Computational investigations of stable multiple-cage-occupancy He clathrate-like hydrostructures. Physical Chemistry Chemical Physics, 2023, 25, 16844-16855.	2.8	2
149	Modeling molecular ensembles with gradient-domain machine learning force fields. , 2023, 2, 871-880.		3
150	Matrix of orthogonalized atomic orbital coefficients representation for radicals and ions. Journal of Chemical Physics, 2023, 158, .	3.0	3
151	Coupled cluster theory on modern heterogeneous supercomputers. Frontiers in Chemistry, 0, 11, .	3.6	0
152	Efficient interatomic descriptors for accurate machine learning force fields of extended molecules. Nature Communications, 2023, 14, .	12.8	2
153	Predicting the ET(30) parameter of organic solvents via machine learning. Chemical Physics Letters, 2023, 826, 140672.	2.6	2
154	Reaction network simplification and key routes extraction for steam cracking process. Fuel, 2023, 352, 129030.	6.4	2
155	Energy Forecasting Model for Ground Movement Operation in Green Airport. Energies, 2023, 16, 5008.	3.1	0
156	Machine Learning Methods for Small Data Challenges in Molecular Science. Chemical Reviews, 2023, 123, 8736-8780.	47.7	36
157	Accelerating the Discovery of g-C ₃ N ₄ -Supported Single Atom Catalysts for Hydrogen Evolution Reaction: A Combined DFT and Machine Learning Strategy. ACS Applied Energy Materials, 2023, 6, 5598-5606.	5.1	11
158	Characterising the glass transition temperature-structure relationship through a recurrent neural network. Journal of Non-Crystalline Solids: X, 2023, 18, 100185.	1.2	3
159	Unimolecular dissociation of C6H6–C6H5Cl, C6H6–C6H3Cl3, and C6H6–C6Cl6 complexes using machine learning approach. Journal of Chemical Physics, 2023, 158, .	3.0	1
160	Oxide– and Silicate–Water Interfaces and Their Roles in Technology and the Environment. Chemical Reviews, 2023, 123, 6413-6544.	47.7	20
161	Nonadiabatic Derivative Couplings Calculated Using Information of Potential Energy Surfaces without Wavefunctions: Ab Initio and Machine Learning Implementations. Molecules, 2023, 28, 4222.	3.8	3
162	Another Torture Track for Quantum Chemistry: Reinvestigation of the Benzaldehyde Amidation by Nitrogenâ€Atom Transfer from Platinum(II) and Palladium(II) Metallonitrenes. Israel Journal of Chemistry, 0, , .	2.3	1
163	Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case. Molecules, 2023, 28, 4477.	3.8	0
164	Probing the origin of higher efficiency of terphenyl phosphine over the biaryl framework in Pd-catalyzed C-N coupling: A combined DFT and machine learning study. , 2023, 1, 100005.		0
165	Transfer-learned potential energy surfaces: Toward microsecond-scale molecular dynamics simulations in the gas phase at CCSD(T) quality. Journal of Chemical Physics, 2023, 158, .	3.0	4

#	Article	IF	CITATIONS
166	Screening outstanding mechanical properties and low lattice thermal conductivity using global attention graph neural network. Energy and Al, 2023, 14, 100286.	10.6	3
167	Analysis of Density Contributions of Molecular Substructures. Energy & Fuels, 2023, 37, 9233-9246.	5.1	0
168	The combination of multi-approach studies to explore the potential therapeutic mechanisms of imidazole derivatives as an MCF-7 inhibitor in therapeutic strategies. Frontiers in Chemistry, 0, 11, .	3.6	5
169	Efficient generation of stable linear machine-learning force fields with uncertainty-aware active learning. Machine Learning: Science and Technology, 2023, 4, 035005.	5.0	0
170	Towards Machine Learning in Heterogeneous Catalysis—A Case Study of 2,4-Dinitrotoluene Hydrogenation. International Journal of Molecular Sciences, 2023, 24, 11461.	4.1	1
171	An equivariant generative framework for molecular graph-structure Co-design. Chemical Science, 2023, 14, 8380-8392.	7.4	4
172	Prediction of Enzyme Catalysis by Computing Reaction Energy Barriers via Steered QM/MM Molecular Dynamics Simulations and Machine Learning. Journal of Chemical Information and Modeling, 0, , .	5.4	1
173	Unlocking the Potential: Predicting Redox Behavior of Organic Molecules, from Linear Fits to Neural Networks. Journal of Chemical Theory and Computation, 2023, 19, 4796-4814.	5.3	1
174	Open-Source Machine Learning in Computational Chemistry. Journal of Chemical Information and Modeling, 2023, 63, 4505-4532.	5.4	3
175	Developing machine learning approaches to identify candidate persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances based on molecular structure. Water Research, 2023, 244, 120470.	11.3	3
176	Machine learning-assisted selection of adsorption-based carbon dioxide capture materials. Journal of Environmental Chemical Engineering, 2023, 11, 110732.	6.7	1
177	A deep learning framework for accurate reaction prediction and its application on high-throughput experimentation data. Journal of Cheminformatics, 2023, 15, .	6.1	4
178	Data efficiency and extrapolation trends in neural network interatomic potentials. Machine Learning: Science and Technology, 2023, 4, 035031.	5.0	4
180	Section Introduction: Molecular Dynamics Simulations and Reaction Rates. , 2024, , 315-328.		0
181	"Freedom of Design" in Chemical Compound Space: Towards Rational <i>in Silico</i> Design of Molecules with Targeted Quantum-Mechanical Properties. Chemical Science, 0, , .	7.4	0
182	Empowering Electrochemical Biosensors with AI: Overcoming Interference for Precise Dopamine Detection in Complex Samples. Advanced Intelligent Systems, 2023, 5, .	6.1	3
183	Explainable Machine-Learning Approach for Revealing Complex Synthesis Path–Property Relationships of Nanomaterials. Nanoscale, 0, , .	5.6	0
184	Improving predictions and understanding of primary and ultimate biodegradation rates with machine learning models. Science of the Total Environment, 2023, 904, 166623.	8.0	1

