Lipid Nanoparticlesâ"€From Liposomes to mRNA Vacci Diversity and Advancement

ACS Nano 15, 16982-17015

DOI: 10.1021/acsnano.1c04996

Citation Report

#	Article	IF	CITATIONS
1	Touting the Growing Contributions of Nanoscience and Nanotechnology. ACS Nano, 2021, 15, 10737-10738.	7.3	1
2	Biomedical Applications of Antiviral Nanohybrid Materials Relating to the COVID-19 Pandemic and Other Viral Crises. Polymers, 2021, 13, 2833.	2.0	8
3	Drug Delivery Systems for the Treatment of Knee Osteoarthritis: A Systematic Review of In Vivo Studies. International Journal of Molecular Sciences, 2021, 22, 9137.	1.8	20
4	Lipophilic Conjugates of Drugs: A Tool to Improve Drug Pharmacokinetic and Therapeutic Profiles. Pharmaceutical Research, 2021, 38, 1497-1518.	1.7	14
5	Polycation-Mediated Transfection: Mechanisms of Internalization and Intracellular Trafficking. Biomacromolecules, 2021, 22, 4060-4083.	2.6	23
6	Nanovaccines against Animal Pathogens: The Latest Findings. Vaccines, 2021, 9, 988.	2.1	15
7	Functionalized Dendrimer Platforms as a New Forefront Arsenal Targeting SARS-CoV-2: An Opportunity. Pharmaceutics, 2021, 13, 1513.	2.0	14
8	Effective Perturbations on the Amplitude and Hysteresis of Erg-Mediated Potassium Current Caused by 1-Octylnonyl 8-[(2-hydroxyethyl)[6-oxo-6(undecyloxy)hexyl]amino]-octanoate (SM-102), a Cationic Lipid. Biomedicines, 2021, 9, 1367.	1.4	12
9	Recent progress in micro and nano-encapsulation of bioactive derivatives of the Brazilian genus Pterodon. Biomedicine and Pharmacotherapy, 2021, 143, 112137.	2.5	11
10	Liposomes and mRNA: Two technologies together create a COVID-19 vaccine. Medicine in Drug Discovery, 2021, 12, 100104.	2.3	23
11	The International Society of RNA Nanotechnology and Nanomedicine (ISRNN): The Present and Future of the Burgeoning Field. ACS Nano, 2021, 15, 16957-16973.	7.3	19
12	Facile Synthesis of N-Doped Graphene Quantum Dots as Novel Transfection Agents for mRNA and pDNA. Nanomaterials, 2021, 11, 2816.	1.9	11
13	Ultrasonic particles: An approach for targeted gene delivery. Advanced Drug Delivery Reviews, 2021, 179, 113998.	6.6	20
14	Pharmaceutical Aspects of Nanocarriers for Smart Anticancer Therapy. Pharmaceutics, 2021, 13, 1875.	2.0	8
15	Lipid in Chips: A Brief Review of Liposomes Formation by Microfluidics. International Journal of Nanomedicine, 2021, Volume 16, 7391-7416.	3.3	41
16	Recent advances in polymeric transdermal drug delivery systems. Journal of Controlled Release, 2022, 341, 132-146.	4.8	127
17	Antisense Oligonucleotide-Based Therapy of Viral Infections. Pharmaceutics, 2021, 13, 2015.	2.0	26
18	New Applications of Lipid and Polymer-Based Nanoparticles for Nucleic Acids Delivery. Pharmaceutics, 2021, 13, 2053.	2.0	14

#	ARTICLE	IF	CITATIONS
19	Serum Compatible Spermineâ€based Cationic Lipids with Nonâ€identical Hydrocarbon Tails Mediate High Transfection Efficiency. ChemBioChem, 2022, , .	1.3	4
20	Phosphonodithioformate-amine coupling reaction: from basic discovery to application for the functionalization of liposomes. Phosphorus, Sulfur and Silicon and the Related Elements, 2022, 197, 462-467.	0.8	0
21	Cubosomes and Hexosomes as Novel Nanocarriers for Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2022, 70, 1423-1437.	2.4	26
22	Triggering the nanophase separation of albumin through multivalent binding to glycogen for drug delivery in 2D and 3D multicellular constructs. Nanoscale, 2022, 14, 3452-3466.	2.8	1
23	Poly-phosphocholination of liposomes leads to highly-extended retention time in mice joints. Journal of Materials Chemistry B, 2022, 10, 2820-2827.	2.9	17
24	Lipid-Based Nanocarriers in Renal RNA Therapy. Biomedicines, 2022, 10, 283.	1.4	9
25	From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines. Nano-Micro Letters, 2022, 14, 41.	14.4	26
26	Methods of Measuring Mitochondrial Potassium Channels: A Critical Assessment. International Journal of Molecular Sciences, 2022, 23, 1210.	1.8	11
27	Development of an Oral Salmonella-Based Vaccine Platform against SARS-CoV-2. Vaccines, 2022, 10, 67.	2.1	7
28	Nanostructured-lipid carriers-Chitosan hydrogel beads carrier system for loading of resveratrol: A new method of topical application. Journal of Biomaterials Applications, 2022, 36, 1444-1457.	1.2	6
29	Controlled Liposome Delivery from Chitosan-Based Thermosensitive Hydrogel for Regenerative Medicine. International Journal of Molecular Sciences, 2022, 23, 894.	1.8	25
30	Polymer-hybrid nanosystems for antiviral applications: Current advances. Biomedicine and Pharmacotherapy, 2022, 146, 112249.	2.5	9
31	Options to Improve the Action of PROTACs in Cancer: Development of Controlled Delivery Nanoparticles. Frontiers in Cell and Developmental Biology, 2021, 9, 805336.	1.8	7
32	Intracellular Co-delivery of native antibody and siRNA for combination therapy by using biodegradable silica nanocapsules. Biomaterials, 2022, 281, 121376.	5.7	16
33	Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. Journal of Controlled Release, 2022, 343, 564-583.	4.8	21
34	A brief review of mRNA therapeutics and delivery for bone tissue engineering. RSC Advances, 2022, 12, 8889-8900.	1.7	5
36	Liposomes as Adjuvants and Vaccine Delivery Systems. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2022, 16, 1-20.	0.3	25
37	Nanostructures for the Prevention, Diagnosis, and Treatment of SARS-CoV-2: A Review. ACS Applied Nano Materials, 2022, 5, 6029-6054.	2.4	12

