Bioinspired, Highly Adhesive, Nanostructured Polymer Fire-Extinguishing Thermal Insulation Foam

ACS Nano 15, 11667-11680 DOI: 10.1021/acsnano.1c02254

Citation Report

#	Article	IF	CITATIONS
1	Green fabrication of flame retardant and superhydrophobic materials with application in oilâ€water separation. Polymers for Advanced Technologies, 2021, 32, 4926-4939.	1.6	2
2	Preparation and properties of aniline chainâ€extended thermoplastic epoxy resin using triphenylphosphine as catalyst. Polymers for Advanced Technologies, 0, , .	1.6	3
3	A reactive copper-organophosphate-MXene heterostructure enabled antibacterial, self-extinguishing and mechanically robust polymer nanocomposites. Chemical Engineering Journal, 2022, 430, 132712.	6.6	64
4	Fully Biobased Surface-Functionalized Microcrystalline Cellulose <i>via</i> Green Self-Assembly toward Fire-Retardant, Strong, and Tough Epoxy Biocomposites. ACS Sustainable Chemistry and Engineering, 2021, 9, 13595-13605.	3.2	72
5	Synthesis of a bio-based flame retardant via a facile strategy and its synergistic effect with ammonium polyphosphate on the flame retardancy of polylactic acid. Polymer Degradation and Stability, 2021, 191, 109684.	2.7	52
6	Intumescent polybutylene succinate: Ethylenediamine phosphate and synergists. Polymer Degradation and Stability, 2021, 192, 109707.	2.7	15
7	Efficient flame-retardant hybrid coatings on wood plastic composites by layer-by-layer assembly. Journal of Cleaner Production, 2021, 321, 128949.	4.6	14
8	Simultaneous exfoliation and functionalization of MoS2 nanosheets by molecular-designed poly(ionic) Tj ETQq1 1 of polyacrylonitrile composite fiber. Composites Communications, 2021, 27, 100902.	0.784314 3.3	4 rgBT /Ovei 14
9	Integrated hierarchical macrostructures of flexible basalt fiber composites with tunable electromagnetic interference (EMI) shielding and rapid electrothermal response. Composites Part B: Engineering, 2021, 224, 109193.	5.9	46
10	MXene based core-shell flame retardant towards reducing fire hazards of thermoplastic polyurethane. Composites Part B: Engineering, 2021, 226, 109363.	5.9	86
11	Functionalizing Ti3C2Tx for enhancing fire resistance and reducing toxic gases of flexible polyurethane foam composites with reinforced mechanical properties. Journal of Colloid and Interface Science, 2022, 607, 1300-1312.	5.0	97
12	In Situ Assembly of DNA/Graphene Oxide Nanoplates to Reduce the Fire Threat of Flexible Foams. Advanced Materials Interfaces, 2021, 8, 2101083.	1.9	14
13	B-N-P-linked covalent organic frameworks for efficient flame retarding and toxic smoke suppression of polyacrylonitrile composite fiber. Chemical Engineering Journal, 2022, 430, 133120.	6.6	24
14	Properties of flame-retardant cotton fabrics: Combustion behavior, thermal stability and mechanism of Si/P/N synergistic effect. Industrial Crops and Products, 2021, 173, 114157.	2.5	29
15	High performance epoxy resin composites modified with multifunctional thiophene/phosphaphenanthrene-based flame retardant: Excellent flame retardance, strong mechanical property and high transparency. Composites Part B: Engineering, 2021, 227, 109392.	5.9	91
16	Synthesis and application of poly (cyclotriphosphazeneâ€resveratrol) microspheres for enhancing flame retardancy of poly (ethylene terephthalate). Polymers for Advanced Technologies, 2022, 33, 658-671.	1.6	8
17	Leaf vein-inspired engineering of MXene@SrSn(OH)6 nanorods towards super-tough elastomer nanocomposites with outstanding fire safety. Composites Part B: Engineering, 2022, 228, 109425.	5.9	33
18	Fire-retardant unsaturated polyester thermosets: The state-of-the-art, challenges and opportunities. Chemical Engineering Journal, 2022, 430, 132785.	6.6	69