#	Article	IF	CITATIONS
185	Automatic identification of chemical moieties. Physical Chemistry Chemical Physics, 2023, 25, 26370-26379.	2.8	4
186	Elucidation of collagen amino acid interactions with metals (B, Ni) encapsulated graphene/PEDOT material: Insight from DFT calculations and MD simulation. Journal of Molecular Liquids, 2023, 390, 122950.	4.9	17
187	Recent advances and applications of machine learning in electrocatalysis. , 0, 3, .		1
188	Toward a simple yet efficient cost function for the optimization of Gaussian process regression model hyperparameters. AIP Advances, 2023, 13, .	1.3	1
189	Hyperactive learning for data-driven interatomic potentials. Npj Computational Materials, 2023, 9, .	8.7	12
190	Generative organic electronic molecular design informed by quantum chemistry. Chemical Science, 2023, 14, 11045-11055.	7.4	0
191	Investigating the performance of N-type janus 2D WSSe monolayer photo-detectors by enhancing its optoelectronic properties. Computational Condensed Matter, 2023, 37, e00844.	2.1	0
192	Toward Property-Based Regulation. Environmental Science & amp; Technology, 2023, 57, 11718-11730.	10.0	2
193	Efficient Scale-Up of a Solvent-Free Photooxidation Using a High-Power LED-Based Photomicroreactor. Industrial & Engineering Chemistry Research, 2023, 62, 13811-13824.	3.7	0
194	Photodynamics With Neural Networks and Kernel Ridge Regression. , 2024, , 413-426.		0
195	Intermolecular pair potentials and force fields. , 2024, , 51-116.		0
196	Exploring the potential of Al-Chatbots in organic chemistry: An assessment of ChatGPT and Bard. Computers and Education Artificial Intelligence, 2023, 5, 100170.	10.8	1
197	Equivariant Graph Neural Networks for Toxicity Prediction. Chemical Research in Toxicology, 0, , .	3.3	4
198	Advancing Accurate and Efficient Surface Behavior Modeling of Al Clusters with Machine Learning Potential. Journal of Physical Chemistry C, 2023, 127, 19115-19126.	3.1	0
199	Machine Learning-Assisted Low-Dimensional Electrocatalysts Design for Hydrogen Evolution Reaction. Nano-Micro Letters, 2023, 15, .	27.0	7
200	Explainable Supervised Machine Learning Model To Predict Solvation Gibbs Energy. Journal of Chemical Information and Modeling, 0, , .	5.4	1
201	Resolving Structure of ssDNA in Solution by Fusing Molecular Simulations and Scattering Experiments with Machine Learning. Advanced Theory and Simulations, 2023, 6, .	2.8	0
202	Accelerated discovery of multi-elemental reverse water-gas shift catalysts using extrapolative machine learning approach. Nature Communications, 2023, 14, .	12.8	2