#	Article	IF	Citations
38	Nasal Nanovaccines for SARS-CoV-2 to Address COVID-19. Vaccines, 2022, 10, 405.	2.1	14
39	Lipid nanoparticle-mRNA: another step in the fight against COVID-19. Cell Research, 2022, 32, 421-422.	5.7	5
40	Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer. BioTech, 2022, 11, 6.	1.3	14
41	Influence of Acetaminophen on Molecular Adsorption and Transport Properties at Colloidal Liposome Surfaces Studied by Second Harmonic Generation Spectroscopy. Langmuir, 2022, 38, 3852-3859.	1.6	4
42	The Use of Medicinal Plant Extract in Hand Sanitizer and Spray to Combat Against Covid-19. Biosciences, Biotechnology Research Asia, 2022, 19, 183-189.	0.2	0
43	Advances in Nanoparticles for Effective Delivery of RNA Therapeutics. Biochip Journal, 2022, 16, 128-145.	2.5	23
44	Design, Characterization, and In Vitro Assays on Muscle Cells of Endocannabinoid-like Molecule Loaded Lipid Nanoparticles for a Therapeutic Anti-Inflammatory Approach to Sarcopenia. Pharmaceutics, 2022, 14, 648.	2.0	5
45	Recent Advances in Delivery Systems for Genetic and Other Novel Vaccines. Advanced Materials, 2022, 34, e2107946.	11.1	10
46	Lipid Nanoparticles: Key Facilitators of mRNA Vaccine Development. Biosciences, Biotechnology Research Asia, 2022, 19, 199-213.	0.2	1
47	Size and Charge Characterization of Lipid Nanoparticles for mRNA Vaccines. Analytical Chemistry, 2022, 94, 4677-4685.	3.2	17
48	Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Exploration, 2022, 2, .	5.4	30
49	Controllable Disulfide Exchange Polymerization of Polyguanidine for Effective Biomedical Applications by Thiolâ€Mediated Uptake. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
50	Polymer-Modified Liposomes for Drug Delivery: From Fundamentals to Applications. Pharmaceutics, 2022, 14, 778.	2.0	28
51	Controllable Disulfide Exchange Polymerization of Polyguanidine for Effective Biomedical Applications by Thiolâ€Mediated Uptake. Angewandte Chemie, 2022, 134, .	1.6	1
52	Recent updates on innovative approaches to overcome drug resistance for better outcomes in cancer. Journal of Controlled Release, 2022, 346, 43-70.	4.8	17
53	Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. International Journal of Molecular Sciences, 2022, 23, 4153.	1.8	74
54	pH-programmed responsive nanoplatform for synergistic cancer therapy based on single atom catalysts. European Journal of Medicinal Chemistry, 2022, 233, 114236.	2.6	9
55	Nucleic acid and oligonucleotide delivery for activating innate immunity in cancer immunotherapy. Journal of Controlled Release, 2022, 345, 586-600.	4.8	12

#	Article	IF	Citations
56	The role of the cell surface glycocalyx in drug delivery to and through the endothelium. Advanced Drug Delivery Reviews, 2022, 184, 114195.	6.6	12
57	mRNA vaccines for COVID-19 and diverse diseases. Journal of Controlled Release, 2022, 345, 314-333.	4.8	50
58	The diffusion-driven microfluidic process to manufacture lipid-based nanotherapeutics with stealth properties for siRNA delivery. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112476.	2.5	3
59	A general controllable release amplification strategy of liposomes for single-particle collision electrochemical biosensing. Biosensors and Bioelectronics, 2022, 207, 114182.	5.3	10
60	Exosome-Mediated eCIRP Release From Macrophages to Induce Inflammation in Sepsis. Frontiers in Pharmacology, 2021, 12, 791648.	1.6	23
61	mRNA Therapeutic Modalities Design, Formulation and Manufacturing under Pharma 4.0 Principles. Biomedicines, 2022, 10, 50.	1.4	30
62	Supramolecular Nanostructures for Vaccines. Biomimetics, 2022, 7, 6.	1.5	4
63	Smart Lipid-Based Nanosystems for Therapeutic Immune Induction against Cancers: Perspectives and Outlooks. Pharmaceutics, 2022, 14, 26.	2.0	15
64	Vaccine Design against Chagas Disease Focused on the Use of Nucleic Acids. Vaccines, 2022, 10, 587.	2.1	4
65	Targeting the PD-1/PD-L1 axis for cancer treatment: a review on nanotechnology. Royal Society Open Science, 2022, 9, 211991.	1.1	5
66	Subcellular delivery of lipid nanoparticles to endoplasmic reticulum and mitochondria. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1803.	3.3	5
67	Advances in COVID-19 mRNA vaccine development. Signal Transduction and Targeted Therapy, 2022, 7, 94.	7.1	177
69	Nanostructured particles assembled from natural building blocks for advanced therapies. Chemical Society Reviews, 2022, 51, 4287-4336.	18.7	64
70	Liposome, Nanoliposome and Allied Technologies in Covid-19 Vaccines: Key Roles and Functionalities. Current Drug Delivery, 2023, 20, 3-7.	0.8	3
71	Universal Flu mRNA Vaccine: Promises, Prospects, and Problems. Vaccines, 2022, 10, 709.	2.1	7
72	Clinical advances of RNA therapeutics for treatment of neurological and neuromuscular diseases. RNA Biology, 2022, 19, 594-608.	1.5	23
73	Neutral polyphosphocholine-modified liposomes as boundary superlubricants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129218.	2.3	2
74	Recent advances in delivering RNA-based therapeutics to mitochondria. Expert Opinion on Biological Therapy, 2022, 22, 1209-1219.	1.4	2

#	Article	IF	Citations
75	Transdermal delivery for gene therapy. Drug Delivery and Translational Research, 2022, 12, 2613-2633.	3.0	10
76	The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. Journal of Medicinal Chemistry, 2022, 65, 6975-7015.	2.9	42
77	Optimization of large-scale manufacturing of biopolymeric and lipid nanoparticles using microfluidic swirl mixers. International Journal of Pharmaceutics, 2022, 620, 121762.	2.6	17
78	Nanoencapsulation of poorly soluble sea-buckthorn pulp oil in bile salt-origin vesicles: Physicochemical characterization and colloidal stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129113.	2.3	2
79	Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chemical Letters, 2023, 34, 107518.	4.8	124
80	Multifunctional Nanoplatforms as a Novel Effective Approach in Photodynamic Therapy and Chemotherapy, to Overcome Multidrug Resistance in Cancer. Pharmaceutics, 2022, 14, 1075.	2.0	10
81	Acenaphtho[1,2-b]Quinoxaline Modified Lysine Derivatives with Different Spacial Arrangements of Functional Units as Non-Viral Modular Gene Vectors. SSRN Electronic Journal, 0, , .	0.4	0
83	Multicompartment polymer capsules. , 2022, 1, 100015.		3
84	Nanomedicine for the Delivery of RNA in Cancer. Cancers, 2022, 14, 2677.	1.7	5
85	Microfluidic Device-Enabled Mass Production of Lipid-Based Nanoparticles for Applications in Nanomedicine and Cosmetics. ACS Applied Nano Materials, 2022, 5, 7867-7876.	2.4	10
86	Mucosomes: Intrinsically Mucoadhesive Glycosylated Mucin Nanoparticles as Multiâ€Drug Delivery Platform. Advanced Healthcare Materials, 2022, 11, .	3.9	9
87	Venturi-based rapid expansion of supercritical solution (Vent-RESS): synthesis of liposomes for pH-triggered delivery of hydrophilic and lipophilic bioactives. Green Chemistry, 2022, 24, 5326-5337.	4.6	4
88	Understanding the Role and Impact of Poly (Ethylene Glycol) (PEG) on Nanoparticle Formulation: Implications for COVID-19 Vaccines. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	30
89	Delivery of therapeutic small interfering RNA: The current patent-based landscape. Molecular Therapy - Nucleic Acids, 2022, 29, 150-161.	2.3	3
90	Lipid Nanoparticle Technologies for Nucleic Acid Delivery: A Nanoarchitectonics Perspective. Advanced Functional Materials, 2022, 32, .	7.8	36
91	A Historical Review of Brain Drug Delivery. Pharmaceutics, 2022, 14, 1283.	2.0	65
92	Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS Nano, 2022, 16, 9994-10041.	7.3	62
93	Spectroscopy-Based Local Modeling Method for High-Throughput Quantification of Nucleic Acid Loading in Lipid Nanoparticles. Analytical Chemistry, 2022, 94, 9081-9090.	3.2	3