#	ARTICLE	IF	CITATIONS
19	Sulfonated Block Ionomers Enable Transparent, Fire-Resistant, Tough yet Strong Polycarbonate. Chemical Engineering Journal, 2022, 433, 133264.	6.6	31
20	Advances and challenges in eco-benign fire-retardant polylactide. Materials Today Physics, 2021, 21, 100568.	2.9	23
21	Facile fabrication of single-component flame-retardant epoxy resin with rapid curing capacity and satisfied thermal resistance. Reactive and Functional Polymers, 2022, 170, 105103.	2.0	21
22	Flexible, mechanically robust and self-extinguishing MXene/wood composite for efficient electromagnetic interference shielding. Composites Part B: Engineering, 2022, 229, 109460.	5.9	59
23	Controllable dimensions and regular geometric architectures from self-assembly of lithium-containing polyhedral oligomeric silsesquioxane: Build for enhancing the fire safety of epoxy resin. Composites Part B: Engineering, 2022, 229, 109483.	5.9	12
24	Bioinspired three-dimensional and multiple adsorption effects toward high lubricity of solvent-free graphene-based nanofluid. Carbon, 2022, 188, 166-176.	5.4	21
25	Inspired by placoid scale to fabricate MXene derivative biomimetic structure on the improvement of interfacial compatibility, mechanical property, and fire safety of epoxy nanocomposites. Chemical Engineering Journal, 2022, 431, 133489.	6.6	53
26	Graphene oxide/chitosan nanoâ€coating with ultrafast fireâ€alarm response and flameâ€retardant property. Polymers for Advanced Technologies, 2022, 33, 795-806.	1.6	18
27	Advanced Flameâ€Retardant Methods for Polymeric Materials. Advanced Materials, 2022, 34, e2107905.	11.1	209
28	Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding. Journal of Materials Science and Technology, 2022, 111, 66-75.	5.6	68
29	Femtosecond Laser Precision Engineering: From Micron, Submicron, to Nanoscale. Ultrafast Science, 2021, 2021, .	5.8	90
30	A highly fire-retardant rigid polyurethane foam capable of fire-warning. Composites Communications, 2022, 29, 101046.	3.3	54
31	Recent advances in fire-retardant rigid polyurethane foam. Journal of Materials Science and Technology, 2022, 112, 315-328.	5.6	67
32	High-Performance TPE-S Modified by a Flame-Retardant System Based on Black Phosphorus Nanosheets. ACS Omega, 2022, 7, 4224-4233.	1.6	7
33	Synthesis of sugar gourd-like metal organic framework-derived hollow nanocages nickel molybdate@cobalt-nickel layered double hydroxide for flame retardant polyurea. Journal of Colloid and Interface Science, 2022, 616, 234-245.	5.0	19
34	Synergistic effect of green phosphorus-containing bio-based material and two-dimensional layered material composite on flame-retardant property of polyvinyl alcohol. Thermochimica Acta, 2022, 707, 179118.	1.2	14
35	Flame Retardancy, Thermal and Mechanical Properties of Novel Intumescent Flame Retardant/MXene/Poly(Vinyl Alcohol) Nanocomposites. Nanomaterials, 2022, 12, 477.	1.9	14
36	A lava-inspired micro/nano-structured ceramifiable organic-inorganic hybrid fire-extinguishing coating. Matter, 2022, 5, 911-932.	5.0	96

#	Article	IF	CITATIONS
37	Graphite-like Carbon Nitride/Polyphosphoramide Nanohybrids for Enhancement on Thermal Stability and Flame Retardancy of Thermoplastic Polyurethane Elastomers. ACS Applied Polymer Materials, 2022, 4, 121-128.	2.0	14
38	Fire-safe, mechanically strong and tough thermoplastic Polyurethane/MXene nanocomposites with exceptional smoke suppression. Materials Today Physics, 2022, 22, 100607.	2.9	52
39	Bio-inspired, sustainable and mechanically robust graphene oxide-based hybrid networks for efficient fire protection and warning. Chemical Engineering Journal, 2022, 439, 134516.	6.6	81
40	SWCNT-Encapsulated Phosphorus-Grafted Stearyl Alcohol as a Flame-Retardant Phase-Change Material with Superior Thermal Properties. ACS Applied Energy Materials, 2022, 5, 1869-1882.	2.5	5