#	Article	IF	CITATIONS
203	Deep learning-based automatic action extraction from structured chemical synthesis procedures. PeerJ Computer Science, 0, 9, e1511.	4.5	1
204	Machine Learning-Based Analysis of Molar and Enantiomeric Ratios and Reaction Yields Using Images of Solid Mixtures. Industrial & Engineering Chemistry Research, 2023, 62, 13790-13798.	3.7	0
205	Protein classification by autofluorescence spectral shape analysis using machine learning. Talanta, 2024, 267, 125167.	5.5	0
206	Algorithm and simulation study of oil painting classification based on visual perception and improved embedded learning. Journal of Intelligent and Fuzzy Systems, 2023, , 1-11.	1.4	0
207	HT Model: Using the Molecular Transformer for Predicting Hydrotreating Reactions. Energy & Fuels, 2023, 37, 14922-14935.	5.1	0
208	<i>In Silico</i> Prediction of the Temperature-Dependent Decomposition Rate Coefficients of Symmetrical Azo Compounds. Industrial & amp; Engineering Chemistry Research, 0, , .	3.7	1
209	A Perspective on Sustainable Computational Chemistry Software Development and Integration. Journal of Chemical Theory and Computation, 2023, 19, 7056-7076.	5.3	4
210	An Introduction to Machine Learning in Molecular Sciences. Challenges and Advances in Computational Chemistry and Physics, 2023, , 1-19.	0.6	0
211	Structure-Free Mendeleev Encodings of Material Compounds for Machine Learning. Chemistry of Materials, 0, , .	6.7	0
212	Development of scalable and generalizable machine learned force field for polymers. Scientific Reports, 2023, 13, .	3.3	1
213	Computational Chemistry as Applied in Environmental Research: Opportunities and Challenges. ACS ES&T Engineering, 0, , .	7.6	1
214	Multi-fidelity Bayesian Optimization of Covalent Organic Frameworks for Xenon/Krypton Separations. , 0, , .		2
215	Applications of MATLAB in Natural Sciences: A Comprehensive Review. , 2023, 1, 1006-1015.		0
216	Investigating the structure, bonding, and energy decomposition analysis of group 10 transition metal carbonyls with substituted terminal germanium chalcogenides [M(CO)3GeX] (M = Ni, Pd, and Pt; X  29, .	5= O, 1.8	S,) Tj ETQc1
217	Combining Force Fields and Neural Networks for an Accurate Representation of Chemically Diverse Molecular Interactions. Journal of the American Chemical Society, 2023, 145, 23620-23629.	13.7	3
218	Predictions of photophysical properties of phosphorescent platinum(<scp>II</scp>) complexes based on ensemble machine learning approach. Journal of Computational Chemistry, 0, , .	3.3	0
219	Deciphering Photoreceptors Through Atomistic Modeling from Light Absorption to Conformational Response. Journal of Molecular Biology, 2024, 436, 168358.	4.2	2
220	Stress and heat flux via automatic differentiation. Journal of Chemical Physics, 2023, 159, .	3.0	0

#	Article	IF	CITATIONS
221	Analysis of good and bad fingerprint for identification of NIR based optical frameworks using Monte Carlo method. Microchemical Journal, 2024, 196, 109549.	4.5	0
222	MultiXC-QM9: Large dataset of molecular and reaction energies from multi-level quantum chemical methods. Scientific Data, 2023, 10, .	5.3	2
223	Accelerated design of stable halide perovskite heterostructure film in hostile condition via surface modifier. Organic Electronics, 2024, 124, 106945.	2.6	0
224	Machine Learning Accelerated Discovery of Subnanoparticles for Electrocatalytic Hydrogen Evolution. Chemistry Letters, 2023, 52, 828-831.	1.3	0
225	Computational and data-driven modelling of solid polymer electrolytes. , 2023, 2, 1660-1682.		0
226	Integrated Molecular Modeling and Machine Learning for Drug Design. Journal of Chemical Theory and Computation, 2023, 19, 7478-7495.	5.3	5
227	Rate-enhancing PETase mutations determined through DFT/MM molecular dynamics simulations. New Journal of Chemistry, 2023, 48, 45-54.	2.8	1
228	High Specific and Rapid Detection of Cannabidiol by Gold Nanoparticle-Based Paper Sensor. Biosensors, 2023, 13, 960.	4.7	0
229	Confining He Atoms in Diverse Ice-Phases: Examining the Stability of He Hydrate Crystals through DFT Approaches. Molecules, 2023, 28, 7893.	3.8	0
230	Unlocking the predictive power of quantum-inspired representations for intermolecular properties in machine learning. , 0, , .		0
231	Benchmarking Basis Sets for Density Functional Theory Thermochemistry Calculations: Why Unpolarized Basis Sets and the Polarized 6-311G Family Should Be Avoided. Journal of Physical Chemistry A, 2023, 127, 10295-10306.	2.5	0
232	Force Field Analysis Software and Tools (FFAST): Assessing Machine Learning Force Fields under the Microscope. Journal of Chemical Theory and Computation, 2023, 19, 8706-8717.	5.3	0
233	A present scenario of the computational approaches for ternary organic solar cells. Journal of Renewable and Sustainable Energy, 2023, 15, .	2.0	0
234	Computer-Assisted Drug Discovery of a Novel Theobromine Derivative as an EGFR Protein-Targeted Apoptosis Inducer. Evolutionary Bioinformatics, 2023, 19, .	1.2	0
235	Local Descriptors-Based Machine Learning Model Refined by Cluster Analysis for Accurately Predicting Adsorption Energies on Bimetallic Alloys. Journal of Materials Chemistry A, 0, , .	10.3	0
236	A new anticancer derivative of the natural alkaloid, theobromine, as an EGFR inhibitor and apoptosis inducer. Theoretical Chemistry Accounts, 2024, 143, .	1.4	0
237	Integrating Machine Learning and Color Chemistry: Developing a High-School Curriculum toward Real-World Problem-Solving. Journal of Chemical Education, 2024, 101, 675-681.	2.3	0
238	A Photochemical Strategy for the Conversion of Nitroarenes into Rigidified Pyrrolidine Analogues. Journal of the American Chemical Society, 2023, 145, 27810-27820.	13.7	2