#	ARTICLE	IF	CITATIONS
94	Levilactobacillus brevis surface layer protein B promotes liposome targeting to antigen-presenting cells in Peyer's patches. International Journal of Pharmaceutics, 2022, 622, 121896.	2.6	6
95	RNA interference-based therapies for the control of atherosclerosis risk factors. Current Opinion in Cardiology, 2022, 37, 364-371.	0.8	2
96	A self-assembling peptidic platform to boost the cellular uptake and nuclear delivery of oligonucleotides. Biomaterials Science, 2022, 10, 4309-4323.	2.6	3
97	Lipid nanoparticles and nanoemulsions exploited in the diagnosis and treatment of infectious diseases., 2022,, 229-273.		O
98	Photoluminescent polymer cubosomes prepared by RAFT-mediated polymerization-induced self-assembly. Polymer Chemistry, 2022, 13, 4333-4342.	1.9	10
99	Recent developments and applications of smart nanoparticles in biomedicine. Nanotechnology Reviews, 2022, 11, 2595-2631.	2.6	19
102	Restoring the neuroprotective capacity of glial cells under opioid addiction. Addiction Neuroscience, 2022, 4, 100027.	0.4	2
103	APLICACIONES TECNOLÓGICAS DE LAS NANOPARTÀULAS EN LA MEDICINA E INDUSTRIA. Epistemus, 2022, 16,	0.0	О
104	<scp>RNA</scp> therapeutics in the clinic. Bioengineering and Translational Medicine, 2023, 8, .	3.9	31
105	Therapeutic Potential of Intrabodies for Cancer Immunotherapy: Current Status and Future Directions. Antibodies, 2022, 11, 49.	1.2	8
106	Aspartic Acid-Modified Phospholipids Regulate Cell Response and Rescue Memory Deficits in APP/PS1 Transgenic Mice. ACS Chemical Neuroscience, 2022, 13, 2154-2163.	1.7	1
107	Clinical and Molecular Characterization of a Rare Case of BNT162b2 mRNA COVID-19 Vaccine-Associated Myositis. Vaccines, 2022, 10, 1135.	2.1	12
108	Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. Frontiers in Nanotechnology, 0, 4, .	2.4	2
109	Lipidâ€Headâ€Polymerâ€Tail Chimeric Vesicles. Macromolecular Rapid Communications, 2022, 43, .	2.0	2
110	Lipid nanoparticles in the development of mRNA vaccines for COVID-19. Journal of Drug Delivery Science and Technology, 2022, 74, 103553.	1.4	44
111	Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. Journal of Controlled Release, 2022, 349, 184-205.	4.8	52
112	Characterization of lecithin liposomes prepared by polyol dilution method using 1,3-butylene glycol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129592.	2.3	5
113	Nanotechnologyâ€facilitated vaccine development during the coronavirus disease 2019 (COVIDâ€19) pandemic. Exploration, 2022, 2, .	5.4	22

#	Article	IF	CITATIONS
114	Non-coding RNA delivery for bone tissue engineering: Progress, challenges, and potential solutions. IScience, 2022, 25, 104807.	1.9	12
115	Mitochondrial targeting theranostic nanomedicine and molecular biomarkers for efficient cancer diagnosis and therapy. Biomedicine and Pharmacotherapy, 2022, 153, 113451.	2.5	13
116	Lyotropic liquid crystals for parenteral drug delivery. Journal of Controlled Release, 2022, 349, 533-549.	4.8	20
117	Think like a Virus: Toward Improving Nanovaccine Development against SARS-CoV-2. Viruses, 2022, 14, 1553.	1.5	9
118	Self-Assembly of Small Organic Molecules into Luminophores for Cancer Theranostic Applications. Biosensors, 2022, 12, 683.	2.3	4
119	Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. Journal of Nanobiotechnology, 2022, 20, .	4.2	8
120	Lipid-based nanoparticles and RNA as innovative neuro-therapeutics. Frontiers in Pharmacology, 0, 13, .	1.6	9
121	Recent advances in erythrocyte membrane-camouflaged nanoparticles for the delivery of anti-cancer therapeutics. Expert Opinion on Drug Delivery, 2022, 19, 965-984.	2.4	6
122	mRNA vaccines in the prevention and treatment of diseases. MedComm, 2022, 3, .	3.1	14
123	Application of lipid-based nanoparticles in cancer immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	10
124	DNA Framework-Programmed Ligand Positioning to Modulate the Targeting Performance. ACS Applied Materials & Samp; Interfaces, 2022, 14, 36957-36965.	4.0	0
125	The CRISPR Revolution in the Drug Discovery Workflow: An Industry Perspective. CRISPR Journal, 2022, 5, 634-641.	1.4	2
126	Preparation, Structural Characterization of Anti-Cancer Drugs-Mediated Self-Assembly from the Pluronic Copolymers through Synchrotron SAXS Investigation. Materials, 2022, 15, 5387.	1.3	5
127	Pillarareneâ∈Based Supramolecular Vesicles for Stimuliâ∈Responsive Drug Delivery. Chemistry - A European Journal, 2022, 28, .	1.7	10
128	Pressureâ€dependent fouling behavior during sterile filtration of mRNAâ€containing lipid nanoparticles. Biotechnology and Bioengineering, 2022, 119, 3221-3229.	1.7	6
129	Development of 5-FU-modified tumor suppressor microRNAs as a platform for novel microRNA-based cancer therapeutics. Molecular Therapy, 2022, 30, 3450-3461.	3.7	6
130	Protein Cages Engineered for Interaction-Driven Selective Encapsulation of Biomolecules. ACS Applied Materials & Samp; Interfaces, 2022, 14, 35357-35365.	4.0	1
131	Advances and Perspectives of Pharmaceutical Nanotechnology in mRNA Therapy. Pharmaceutical Nanotechnology, 2022, 10, 328-333.	0.6	0