41	Scalable and Heavy Foam Functionalization by Electrodeâ€Inspired Sticky Jammed Fluids for Efficient Inâ€Door Air Quality Management. Energy and Environmental Materials, 0, , .	7.3	1
42	Flame-retardantÂeffectÂofÂhyperbranchedÂphosphazene-basedÂmicrospheresÂinÂpoly(L-lacticÂacid). Journal of Materials Science, 2022, 57, 1516-1535.	1.7	12
43	The synergistic effect between bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate and polysiloxane on the photo-aging resistance and flame retardancy of polypropylene. Composites Part B: Engineering, 2022, 234, 109666.	5.9	23
44	Superinsulating BNNS/PVA Composite Aerogels with High Solar Reflectance for Energy-Efficient Buildings. Nano-Micro Letters, 2022, 14, 54.	14.4	36
45	Synergistic flame retardant weft-knitted alginate/viscose fabrics with MXene coating for multifunctional wearable heaters. Composites Part B: Engineering, 2022, 232, 109618.	5.9	50
46	Novel glycerol-based polymerized flame retardants with combined phosphorus structures for preparation of high performance unsaturated polyester resin composites. Composites Part B: Engineering, 2022, 233, 109647.	5.9	62
47	Construction of a novel B/N/Si synergistic flame retardant system and its application on cotton fabric. Industrial Crops and Products, 2022, 178, 114574.	2.5	40
48	Reinforcing ureaâ€formaldehyde based composite foam by formation of tailored chemical/mechanical interlocking structure. Polymer Composites, 2022, 43, 2208-2221.	2.3	5
49	Oneâ€Step Bottomâ€Up Growth of Highly Liquid Repellent Wormâ€Like Surfaces on Planar Substrates. Advanced Materials Interfaces, 2022, 9, .	1.9	6
50	Tough, Instant, and Repeatable Adhesion of Selfâ€Healable Elastomers to Diverse Soft and Hard Surfaces. Advanced Science, 2022, 9, e2105742.	5.6	24
51	Metal-organic Framework ZIF-67 Functionalized MXene for Enhancing the Fire Safety of Thermoplastic Polyurethanes. Nanomaterials, 2022, 12, 1142.	1.9	19
52	Synthesis of the effective flame retardant <i>via</i> modification of epoxy resin with phenylboronic acid. Journal of Macromolecular Science - Pure and Applied Chemistry, 2022, 59, 411-420.	1.2	11
53	Biobased Reversible Cross-Linking Enables Self-Healing and Reprocessing of Epoxy Resins. ACS Sustainable Chemistry and Engineering, 2022, 10, 3604-3613.	3.2	23
54	Fire Intumescent, High-Temperature Resistant, Mechanically Flexible Graphene Oxide Network for Exceptional Fire Shielding and Ultra-Fast Fire Warning. Nano-Micro Letters, 2022, 14, 92.	14.4	79

ARTICLE IF CITATIONS # Strong and Flame-Resistant Thermoplastic Polymer Adhesives Based on Multiple Hydrogen Bonding 55 2.0 7 Interactions. ACS Applied Polymer Materials, 2022, 4, 3520-3531. Loose porous Cr2O3â[^]Al2O3 aerogels with lightweight, flame retardancy, and rapid cooling properties: Fabrication and mechanism analysis. Journal of the Taiwan Institute of Chemical Engineers, 2.7 2022, 134, 104300. A nitrogen heterocyclic/phosphaphenanthrene derivative as a reactive additive for simultaneous improvement of flame retardancy, mechanical and dielectric properties of epoxy resins. Polymer Degradation and Stability, 2022, 199, 109909. 57 2.7 34 Engineering titanium carbide ultra-thin nanosheets for enhanced fire safety of intumescent flame 5.9 retardant polylactic acid. Composites Part B: Engineering, 2022, 236, 109792. Covalent organic framework with Cu-containing compounds for enhancing flame retardancy and smoke suppression effects on epoxy resin. Composites Part A: Applied Science and Manufacturing, 2022, 59 3.8 8 156, 106900. Cost-effective graphite felt and phosphorous flame retardant with extremely high electromagnetic shielding. Composites Part B: Engineering, 2022, 236, 109819. Adhesion advances: from