#	Article	IF	Citations
239	Nextâ€Generation Vitrimers Design through Theoretical Understanding and Computational Simulations. Advanced Science, 0, , .	11.2	0
240	Recovery of Brine Resources Through Crown-Passivated Graphene, Silicene, and Boron Nitride Nanosheets Based on Machine-Learning Structural Predictions. ACS Applied Nano Materials, 2023, 6, 23207-23221.	5.0	2
241	Nanostructured catalysts for CO2 reduction: systematic insights and emerging strategies. Research on Chemical Intermediates, 2024, 50, 195-217.	2.7	0
242	Molecular Hessian matrices from a machine learning random forest regression algorithm. Journal of Chemical Physics, 2023, 159, .	3.0	0
243	Phase Selection Rules of Multiâ \in Principal Element Alloys. Advanced Materials, 0, , .	21.0	0
244	Optimization of microwave-assisted extraction in the purification of triglycerides from non-edible crude Calophyllum inophyllum oil as biodiesel feedstock using artificial intelligence. South African Journal of Chemical Engineering, 2024, 47, 312-321.	2.4	0
245	Molecular Simulation Meets Machine Learning. Journal of Chemical & Engineering Data, 0, , .	1.9	1
247	Intelligent leaching rare earth elements from waste fluorescent lamps. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
248	Atomic Charge Dependency of Spiropyran/Merocyanine Adsorption as a Precursor to Surface Isomerization Reactions. ACS Omega, 0, , .	3.5	0
249	A Critical Assessment on Calculating Vibrational Spectra in Nanostructured Materials. Journal of Chemical Theory and Computation, 0, , .	5.3	0
250	The emergence of machine learning force fields in drug design. Medicinal Research Reviews, 2024, 44, 1147-1182.	10.5	1
251	Energy Decomposition Scheme for Rectangular Graphene Flakes. Nanomaterials, 2024, 14, 181.	4.1	0
252	Computational chemistry of natural product analogues. , 2024, , 395-437.		0
253	Harvesting Chemical Understanding with Machine Learning and Quantum Computers. ACS Physical Chemistry Au, 2024, 4, 135-142.	4.0	0
254	Dynamical Origin of Rebound versus Dissociation Selectivity during Fe-Oxo-Mediated C–H Functionalization Reactions. Journal of the American Chemical Society, 2024, 146, 2452-2464.	13.7	1
255	Development of chemometric-assisted supercritical fluid extraction of effective and natural tyrosinase inhibitor from Syzygium aqueum leaves. International Journal of Biological Macromolecules, 2024, 258, 129168.	7.5	0
256	Deep kernel methods learn better: from cards to process optimization. Machine Learning: Science and Technology, 2024, 5, 015012.	5.0	0
257	Efficient design and synthesis of an amorphous conjugated polymer network for a metal-free electrocatalyst of hydrogen evolution reaction. Journal of Materials Chemistry A, 2024, 12, 3294-3303.	10.3	0