#	Article	IF	Citations
132	Helper-Polymer Based Five-Element Nanoparticles (FNPs) for Lung-Specific mRNA Delivery with Long-Term Stability after Lyophilization. Nano Letters, 2022, 22, 6580-6589.	4.5	11
133	Lipid Nanoparticles: Promising Treatment Approach for Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 9361.	1.8	23
134	Formulation Strategies to Enable Delivery of Therapeutic Peptides across Cell Membranes. ACS Symposium Series, 0, , 223-254.	0.5	0
135	Vaccine adjuvants to engage the cross-presentation pathway. Frontiers in Immunology, 0, 13, .	2.2	33
136	MicroRNA delivery systems in glioma therapy and perspectives: A systematic review. Journal of Controlled Release, 2022, 349, 712-730.	4.8	7
137	Liposomal formulations for treating lysosomal storage disorders. Advanced Drug Delivery Reviews, 2022, 190, 114531.	6.6	5
138	The journey of a lifetime â€" development of Pfizer's COVID-19 vaccine. Current Opinion in Biotechnology, 2022, 78, 102803.	3.3	7
139	A microfluidic serial dilutor (MSD): Design optimization and application to tuning of liposome nanoparticle preparation. Chemical Engineering Science, 2022, 263, 118080.	1.9	1
140	Effects of lipid bilayer encapsulation and lipid composition on the catalytic activity and colloidal stability of hydrophobic palladium nanoparticles in water. RSC Advances, 2022, 12, 21866-21874.	1.7	4
141	ROS Overexpression Boosting Necroptosis Mediated by Mitochondrial Targeting Liposome for Cancer Apoptotic Resistance. SSRN Electronic Journal, 0, , .	0.4	0
142	Characterization of Oleic Acid/CHAPSO Bicellar Mixture Formation via Lipid Transfer. Journal of Oleo Science, 2022, 71, 1445-1452.	0.6	0
143	Liposome Nanocarriers for Peptide Drug Delivery. AAPS Advances in the Pharmaceutical Sciences Series, 2022, , 203-235.	0.2	1
144	Lipid nanoparticles for delivery of gene editing components. , 2022, , .		0
145	Effects of the structure of lipid-based agents in their complexation with a single stranded mRNA fragment: a computational study. Soft Matter, 2022, 18, 6229-6245.	1.2	0
146	Liposome-Loaded Targeted Theranostic Fluorescent Nano-Probes for Diagnosis and Treatment of Cervix Carcinoma. Journal of Biomedical Nanotechnology, 2022, 18, 1289-1301.	0.5	1
147	Compritol: A Versatile Excipient for Novel Drug Delivery System. Current Materials Science, 2022, 15, .	0.2	0
148	Lipid Nanoparticles for mRNA Delivery to Enhance Cancer Immunotherapy. Molecules, 2022, 27, 5607.	1.7	12
149	Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. Journal of Nanobiotechnology, 2022, 20, .	4.2	45

#	Article	IF	CITATIONS
150	Microfluidic Manufacture of Lipid-Based Nanomedicines. Pharmaceutics, 2022, 14, 1940.	2.0	13
151	Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chemical Reviews, 2022, 122, 15603-15671.	23.0	38
152	Designing Synthetic Polymers for Nucleic Acid Complexation and Delivery: From Polyplexes to Micelleplexes to Triggered Degradation. Biomacromolecules, 2022, 23, 4029-4040.	2.6	4
153	Navigating ethical challenges in the development and translation of biomaterials research. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	3
154	Upon a potential approach to regulate the targeting region of inhalable liposomes. Journal of Bioactive and Compatible Polymers, 0, , 088391152211218.	0.8	0
155	Schiff base nanoarchitectonics for supramolecular assembly of dipeptide as drug carriers. Journal of Colloid and Interface Science, 2023, 630, 161-169.	5.0	5
156	An insight on lipid nanoparticles for therapeutic proteins delivery. Journal of Drug Delivery Science and Technology, 2022, 77, 103839.	1.4	9
157	Lipid Nanoparticles as Delivery Vehicles for Inhaled Therapeutics. Biomedicines, 2022, 10, 2179.	1.4	34
159	How far are the new wave of mRNA drugs from us? mRNA product current perspective and future development. Frontiers in Immunology, 0, 13 , .	2.2	4
160	Cysteine-Encapsulated Liposome for Investigating Biomolecular Interactions at Lipid Membranes. International Journal of Molecular Sciences, 2022, 23, 10566.	1.8	2
161	Nanodelivery of cGAS-STING activators for tumor immunotherapy. Trends in Pharmacological Sciences, 2022, 43, 957-972.	4.0	26
162	Quality-by-design-based engineered liposomal nanomedicines to treat cancer: an in-depth analysis. Nanomedicine, 2022, 17, 1173-1189.	1.7	9
163	Role of Nanomaterials in COVID-19 Prevention, Diagnostics, Therapeutics, and Vaccine Development. Journal of Nanotheranostics, 2022, 3, 151-176.	1.7	4
164	Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chemical Reviews, 2022, 122, 16294-16328.	23.0	32
165	Nonviral nanoparticle gene delivery into the <scp>CNS</scp> for neurological disorders and brain cancer applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 0, , .	3.3	4
166	Liposomes trigger bone marrow niche macrophage "foam―cell formation and affect hematopoiesis in mice. Journal of Lipid Research, 2022, 63, 100273.	2.0	1
167	Nanostructure system: Liposome – A bioactive carrier in drug delivery systems. Materials Today: Proceedings, 2022, , .	0.9	4
168	Lipid nanoparticles for delivery of RNA therapeutics: Current status and the role of <i>in vivo</i> imaging. Theranostics, 2022, 12, 7509-7531.	4.6	43

#	Article	IF	CITATIONS
169	Light-Responsive Molecular Release from Cubosomes Using Swell-Squeeze Lattice Control. Journal of the American Chemical Society, 2022, 144, 19532-19541.	6.6	6
170	Membrane-Specific Binding of 4 nm Lipid Nanoparticles Mediated by an Entropy-Driven Interaction Mechanism. ACS Nano, 2022, 16, 18090-18100.	7.3	11
171	Cationic lipid potentiated the adjuvanticity of polysaccharide derivative-modified liposome vaccines. Journal of Controlled Release, 2023, 362, 767-776.	4.8	8
172	Self-Amplifying RNA Approach for Protein Replacement Therapy. International Journal of Molecular Sciences, 2022, 23, 12884.	1.8	13
173	Polymeric Nanoparticles for Inhaled Vaccines. Polymers, 2022, 14, 4450.	2.0	7
174	Fabry disease: Mechanism and therapeutics strategies. Frontiers in Pharmacology, $0,13,.$	1.6	14
175	Lipid nanomaterials-based RNA therapy and cancer treatment. Acta Pharmaceutica Sinica B, 2023, 13, 903-915.	5.7	14
176	Design Strategies for and Stability of mRNA–Lipid Nanoparticle COVID-19 Vaccines. Polymers, 2022, 14, 4195.	2.0	13
177	The Natural Antisense Transcript-Targeted Regulation Technology Using Sense Oligonucleotides and Its Application. , 0, , .		0
178	Enhancement of S(+)-zaltoprofen oral bioavailability using nanostructured lipid carrier system. Archives of Pharmacal Research, 0, , .	2.7	0
179	Discrete Libraries of Amphiphilic Poly(ethylene glycol) Graft Copolymers: Synthesis, Assembly, and Bioactivity. Journal of the American Chemical Society, 2022, 144, 19466-19474.	6.6	13
180	Lipid nanoparticles for oral delivery of nucleic acids for treating inflammatory bowel disease. Nanomedicine, 2022, 17, 1501-1504.	1.7	3
181	Editorial: Nanotechnology for natural products. Frontiers in Chemistry, 0, 10, .	1.8	0
182	Unlocking the promise of mRNA therapeutics. Nature Biotechnology, 2022, 40, 1586-1600.	9.4	107
183	Combination of a cationic complexes loaded with mRNA and $\hat{l}\pm$ -Galactose ceramide enhances antitumor immunity and affects the tumor immune microenvironment. International Immunopharmacology, 2022, 113, 109254.	1.7	3
184	Nanoliposome based biosensors for probing mycotoxins and their applications for food: A review. Biosensors and Bioelectronics, 2023, 219, 114845.	5.3	4
185	Surface-engineered nanoparticles in cancer immune response and immunotherapy: Current status and future prospects. Biomedicine and Pharmacotherapy, 2023, 157, 113998.	2.5	5
186	Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS Nano, 2022, 16, 17802-17846.	7.3	117