nanomaterials to biomimetic adhesion and applications. Soft Matter, 2022, 18, 61 1.2 23 3447-3464. High-performance flame-retardant polycarbonate composites: Mechanisms investigation and 5.9 58 fire-safety evaluation systems establishment. Composites Part B: Engineering, 2022, 238, 109873. A novel highly efficient intumescent flame-retardant polypropylene: Thermal degradation, flame 63 1.2 12 retardance and mechanism. Journal of Polymer Research, 2022, 29, . Evaluation on Thermal Protection Performance of TiO2@ATO Coated Aramid Nonwoven. Coatings, 64 1.2 2022, 12, 657. Green flame-retardant flexible polyurethane foam based on polyphenol-iron-phytic acid network to 65 5.955 improve the fire safety. Composites Part B: Engineering, 2022, 239, 109958. Hybrid Nanoscale Vesicles of Polyhedral Oligomeric Silsesquioxane-Based Star Block Copolymers for 2.4 Thermal Insulation Applications. ACS Applied Nano Materials, 2022, 5, 7042-7050. Fabrication of superhydrophobic and flame-retardant polyethylene terephthalate fabric through a fluorine-free layer-by-layer technique. International Journal of Chemical Reactor Engineering, 2022, 67 0.6 4 20, 1283-1295. Flame-retardant AlOOH/graphene oxide composite coating with temperature-responsive resistance for efficient early-warning fire sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129326. 2.3 Broadband absorption of macro pyramid structure based flame retardant absorbers. Journal of 69 28 5.6 Materials Science and Technology, 2022, 128, 228-238. Elastic polybenzimidazole nanofiber aerogel for thermal insulation and high-temperature oil adsorption. Journal of Materials Science, 2022, 57, 12125-12137. Recent advances in chemical durability and mechanical stability of superhydrophobic materials: Multi-strategy design and strengthening. Journal of Materials Science and Technology, 2022, 129, 71 5.6 55 40-69. Solvent-free and electron transfer-induced phosphorus and nitrogen-containing heterostructures for multifunctional epoxy resin. Composites Part B: Engineering, 2022, 240, 109999.

CITATION REPORT

#	Article	IF	CITATIONS
73	Flame-retardant nanocoating towards high-efficiency suppression of smoke and toxic gases for polymer foam. Composites Part A: Applied Science and Manufacturing, 2022, 159, 107021.	3.8	11
74	Fabrication of a highly-efficient phosphorus-silicon-containing transparent coating to improve fire safety of poly(methyl methacrylate). Composites Part A: Applied Science and Manufacturing, 2022, 159, 107004.	3.8	8
75	Recent advances in fireâ€retardant carbonâ€based polymeric nanocomposites through fighting free radicals. SusMat, 2022, 2, 411-434.	7.8	37
76	A Skinâ€Inspired Design Integrating Mechano–Chemical–Thermal Robustness into Superhydrophobic Coatings. Advanced Materials, 2022, 34, .	11.1	40
77	Magnolol-derived thiol-ene photo-polymerized membranes with intrinsic anti-flammability and high transparency. Composites Part B: Engineering, 2022, 242, 110074.	5.9	12
78	Superhydrophobic self-extinguishing cotton fabrics for electromagnetic interference shielding and human motion detection. Journal of Materials Science and Technology, 2023, 132, 59-68.	5.6	75
79	An insight into pyrolysis and flame retardant mechanism of unsaturated polyester resin with different valance states of phosphorus structures. Polymer Degradation and Stability, 2022, 202, 110026.	2.7	5
80	A triazine-based hyperbranched char-forming agent for efficient intumescent flame retardant Poly(lactic acid) composites. Composites Communications, 2022, 33, 101225.	3.3	12
81	A polyphosphoramide-grafted lignin enabled thermostable and fire-retardant polylactide with preserved mechanical properties. Composites Part A: Applied Science and Manufacturing, 2022, 160, 107028.	3.8	28
