A randomized controlled trial to optimize patient‧\second

International Journal of Stroke 17, 689-693

DOI: 10.1177/17474930211035032

Citation Report

#	Article	IF	CITATIONS
1	Endovascular Thrombectomy Versus Medical Therapy Alone in Patients With Large Core Based on Computed Tomography Perfusion. , $2021,1,.$		0
2	Advanced imaging in acute ischemic stroke. Current Opinion in Neurology, 2021, Publish Ahead of Print, .	3.6	4
3	Updating estimates of the number of UK stroke patients eligible for endovascular thrombectomy: incorporating recent evidence to facilitate service planning. European Stroke Journal, 2021, 6, 349-356.	5.5	8
4	Benefit and risk of intravenous alteplase in patients with acute large vessel occlusion stroke and low ASPECTS. Journal of NeuroInterventional Surgery, 2023, 15, 8-13.	3.3	15
5	Current State of the Art in Endovascular Stroke Treatment. Neurologic Clinics, 2022, 40, 309-319.	1.8	1
6	Patient and procedure selection for mechanical thrombectomy: Toward personalized medicine and the role of artificial intelligence. Journal of Neuroimaging, 2022, 32, 798-807.	2.0	5
7	Endovascular Thrombectomy for Large Cerebral Infarction: How Low Should We Go?. Anaesthesia, Critical Care & Dy: Pain Medicine, 2022, , 101104.	1.4	1
8	Characterizing Reasons for Stroke Thrombectomy Ineligibility Among Potential Candidates Transferred in a Hubâ€andâ€Spoke Network. , 2022, 2, .		3
9	Assessment of Irreversible Tissue Injury in Extensive Ischemic Strokeâ€"Potential of Quantitative Cerebral Perfusion. Translational Stroke Research, 2023, 14, 562-571.	4.2	7
10	Endovascular therapy in acute anterior circulation large vessel occlusive patients with a large infarct core (ANGEL-ASPECT): protocol of a multicentre randomised trial. Stroke and Vascular Neurology, 2023, 8, 169-174.	3.3	6
11	Venous Outflow Profiles Are Linked to Clinical Outcomes in Ischemic Stroke Patients with Extensive Baseline Infarct. Journal of Stroke, 2022, 24, 372-382.	3.2	11
12	Author Response: Accuracy of CT Perfusion–Based Core Estimation of Follow-up Infarction: Effects of Time Since Last Known Well. Neurology, 2022, 99, 633-633.	1.1	O
13	Reader Response: Accuracy of CT Perfusion–Based Core Estimation of Follow-up Infarction: Effects of Time Since Last Known Well. Neurology, 2022, 99, 632-633.	1.1	0
14	Thrombectomy Outcomes With General vs Nongeneral Anesthesia. Neurology, 2023, 100, .	1.1	3
15	Significance of Baseline Ischemic Core Volume on Stroke Outcome After Endovascular Therapy in Patients Age ≥75 Years: A Pooled Analysis of Individual Patient Data From 7 Trials. Stroke, 2022, 53, 3564-3571.	2.0	8
16	Mechanical thrombectomy for large vessel occlusion strokes beyond 24 hours. Journal of NeuroInterventional Surgery, 2023, 15, e331-e336.	3.3	5
17	Association of Endovascular Thrombectomy vs Medical Management With Functional and Safety Outcomes in Patients Treated Beyond 24 Hours of Last Known Well. JAMA Neurology, 2023, 80, 172.	9.0	26
18	Acute and Interventional Treatments. Stroke, 2023, 54, 591-594.	2.0	4

#	Article	IF	CITATIONS
19	Trial of Endovascular Thrombectomy for Large Ischemic Strokes. New England Journal of Medicine, 2023, 388, 1259-1271.	27.0	206
20	Editorial: Management of acute stroke with large core. Frontiers in Neurology, 0, 14, .	2.4	O
21	Trial of Endovascular Therapy for Acute Ischemic Stroke with Large Infarct. New England Journal of Medicine, 2023, 388, 1272-1283.	27.0	205
22	Penumbra salvage in extensive stroke: exploring limits for reperfusion therapy. Journal of NeuroInterventional Surgery, 2023, 15, e419-e425.	3.3	O
23	Specialist Perspectives on the Imaging Selection of Large Vessel Occlusion in the Late Window. Clinical Neuroradiology, $0, \dots$	1.9	1
24	Does MRI add value in selecting patients for thrombectomy beyond the 6 h window? A matched-control analysis. Frontiers in Neurology, 0, 14, .	2.4	1
25	Time-to-treatment with endovascular thrombectomy in patients with large core ischemic stroke: the †late window paradox'. Journal of NeuroInterventional Surgery, 2023, 15, 733-734.	3.3	1
26	Endovascular Thrombectomy for Acute Large Ischemic Strokes. New England Journal of Medicine, 2023, 389, 88-90.	27.0	2
27	Endovascular Thrombectomy for Anterior Circulation Large Vessel Occlusion Stroke: An Evolution of Trials. Seminars in Neurology, 2023, 43, 397-407.	1.4	7
28	Endovascular therapy in acute ischemic stroke with poor reperfusion is associated with worse outcomes compared with best medical management: a HERMES substudy. Journal of NeuroInterventional Surgery, 0, , jnis-2023-020411.	3.3	2
29	Mechanical thrombectomy in low Alberta stroke program early CT score (ASPECTS) in hyperacute stroke \hat{e} a systematic review and meta-analysis. British Journal of Radiology, 0, , .	2.2	0
30	Endovascular Thrombectomy for Large Ischemic Stroke Across Ischemic Injury and Penumbra Profiles. JAMA - Journal of the American Medical Association, 2024, 331, 750.	7.4	2
31	Endovascular Thrombectomy Treatment Effect in Direct vs Transferred Patients With Large Ischemic Strokes. JAMA Neurology, 2024, 81, 327.	9.0	0
32	Endovascular thrombectomy plus medical care versus medical care alone for large ischaemic stroke: 1-year outcomes of the SELECT2 trial. Lancet, The, 2024, 403, 731-740.	13.7	2
33	Clinical relevance of intracranial hemorrhage after thrombectomy versus medical management for large core infarct: a secondary analysis of the SELECT2 randomized trial. Journal of NeuroInterventional Surgery, 0, , jnis-2023-021219.	3.3	0