#	Article	IF	CITATIONS
187	Activation energy and force fields during topological transitions of fluid lipid vesicles. Communications Physics, 2022, 5, .	2.0	5
188	Surface Design Options in Polymer- and Lipid-Based siRNA Nanoparticles Using Antibodies. International Journal of Molecular Sciences, 2022, 23, 13929.	1.8	3
189	Lipid-Based Intelligent Vehicle Capabilitized with Physical and Physiological Activation. Research, 2022, 2022, .	2.8	2
190	Fine-tuned magnetic nanobubbles for magnetic hyperthermia treatment of glioma cells. Biointerphases, 2022, 17, 061004.	0.6	0
191	Liver-on-a-chip: Considerations, advances, and beyond. Biomicrofluidics, 2022, 16, .	1.2	9
192	Disease-driven engineering of peptide-targeted DM1 loaded liposomal nanoparticles for enhanced efficacy in treating multiple myeloma by exploring DM1 prodrug chemistry. Biomaterials, 2023, 292, 121913.	5.7	4
193	Current strategies employed in the manipulation of gene expression for clinical purposes. Journal of Translational Medicine, 2022, 20, .	1.8	12
194	Natural small molecule self-assembled hydrogel inhibited tumor growth and lung metastasis of 4T1 breast cancer by regulating the CXCL1/2-S100A8/9 axis. Materials and Design, 2023, 225, 111435.	3.3	2
195	The mechanisms of anti-PEG immune response are different in the spleen and the lymph nodes. Journal of Controlled Release, 2023, 353, 611-620.	4.8	11
196	Multi-dimensional modeling of nanoparticles transportation from capillary bed into the tumor microenvironment. Computers in Biology and Medicine, 2023, 152, 106477.	3.9	1
197	A PEG-lipid-free COVID-19 mRNA vaccine triggers robust immune responses in mice. Materials Horizons, 2023, 10, 466-472.	6.4	4
198	Formation of particulate lipid lyotropic liquid crystalline nanocarriers using a microfluidic platform. Journal of Colloid and Interface Science, 2023, 634, 279-289.	5.0	9
199	Nanoparticle Functionalization: Approaches and Applications. Nanotechnology in the Life Sciences, 2022, , 157-181.	0.4	0
200	Development of emamectin benzoate-loaded liposome nano-vesicles with thermo-responsive behavior for intelligent pest control. Journal of Materials Chemistry B, 2022, 10, 9896-9905.	2.9	7
201	Development of the mRNA vaccines to prevent COVID-19. Journal of Applied Biotechnology & Bioengineering, 2022, 9, 109-111.	0.0	0
202	Prophylactic Ribonucleic Acid Vaccines to Combat RNA Viral Infections in Humans., 0,,.		1
203	Polymeric Nanoparticles for Drug Delivery in Osteoarthritis. Pharmaceutics, 2022, 14, 2639.	2.0	8
204	siRNA Functionalized Lipid Nanoparticles (LNPs) in Management of Diseases. Pharmaceutics, 2022, 14, 2520.	2.0	15

#	ARTICLE	IF	Citations
205	Solid Lipid Nanoparticles Based on Monosubstituted Pillar[5]arenes: Chemoselective Synthesis of Macrocycles and Their Supramolecular Self-Assembly. Nanomaterials, 2022, 12, 4266.	1.9	1
206	Structural and biochemical characteristics of mRNA nanoparticles determine anti–SARS-CoV-2 humoral and cellular immune responses. Science Advances, 2022, 8, .	4.7	9
207	Nanovaccines against Viral Infectious Diseases. Pharmaceutics, 2022, 14, 2554.	2.0	6
208	Current state of, prospects for, and obstacles to mRNA vaccine development. Drug Discovery Today, 2023, 28, 103458.	3.2	5
209	Lipid carriers for mRNA delivery. Acta Pharmaceutica Sinica B, 2023, 13, 4105-4126.	5.7	13
210	Poly(aspartic acid)-Based Polymeric Nanoparticle for Local and Systemic mRNA Delivery. Molecular Pharmaceutics, 2022, 19, 4696-4704.	2.3	6
211	Enhancing the Effect of Nucleic Acid Vaccines in the Treatment of HPV-Related Cancers: An Overview of Delivery Systems. Pathogens, 2022, 11, 1444.	1,2	10
212	Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
213	Ferric-loaded lipid nanoparticles inducing ferroptosis-like cell death forÂantibacterial wound healing. Drug Delivery, 2023, 30, 1-8.	2.5	3
215	A tale of nucleic acid–ionizable lipid nanoparticles: Design and manufacturing technology and advancement. Expert Opinion on Drug Delivery, 2023, 20, 75-91.	2.4	6
216	Lipid nanoparticles technology in vaccines: Shaping the future of prophylactic medicine. Colloids and Surfaces B: Biointerfaces, 2023, 222, 113111.	2.5	12
217	Surfactant Semiconductors as Trojan Horses in Cellâ€Membranes for Onâ€Demand and Spatial Regulation of Oxidative Stress. Advanced Healthcare Materials, 2023, 12, .	3.9	0
218	Small-Angle Neutron Scattering Reveals the Nanostructure of Liposomes with Embedded OprF Porins of <i>Pseudomonas aeruginosa</i> Langmuir, 2022, 38, 15026-15037.	1.6	1
219	Lipid and Polymeric Nanoparticles: Successful Strategies for Nose-to-Brain Drug Delivery in the Treatment of Depression and Anxiety Disorders. Pharmaceutics, 2022, 14, 2742.	2.0	10
220	Mutant and non-mutant neoantigen-based cancer vaccines: recent advances and future promises. Exploration of Targeted Anti-tumor Therapy, 0, , 746-762.	0.5	0
221	Nanotechnology in COVID-19 Vaccines. , 2023, , 14-26.		0
222	Inhibition of c-Rel expression in myeloid and lymphoid cells with distearoyl -phosphatidylserine (DSPS) liposomal nanoparticles encapsulating therapeutic siRNA. PLoS ONE, 2022, 17, e0276905.	1.1	0
223	mRNA vaccines for cancer immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	33