82	Nickel-based metal—organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2022, 16, 1493-1504.	2.3	6
83	Exploring the effects of cardanol-based co-curing agents with different phosphorus structures on the mechanical and flame-retardant properties of bismaleimide resin. Composites Part B: Engineering, 2022, 241, 110047.	5.9	15
84	Facile manufacturing process of durable superamphiphobic and flame-retardant coatings based on layer-by-layer assembly. Surfaces and Interfaces, 2022, 31, 102109.	1.5	2
85	Oyster-inspired organic-inorganic hybrid system to improve cold-pressing adhesion, flame retardancy, and mildew resistance of soybean meal adhesive. Composites Part B: Engineering, 2022, 242, 110049.	5.9	22
86	Smart fire-warning materials and sensors: Design principle, performances, and applications. Materials Science and Engineering Reports, 2022, 150, 100690.	14.8	91
87	A new strategy to obtain thin ZrO2–Al2O3 composite aerogel coating with prominent high–temperature resistance and rapid heat dissipation. Journal of Solid State Chemistry, 2022, 314, 123384.	1.4	7
88	Dual functionalisation of polyurethane foam for unprecedented flame retardancy and antibacterial properties using layer-by-layer assembly of MXene chitosan with antibacterial metal particles. Composites Part B: Engineering, 2022, 244, 110147.	5.9	23
89	Interfacially-engineered PBA based hierarchical structure with Ni(OH)2 nanocatalyst towards fire retardation of epoxy resin. Polymer Degradation and Stability, 2022, 204, 110108.	2.7	8
90	Facile fabrication of self-roughened surfaces for superhydrophobic coatings via polarity-induced phase separation strategy. Journal of Colloid and Interface Science, 2022, 628, 777-787.	5.0	3

#	Article	IF	CITATIONS
91	Fabrication of Graphene-Modified Styrene–Acrylic Emulsion by In Situ Aqueous Polymerization. Polymers, 2022, 14, 3763.	2.0	4
92	A phosphaphenanthrene-benzimidazole derivative for enhancing fire safety of epoxy resins. Reactive and Functional Polymers, 2022, 180, 105390.	2.0	8
93	Superhydrophobic and flame retardant polydimethylsiloxane coatings with layered double hydroxide and ammonium polyphosphate. Progress in Organic Coatings, 2022, 172, 107117.	1.9	6
94	Flame retardant and anti-dripping surface treatment through a co-deposition of polydopamine/polyphosphonamide for fabric and foam materials. Composites Part B: Engineering, 2022, 247, 110262.	5.9	18
95	Optimizing Thermal Properties of Thermal Interface Materials Using the Adhesion Mechanism of Gecko's Setae. , 2022, , .		0
96	Oneâ€5tep Spraying Fabrication of Superomniphobic Coatings with Antiâ€Flame, Antiâ€Corrosive, and Mechanochemically Durable Ability. Advanced Materials Interfaces, 0, , 2201321.	1.9	1
97	Bioinspired, stable adhesive Ti3C2Tx MXene-based coatings towards fire warning, smoke suppression and VOCs removal smart wood. Chemical Engineering Journal, 2023, 452, 139360.	6.6	19
98	Multifunctional Biomimetic Microstructured Surfaces for Healthcare Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	12
99	Phenylboronic acid-decorated ZrP nanosheets for enhancing fire resistance, smoke suppression, and water/acid/alkali tolerance of intumescent coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130292.	2.3	5
100	Enhanced flame retardancy of rigid polyurethane foam via iron tailings and expandable graphite. Journal of Materials Science, 2022, 57, 18853-18873.	1.7	4
101	Regulable Polyelectrolyteâ€5urfactant Complex for Antibacterial Biomedical Catheter Coating via a Readily Scalable Route. Advanced Healthcare Materials, 2023, 12, .	3.9	7
102	Multifunctional Epoxyâ€Based Electronic Packaging Material MDCF@LDH/EP for Electromagnetic Wave Absorption, Thermal Management, and Flame Retardancy. Small, 2022, 18, .	5.2	24