	CITATION R	CITATION REPORT		
ARTICLE In Silico Therapeutic Study: The Next Frontier in the Fight against SARS-CoV-2 and Its \ 54-69.	/ariants. , 2024, 3,	IF	Citations 0	
SPA ^H M(a,b): Encoding the Density Information from Guess Hamiltonian i Machine Learning Representations. Journal of Chemical Theory and Computation, 202	n Quantum 4, 20, 1108-1117.	5.3	0	
Prediction of Hydrogen Abstraction Rate Constants at the Allylic Site between Alkenes Multiple Machine Learning Models. Journal of Physical Chemistry A, 2024, 128, 761-77		2.5	1	
Applying graph neural network models to molecular property prediction using high-qua experimental data. , 2024, 2, 100050.	ality		0	
Accelerated exploration of heterogeneous CO2 hydrogenation catalysts by Bayesian-o high-throughput and automated experimentation. Chem Catalysis, 2024, 4, 100888.	ptimized	6.1	0	
Operator-Induced Structural Variable Selection for Identifying Materials Genes. Journal American Statistical Association, 2024, 119, 81-94.	of the	3.1	0	
Artificial intelligence in catalysis. , 2024, , 167-204.			0	
Mixtures Recomposition by Neural Nets: A Multidisciplinary Overview. Journal of Chem Information and Modeling, 2024, 64, 597-620.	ical	5.4	1	
Exploring Chemical Space Using <i>Ab Initio</i> Hyperreactor Dynamics. ACS Central 302-314.	Science, 2024, 10,	11.3	0	
Leveraging DFT and Molecular Fragmentation for Chemically Accurate p <i>K</i> _{ Prediction Using Machine Learning. Journal of Chemical Information and Modeling, 20.}	a 24, 64, 712-723.	5.4	0	
Machine learning prediction of state-to-state rate constants for astrochemistry. , 2024	, 2, 100052.		0	
Developing Cheap but Useful Machine Learning-Based Models for Investigating High-E Catalysts. Langmuir, 2024, 40, 3691-3701.	ntropy Alloy	3.5	0	
Perspectives on Development of Optoelectronic Materials in Artificial Intelligence Age. Asian Journal, 2024, 19, .	Chemistry - an	3.3	0	
Some Recent Advances in Density-Based Reactivity Theory. Journal of Physical Chemist 1183-1196.	ry A, 2024, 128,	2.5	0	

272	Some Recent Advances in Density-Based Reactivity Theory. Journal of Physical Chemistry A, 2024, 128, 1183-1196.	2.5	0
273	LUMIOS – Label using machine in organic samples – A software for dereplication, molecular docking, and combined machine and deep learning. Expert Systems With Applications, 2024, 248, 123447.	7.6	0
274	Accelerating materials language processing with large language models. Communications Materials, 2024, 5, .	6.9	0
275	Chest X-ray Images for Lung Disease Detection Using Deep Learning Techniques: A Comprehensive Survey. Archives of Computational Methods in Engineering, 0, , .	10.2	0
276	Machine Learning and Deep Learning in Synthetic Biology: Key Architectures, Applications, and Challenges. ACS Omega, 2024, 9, 9921-9945.	3.5	0

#

258

261

263

264

265

267

269

271

#	Article	IF	CITATIONS
277	Evaluation of Rate Coefficients in the Gas Phase Using Machine-Learned Potentials. Journal of Physical Chemistry A, 2024, 128, 1958-1971.	2.5	0
278	Artificial molecular pumps. Nature Reviews Methods Primers, 2024, 4, .	21.2	0
279	Design strategy of microbially produced semiconductor maquettes of Cu2Se4SnZn8+ crystal alloy for enhanced harmonic generations. Computational and Theoretical Chemistry, 2024, 1234, 114533.	2.5	0
280	Machine Learning Isotropic <i>g</i> Values of Radical Polymers. Journal of Chemical Theory and Computation, 2024, 20, 2592-2604.	5.3	0
281	Computational phytochemistry: An overview. , 2024, , 1-58.		0
282	Interpreting chemisorption strength with AutoML-based feature deletion experiments. Proceedings of the United States of America, 2024, 121, .	7.1	0
283	Extending the definition of atomic basis sets to atoms with fractional nuclear charge. Journal of Chemical Physics, 2024, 160, .	3.0	0
284	Pushing the limits of OFDFT with neural networks. Nature Computational Science, 2024, 4, 163-164.	8.0	0
285	Magnetic Ionic Liquids: Current Achievements and Future Perspectives with a Focus on Computational Approaches. Chemical Reviews, 2024, 124, 3392-3415.	47.7	0
286	Renin imprinted Poly(methyldopa) for biomarker detection and disease therapy. Biosensors and Bioelectronics, 2024, 254, 116225.	10.1	0
287	An Unsupervised Machine Learning Approach for the Automatic Construction of Local Chemical Descriptors. Journal of Chemical Information and Modeling, 2024, 64, 3059-3079.	5.4	0