#	Article	IF	CITATIONS
224	Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems. Pharmaceutics, 2022, 14, 2681.	2.0	12
225	Injectable Drug Delivery Systems for Osteoarthritis and Rheumatoid Arthritis. ACS Nano, 2022, 16, 19665-19690.	7.3	32
226	Advances of mRNA vaccine in tumor: a maze of opportunities and challenges. Biomarker Research, 2023, 11, .	2.8	12
227	Structures and Applications of Nucleic Acid-Based Micelles for Cancer Therapy. International Journal of Molecular Sciences, 2023, 24, 1592.	1.8	3
228	Insights into Asymmetric Liposomes as a Potential Intervention for Drug Delivery Including Pulmonary Nanotherapeutics. Pharmaceutics, 2023, 15, 294.	2.0	10
229	Nanogels co-loading paclitaxel and curcumin prepared <i>in situ</i> through photopolymerization at 532 nm for synergistically suppressing breast tumors. Journal of Materials Chemistry B, 2023, 11, 1798-1807.	2.9	1
230	Re-envisioning the design of nanomedicines: harnessing automation and artificial intelligence. Expert Opinion on Drug Delivery, 2023, 20, 241-257.	2.4	6
231	Atomistic Insights into Organization of RNA-Loaded Lipid Nanoparticles. Journal of Physical Chemistry B, 2023, 127, 1158-1166.	1.2	4
232	Biopolymer-Based Nanosystems for siRNA Drug Delivery to Solid Tumors including Breast Cancer. Pharmaceutics, 2023, 15, 153.	2.0	2
233	A Facile Method to Coat Nanoparticles with Lipid Bilayer Membrane: Hybrid Silica Nanoparticles Disguised as Biomembrane Vesicles by Particle Penetration of Concentrated Lipid Layers. Small, 2023, 19, .	5.2	4
235	Why mRNA-ionizable LNPs formulations are so short-lived: causes and way-out. Expert Opinion on Drug Delivery, 2023, 20, 175-187.	2.4	2
236	Acidification-Induced Structure Evolution of Lipid Nanoparticles Correlates with Their <i>In Vitro</i> Gene Transfections. ACS Nano, 2023, 17, 979-990.	7.3	15
237	Nanotechnology and COVID-19: Prevention, diagnosis, vaccine, and treatment strategies. Frontiers in Materials, $0, 9, .$	1.2	2
238	In-depth study of anticancer drug diffusion through a cross-linked ÂpH-responsive polymeric vesicle membrane. Drug Delivery, 2023, 30, .	2.5	5
239	Bioinspired Lipid Nanocarriers for RNA Delivery. ACS Bio & Med Chem Au, 2023, 3, 114-136.	1.7	8
240	Cancer Immunotherapy Elicited by Immunogenic Cell Death Based on Smart Nanomaterials. Small Methods, 2023, 7, .	4.6	8
241	Recent advances in the design of controlled- and sustained-release micro/nanocarriers of pesticide. Environmental Science: Nano, 2023, 10, 351-371.	2.2	11
242	Artificial nanovesicles for <scp>dsRNA</scp> delivery in sprayâ€induced gene silencing for crop protection. Plant Biotechnology Journal, 2023, 21, 854-865.	4.1	16

#	Article	IF	CITATIONS
243	Use of stimulatory responsive soft nanoparticles for intracellular drug delivery. Nano Research, 2023, 16, 6974-6990.	5.8	12
244	Incorporation of glycyrrhizic acid and polyene phosphatidylcholine in lipid nanoparticles ameliorates acute liver injury via delivering p65 siRNA. Nanomedicine: Nanotechnology, Biology, and Medicine, 2023, 48, 102649.	1.7	4
245	Non-viral nucleic acid delivery approach: A boon for state-of-the-art gene delivery. Journal of Drug Delivery Science and Technology, 2023, 80, 104152.	1.4	1
246	Modification of liposomes composed of a cationic lipid TMAG and an anionic lipid DSPG with a PEGylated lipid based on the investigation of lipid structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 661, 130891.	2.3	0
247	Interactions of Inhaled Liposome with Macrophages and Neutrophils Determine Particle Biofate and Anti-Inflammatory Effect in Acute Lung Inflammation. ACS Applied Materials & Samp; Interfaces, 2023, 15, 479-493.	4.0	4
248	miRNAs: The Road from Bench to Bedside. Genes, 2023, 14, 314.	1.0	13
249	Molecular Neurosurgery: Introduction to Gene Therapy and Clinical Applications. Journal of Pediatric Epilepsy, 2023, 12, 050-062.	0.1	0
250	Cancer-Specific Delivery of Proteolysis-Targeting Chimeras (PROTACs) and Their Application to Cancer Immunotherapy. Pharmaceutics, 2023, 15, 411.	2.0	7
251	Unveiling growth and dynamics of liposomes by graphene liquid cell-transmission electron microscopy. Nanoscale, 2023, 15, 5011-5022.	2.8	2
252	<i>In vitro</i> transfection efficiencies of T-shaped spermine-based cationic lipids with identical and nonidentical tails under high serum conditions. Organic and Biomolecular Chemistry, 0 , , .	1.5	1
253	Ready-to-Use-Type Lyophilized Lipid Nanoparticle Formulation for the Postencapsulation of Messenger RNA. ACS Nano, 2023, 17, 2588-2601.	7.3	9
254	Controlling lamellarity and physicochemical properties of liposomes prepared using a microfluidic device. Biomaterials Science, 2023, 11, 2419-2426.	2.6	7
255	The Development of Surface-Modified Liposomes as an Intranasal Delivery System for Group A Streptococcus Vaccines. Vaccines, 2023, 11, 305.	2.1	2
256	Sensing and manipulating single lipid vesicles using dynamic DNA nanotechnology. Nanoscale, 2023, 15, 5158-5166.	2.8	3
257	Nanobiotechnology-Enabled mRNA Stabilization. Pharmaceutics, 2023, 15, 620.	2.0	5
258	Lipid Nanoparticle and Liposome Reference Materials: Assessment of Size Homogeneity and Long-Term â°70 °C and 4 °C Storage Stability. Langmuir, 2023, 39, 2509-2519.	1.6	8
259	Nanoliposomal Bcl-xL proteolysis-targeting chimera enhances anti-cancer effects on cervical and breast cancer without on-target toxicities. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	3
260	Establishment of an Antiplasmodial Vaccine Based on PfRH5-Encoding RNA Replicons Stabilized by Cationic Liposomes. Pharmaceutics, 2023, 15, 1223.	2.0	2

#	Article	IF	CITATIONS
261	Milk/colostrum exosomes: A nanoplatform advancing delivery of cancer therapeutics. Cancer Letters, 2023, 561, 216141.	3.2	10
262	Long-acting anti-colorectal cancer by nanocomplex co-regulating Bmi1 through miR-218 and siCCAT1. Journal of Drug Delivery Science and Technology, 2023, 83, 104407.	1.4	0
263	Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Advanced Drug Delivery Reviews, 2023, 196, 114770.	6.6	37
264	Solid lipid nanoparticles of lauric Acid: A prospective drug carrier for oral drug delivery. Journal of Molecular Liquids, 2023, 380, 121738.	2.3	3
265	Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles. Advanced Drug Delivery Reviews, 2023, 194, 114708.	6.6	27
266	Neurogenic Hypertension, the Blood–Brain Barrier, and the Potential Role of Targeted Nanotherapeutics. International Journal of Molecular Sciences, 2023, 24, 2213.	1.8	2
267	Microfluidic fabrication of photo-responsive Ansamitocin P-3 loaded liposomes for the treatment of breast cancer. Nanoscale, 2023, 15, 3780-3795.	2.8	3
268	Efficient Delivery of Globotriaosylceramide Synthase siRNA using Polyhistidineâ€Incorporated Lipid Nanoparticles. Macromolecular Bioscience, 2023, 23, .	2.1	4
269	Advancing Medicine with Lipid-Based Nanosystemsâ€"The Successful Case of Liposomes. Biomedicines, 2023, 11, 435.	1.4	8
270	Highâ€Precision Synthesis of RNA‣oaded Lipid Nanoparticles for Biomedical Applications. Advanced Healthcare Materials, 2023, 12, .	3.9	11
271	Potential of siRNA in COVID-19 therapy: Emphasis on in silico design and nanoparticles based delivery. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	2.0	3
272	Nanoparticles for Lymph Node-Directed Delivery. Pharmaceutics, 2023, 15, 565.	2.0	10
274	Nanoparticles of VAV1 siRNA combined with LL37 peptide for the treatment of pancreatic cancer. Journal of Controlled Release, 2023, 355, 312-326.	4.8	1
275	Effect of PEG Anchor and Serum on Lipid Nanoparticles: Development of a Nanoparticles Tracking Method. Pharmaceutics, 2023, 15, 597.	2.0	5
276	Intracellular Delivery of mRNA for Cell‧elective CRISPR/Cas9 Genome Editing using Lipid Nanoparticles. ChemBioChem, 2023, 24, .	1.3	4
277	Improving the biological activities of astaxanthin using targeted delivery systems. Critical Reviews in Food Science and Nutrition, 0, , 1-22.	5.4	0
278	From Olive Oil Emulsions to COVID-19 Vaccines: Liposomes Came First. Methods in Molecular Biology, 2023, , 1-19.	0.4	0
279	Advanced delivery systems for peptide antibiotics. Advanced Drug Delivery Reviews, 2023, 196, 114733.	6.6	12