103	Surface Modification, Topographic Design and Applications of Superhydrophobic Systems. Chemistry - A European Journal, 2022, 28, .	1.7	4
104	Multifunctional Lightweight Guanidine Phosphate/Poly(Vinyl Alcohol) Melamine-Based Hybrid Foam for Superior Thermal Insulation and Flame Retardancy. ACS Applied Polymer Materials, 2022, 4, 8098-8108.	2.0	Ο
105	Core-sheath phase change fibers via coaxial wet spinning for solar energy active storage. Composites Part B: Engineering, 2022, 247, 110346.	5.9	10
106	Gradient assembly of alginic acid/quaternary chitosan into biomimetic hidden nanoporous textiles for thermal management. Carbohydrate Polymers, 2023, 300, 120236.	5.1	4
107	Corrosion resistance self-healing coating with bioinspired interfacial structure. Progress in Organic Coatings, 2023, 174, 107303.	1.9	1
108	Multifunctional MXene-coated cotton fabric with enhanced thermopower for smart fire protection. Composites Part A: Applied Science and Manufacturing, 2023, 164, 107305.	3.8	16

#	Article	IF	CITATIONS
109	Preparation of multifunctional B/P flame retardant and its application on cotton fabric. Cellulose, 2023, 30, 1305-1320.	2.4	8
110	Chitosan foam reinforced by SiC whisker for building insulation with high mechanical strength and vapor permeability. Science China Technological Sciences, 0, , .	2.0	1
111	Molecular design of reactive flame retardant for preparing biobased flame retardant polyamide 56. Polymer Degradation and Stability, 2023, 207, 110212.	2.7	8
112	Inspired with fish scale to manufacture biomimetic MXene derivative for the reinforcement on tribological and mechanical properties of PPS fabric/phenolic composites. Tribology International, 2023, 179, 108136.	3.0	3
113	Investigation of the Flame Retardant Properties of High-Strength Microcellular Flame Retardant/Polyurethane Composite Elastomers. Polymers, 2022, 14, 5055.	2.0	1
114	Machine learning-guided design of organic phosphorus-containing flame retardants to improve the limiting oxygen index of epoxy resins. Chemical Engineering Journal, 2023, 455, 140547.	6.6	17
115	Bio-inspired dopamine-functionalized silica nanoparticles via self-polymerization to simultaneously enhance thermal stability, fire safety and dynamic mechanical properties of PFRP composites. Journal of Thermal Analysis and Calorimetry, 2023, 148, 1935-1948.	2.0	5
116	Reactive flame-retardants prepared by transesterification between erythritol and dimethyl methyl phosphonate for rigid polyurethane foams. Polymer Degradation and Stability, 2023, 208, 110238.	2.7	4
117	Bioinspired Materials: From Distinct Dimensional Architecture to Thermal Regulation Properties. Journal of Bionic Engineering, 2023, 20, 873-899.	2.7	8
118	Fire retardant polyethylene terephthalate containing 4,4′-(hexafluoroisopropylidene)diphenol-substituted cyclotriphosphazene microspheres. High Performance Polymers, 0, , 095400832211458.	0.8	0
119	Fully recyclable multifunctional adhesive with high durability, transparency, flame retardancy, and harsh-environment resistance. Science Advances, 2022, 8, .	4.7	71
120	Biomimetic, Mechanically Strong Supramolecular Nanosystem Enabling Solvent Resistance, Reliable Fire Protection and Ultralong Fire Warning. ACS Nano, 2022, 16, 20865-20876.	7.3	60
121	Thermally insulating composite aerogel with both active absorption and passive insulation functions based on azobenzene-modified chitosan/oligomeric β-cyclodextrin. Chemical Engineering Journal, 2023, 457, 141202.	6.6	4
122	Stretchable, Ultratough, and Intrinsically Selfâ€Extinguishing Elastomers with Desirable Recyclability. Advanced Science, 2023, 10, .	5.6	30
123	Multifunctional Flame-Retardant, Thermal Insulation, and Antimicrobial Wood-Based Composites. Biomacromolecules, 2023, 24, 957-966.	2.6	15