#	Article	IF	CITATIONS
280	Lipid-based colloidal nanoparticles for applications in targeted vaccine delivery. Nanoscale Advances, 2023, 5, 1853-1869.	2.2	8
281	Development of Novel siRNA Therapeutics: A Review with a Focus on Inclisiran for the Treatment of Hypercholesterolemia. International Journal of Molecular Sciences, 2023, 24, 4019.	1.8	11
282	RNA modification in mRNA cancer vaccines. Clinical and Experimental Medicine, 2023, 23, 1917-1931.	1.9	7
283	Rediscovery of poly(ethylene glycol)s as a cryoprotectant for mesenchymal stem cells. Biomaterials Research, 2023, 27, .	3.2	10
284	Combinational System of Lipid-Based Nanocarriers and Biodegradable Polymers for Wound Healing: An Updated Review. Journal of Functional Biomaterials, 2023, 14, 115.	1.8	12
285	Continuous production of lipid nanoparticles by multiple-splitting in microfluidic devices with chaotic microfibrous channels. Colloids and Surfaces B: Biointerfaces, 2023, 224, 113212.	2.5	1
286	Self-Organization of Mobile, Polyelectrolytic Dendrons on Stable, Amphiphile-Based Spherical Surfaces. Langmuir, 2023, 39, 3439-3449.	1.6	1
287	Delivery challenges for CRISPRâ€"Cas9 genome editing for Duchenne muscular dystrophy. Biophysics Reviews, 2023, 4, .	1.0	2
288	mRNA-Based Vaccine for COVID-19: They Are New but Not Unknown!. Vaccines, 2023, 11, 507.	2.1	11
289	Approved Nanomedicine against Diseases. Pharmaceutics, 2023, 15, 774.	2.0	14
290	Recent Progress of Lipid Nanoparticles-Based Lipophilic Drug Delivery: Focus on Surface Modifications. Pharmaceutics, 2023, 15, 772.	2.0	16
291	Polysarcosine-based lipid formulations for intracranial delivery of mRNA. Journal of Controlled Release, 2023, 356, 1-13.	4.8	8
292	Preformulation Studies: A Versatile Tool in Formulation Design. , 0, , .		1
293	Biolistic delivery of liposomesÂprotected in metal-organic frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	10
294	Antimicrobial peptides with antiviral and anticancer properties and their modification and nanodelivery systems. Current Research in Biotechnology, 2023, 5, 100121.	1.9	11
296	Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Advances in Colloid and Interface Science, 2023, 314, 102871.	7.0	17
297	The Effect of Cryoprotectants and Storage Conditions on the Transfection Efficiency, Stability, and Safety of Lipidâ€Based Nanoparticles for mRNA and DNA Delivery. Advanced Healthcare Materials, 2023, 12, .	3.9	4
298	The power of super-resolution microscopy in modern biomedical science. Advances in Colloid and Interface Science, 2023, 314, 102880.	7.0	4

#	Article	IF	CITATIONS
299	Proteinâ€based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angewandte Chemie, 0, , .	1.6	1
300	Brain-targeted delivery of losartan through functionalized liposomal nanoparticles for management of neurogenic hypertension. International Journal of Pharmaceutics, 2023, 637, 122841.	2.6	1
301	Proteinâ€based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
302	Conserved Protein–Polymer Interactions across Structurally Diverse Polymers Underlie Alterations to Protein Thermal Unfolding. ACS Central Science, 2023, 9, 685-695.	5.3	2
303	Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines. Vaccines, 2023, 11, 658.	2.1	8
304	Emerging Trends in Lipid-Based Vaccine Delivery: A Special Focus on Developmental Strategies, Fabrication Methods, and Applications. Vaccines, 2023, 11, 661.	2.1	8
305	Promoting the bench-to-bedside translation of nanomedicines. Medical Review, 2023, 3, 1-3.	0.3	1
307	Lipid-engineered nanotherapeutics for cancer management. Frontiers in Pharmacology, 0, 14, .	1.6	4
308	ETV2/ER71, the key factor leading the paths to vascular regeneration and angiogenic reprogramming. Stem Cell Research and Therapy, 2023, 14 , .	2.4	5
309	A low dose of RBD and TLR7/8 agonist displayed on influenza virosome particles protects rhesus macaque against SARS-CoV-2 challenge. Scientific Reports, 2023, 13, .	1.6	2
310	Emergence of SARSâ€CoVâ€2 spike protein at the vaccination site. Immunity, Inflammation and Disease, 2023, 11, .	1.3	0
311	Recent Advances in Site-Specific Lipid Nanoparticles for mRNA Delivery. ACS Nanoscience Au, 2023, 3, 192-203.	2.0	8
312	mRNA melanoma vaccine revolution spurred by the COVID-19 pandemic. Frontiers in Immunology, 0, 14, .	2.2	3
313	Mechanistic Understanding of Protein Corona Formation around Nanoparticles: Old Puzzles and New Insights. Small, 2023, 19, .	5.2	13
314	Applications of Spray-Dried Vaccines. , 2023, , 325-530.		0
315	Enhancing the Effectiveness of Oligonucleotide Therapeutics Using Cell-Penetrating Peptide Conjugation, Chemical Modification, and Carrier-Based Delivery Strategies. Pharmaceutics, 2023, 15, 1130.	2.0	11
316	Drug Resistance: An Incessant Fight against Evolutionary Strategies of Survival. Microbiology Research, 2023, 14, 507-542.	0.8	2
317	Key Design Features of Lipid Nanoparticles and Electrostatic Charge-Based Lipid Nanoparticle Targeting. Pharmaceutics, 2023, 15, 1184.	2.0	4