124	Unprecedented Nonflammable Organic Adhesives Leading to Fireproof Wood Products. ACS Applied Materials & Interfaces, 2023, 15, 8609-8616.	4.0	7
125	Facile Synthesis of Hollow Glass Microsphere Filled PDMS Foam Composites with Exceptional Lightweight, Mechanical Flexibility, and Thermal Insulating Property. Molecules, 2023, 28, 2614.	1.7	4
126	Effect of CNT content and size on the high-temperature particle-erosion resistance of ablative materials for thermal protection systems. Composites Science and Technology, 2023, 235, 109969.	3.8	4

#	Article	IF	CITATIONS
127	Spider silk-inspired dynamic covalent polyurethane with fast repairing, shape memory, and strong dynamic adhesion via lignin enhanced microphase separation. Composites Part B: Engineering, 2023, 257, 110697.	5.9	7
128	The effect of MgAl-LDH/APP distribution control in the closed-cell structure of SBR/EVA foam on flame retardance and mechanical properties. Polymer Degradation and Stability, 2023, 212, 110354.	2.7	2
129	Ultra-thin flame retardant polymer nanocomposite coating based on synergistic effect of graphene and glass sheets. Materials Research Bulletin, 2023, 164, 112247.	2.7	1
130	Flame retardancy and anti-impact performance of polyurea composite coating reinforced by modified ammonium polyphosphate and two-dimensional nano-fillers. Progress in Organic Coatings, 2023, 180, 107554.	1.9	6
131	A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene/silver nanowires aerogel fiber for fire protection used in firefighting clothing. Chemical Engineering Journal, 2023, 460, 141661.	6.6	56
132	Rabbit-hair-like SiO2/PI composite nanofibers with super durability for thermal insulation. Composites Part B: Engineering, 2023, 254, 110542.	5.9	7
133	Multi-functional flame retardant coatings comprising chitosan/ gelatin and sodium phytate for rigid polyurethane foams. Journal of Cleaner Production, 2023, 394, 136371.	4.6	11
134	Biomimetic Liquid Metal–Elastomer Composited Foam with Adjustable Thermal Conductivity for Heat Control. Molecules, 2023, 28, 1688.	1.7	1
135	Thermal insulation, flame retardancy, smoke suppression, and reinforcement of rigid polyurethane foam enabled by incorporating a P/Cu-hybrid silica aerogel. Chemical Engineering Journal, 2023, 461, 142061.	6.6	28
136	Superhydrophobicityâ€mediated enhanced enzymatic kinetics and highâ€performance bioassays. , 2023, 2, .		4
137	Eco-Friendly and Facile Integrated Intumescent Polyelectrolyte Complex Coating with Universal Flame Retardancy and Smoke Suppression for Cotton and its Blending Fabrics. ACS Sustainable Chemistry and Engineering, 2023, 11, 4838-4849.	3.2	5
138	An energy-saving composite textile for thermal management. Composites Science and Technology, 2023, 237, 110013.	3.8	3
139	Surface Flame-Retardant Systems of Rigid Polyurethane Foams: An Overview. Materials, 2023, 16, 2728.	1.3	4
140	A novel method to chemically convert waste PET plastic into high–value monolithic materials with excellent flame retardancy, mechanical strength and hydrophobicity. Journal of Polymer Research, 2023, 30, .	1.2	0
141	Mechanically Robust Foamed Polypropylene/Bamboo Powder Composite Basketworks by CO ₂ Extrusion Foaming. ACS Applied Polymer Materials, 0, , .	2.0	0
142	Lightweight, Radiation-Resistant, and Flexible Polyimide Foams with an Anisotropic Porous Structure for Efficient Thermal Insulation Applications. Industrial & Engineering Chemistry Research, 2023, 62, 6790-6805.	1.8	2
162	Fire-Resistant Polymeric Foams and Their Applications. ACS Symposium Series, 0, , 97-121.	0.5	1
165	Polymeric Foams: Mechanisms and Properties. ACS Symposium Series, 0, , 43-61.	0.5	Ο

#	Article	IF	CITATIONS
189	Flame retardant properties of polymer/graphene nanocomposites. , 2024, , 159-200.		0