#	Article	IF	Citations
318	HER2/neu Oncogene Silencing in a Breast Cancer Cell Model Using Cationic Lipid-Based Delivery Systems. Pharmaceutics, 2023, 15, 1190.	2.0	7
319	Lipid Droplets from Plants and Microalgae: Characteristics, Extractions, and Applications. Biology, 2023, 12, 594.	1.3	6
320	Hepatocyte-targeted delivery using oleanolic acid-loaded liposomes for enhanced hepatocellular carcinoma therapy. Biomaterials Science, 2023, 11, 3952-3964.	2.6	3
321	Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Advanced Drug Delivery Reviews, 2023, 197, 114828.	6.6	7
322	Lipid-based liquid crystalline materials in electrochemical sensing and nanocarrier technology. Mikrochimica Acta, 2023, 190, .	2.5	0
323	The Novelty of mRNA Viral Vaccines and Potential Harms: A Scoping Review. J, 2023, 6, 220-235.	0.6	3
324	Antigen Delivery Systems: Past, Present, and Future. Biomolecules and Therapeutics, 2023, , .	1.1	0
325	Multicomponent Lipid Nanoparticles for RNA Transfection. Pharmaceutics, 2023, 15, 1289.	2.0	3
326	Proof-of-concept for effective antiviral activity of an in silico designed decoy synthetic mRNA against SARS-CoV-2 in the Vero E6 cell-based infection model. Frontiers in Microbiology, 0, 14, .	1.5	2
327	Therapeutic effects of curcumin liposomes and nanocrystals on inflammatory osteolysis: In vitro and in vivo comparative study. Pharmacological Research, 2023, 192, 106778.	3.1	8
329	Molecular Dynamics Simulations as a Tool to Understand Drug Solubilization in Pharmaceutical Systems. , 2024, , 865-885.		1
345	A Review of mRNA Vaccines with the Aid of Lipid Nanoparticles. Springer Proceedings in Materials, 2023, , 111-123.	0.1	0
350	Rational design and combinatorial chemistry of ionizable lipids for RNA delivery. Journal of Materials Chemistry B, 2023, 11, 6527-6539.	2.9	4
369	Parenteral., 2023,, 473-519.		0
378	Lipid Nanoparticle-Mediated Delivery of miRNA Mimics to Myeloid Cells. Methods in Molecular Biology, 2023, , 337-350.	0.4	2
383	Bioinspired Nanosystems Interacting with the Host Environment: Smart Nanosystems. , 2023, , 11-34.		0
388	Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	17
389	PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective. Bioconjugate Chemistry, 2023, 34, 941-960.	1.8	22

#	Article	IF	CITATIONS
390	The Dawn of a New Era: Targeting the "Undruggables―with Antibody-Based Therapeutics. Chemical Reviews, 2023, 123, 7782-7853.	23.0	13
391	Structural and componential design: new strategies regulating the behavior of lipid-based nanoparticles $\langle i \rangle$ in $\forall i \rangle$. Biomaterials Science, 2023, 11, 4774-4788.	2.6	2
399	Selective organ targeting nanoparticles: from design to clinical translation. Nanoscale Horizons, 2023, 8, 1155-1173.	4.1	1
404	Messenger RNA-Based Therapeutics and Vaccines: What's beyond COVID-19?. ACS Pharmacology and Translational Science, 2023, 6, 943-969.	2.5	10
407	Polymer–drug conjugation using ester and ortho-ester bond: Mechanism, protocols, and applications. , 2023, , 121-145.		0
418	Engineered Liposomes in Interventional Theranostics of Solid Tumors. ACS Biomaterials Science and Engineering, 2023, 9, 4527-4557.	2.6	6
427	Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chemical Society Reviews, 2023, 52, 5172-5254.	18.7	7
432	Editorial: Anti-cancer drug delivery: lipid-based nanoparticles. Frontiers in Oncology, 0, 13, .	1.3	0
435	Cytomegalovirus Vaccines. , 2023, , 258-274.e9.		0
451	Visualization of Nanocarriers and Drugs in Cells and Tissue. Handbook of Experimental Pharmacology, 2023, , .	0.9	0
467	mRNA-Based Nanomedicine: A New Strategy for Treating Infectious Diseases and Beyond. European Journal of Drug Metabolism and Pharmacokinetics, 2023, 48, 515-529.	0.6	1
470	Biogenic engineered nanomaterials for enhancing bioavailability <i>via</i> developing nano-iron-fortified smart foods: advances, insight, and prospects of nanobionics in fortification of food. Food and Function, 2023, 14, 9083-9099.	2.1	3
471	Microfluidic synthesis of nanomaterials for biomedical applications. Nanoscale Horizons, 0, , .	4.1	0
474	Nanotechnology-based theranostic and prophylactic approaches against SARS-CoV-2. Immunologic Research, 0, , .	1.3	1
478	Circular RNA vaccine in disease prevention and treatment. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	3
497	Structural and Functional Aspects of the Interactions Between Medical Polymers and Liposomes and Bacterial Cells. Moscow University Chemistry Bulletin, 2023, 78, 255-268.	0.2	0
508	Drug Delivery and Therapeutics for the Treatment of Infectious Diseases. , 2023, , 59-77.		0
522	Drug Delivery Systems: Lipid Nanoparticles Technology in Clinic. , 2023, , 181-200.		0

#	Article	IF	CITATIONS
525	Recent advancement in targeted therapy and role of emerging technologies to treat cancer., 2023, 40,.		2
542	Smart nanoparticles for cancer therapy. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	22
549	Recent trends and perspectives of artificial intelligence-based machine learning from discovery to manufacturing in biopharmaceutical industry. Journal of Pharmaceutical Investigation, 2023, 53, 803-826.	2.7	0
554	Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. Naunyn-Schmiedeberg's Archives of Pharmacology, 0, , .	1.4	7
583	Delivery of nucleic acids using nanomaterials. Molecular Biomedicine, 2023, 4, .	1.7	2
589	3D-printed microfluidic device for high-throughput production of lipid nanoparticles incorporating SARS-CoV-2 spike protein mRNA. Lab on A Chip, 2024, 24, 162-170.	3.1	1
608	Novel Nanotechnological Therapy Approaches to Glioblastoma. Recent Advances in Biotechnology, 2023, , 274-295.	0.1	0
614	Production of Complex Proteins in Plants: From Farming to Manufacturing. Cell Engineering, 2023, , 241-278.	0.4	0
622	Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nature Reviews Drug Discovery, 2024, 23, 281-300.	21.5	2
625	Liposomes and Lipid Nanoparticles as Peritoneal Drug Delivery Systems. , 2023, , 51-77.		0
628	Applications of CRISPR/Cas9 gene-editing technology in cancer. , 2024, , .		0
631	Potential Toxicity of Nanoparticles for the Oral Delivery of Therapeutics. , 0, , .		O
650	RNA therapeutics history and future perspectives. Progress in Molecular Biology and Translational Science, 2024, , 99-114.	0.9	0
665	Nanotechnology as an emerging option in cancer immunotherapy. , 2024, , 37-70.		0
666	Nanotechnology Approaches for Microbe-Based Formulations and Drug Delivery. , 2023, , 333-362.		0
672	Progress and Challenges of Water-soluble NIR-II Organic Fluorophores for Fluorescence Imaging in vivo. Chemical Research in Chinese Universities, 2024, 40, 190-201.	1.3	0
677	Nano–Bio Interactions: Exploring the Biological Behavior and the Fate of Lipid-Based Gene Delivery Systems. BioDrugs, 2024, 38, 259-273.	2.2	0