Microfluidic Paper-Based Analytical Devices: From Desi

Chemical Reviews 121, 11835-11885

DOI: 10.1021/acs.chemrev.0c01335

Citation Report

#	Article	IF	CITATIONS
1	Alcohol-Triggered Capillarity through Porous Pyrolyzed Paper-Based Electrodes Enables Ultrasensitive Electrochemical Detection of Phosphate. ACS Sensors, 2021, 6, 3125-3132.	4.0	24
2	Paper-based microfluidic devices: On-site tools for crime scene investigation. TrAC - Trends in Analytical Chemistry, 2021, 143, 116406.	5.8	23
3	Paper-based analytical devices for virus detection: Recent strategies for current and future pandemics. TrAC - Trends in Analytical Chemistry, 2021, 144, 116424.	5.8	44
4	Simultaneous analysis of multiple adulterants in milk using microfluidic paper-based analytical devices. Analytical Methods, 2021, 13, 5383-5390.	1.3	11
5	Electroanalytical Paper-Based Nucleic Acid Amplification Biosensors with Integrated Thread Electrodes. Analytical Chemistry, 2021, 93, 14187-14195.	3.2	22
6	Toward the Development of Rapid, Specific, and Sensitive Microfluidic Sensors: A Comprehensive Device Blueprint. Jacs Au, 2021, 1, 1815-1833.	3.6	9
7	Paper-Based Analytical Devices for Colorimetric and Luminescent Detection of Mercury in Waters: An Overview. Sensors, 2021, 21, 7571.	2.1	13
8	Paper-based immunoassay based on 96-well wax-printed paper plate combined with magnetic beads and colorimetric smartphone-assisted measure for reliable detection of SARS-CoV-2 in saliva. Biosensors and Bioelectronics, 2022, 200, 113909.	5.3	31
9	A rotary multi-positioned cloth/paper hybrid microfluidic device for simultaneous fluorescence sensing of mercury and lead ions by using ion imprinted technologies. Journal of Hazardous Materials, 2022, 428, 128165.	6.5	40
10	Deep and dip: Immobilization on paper substrate using Deep Eutectic solvent to fabricate reusable dip immersion colorimetric sensor arrays. Sensors and Actuators B: Chemical, 2022, 356, 131379.	4.0	10
11	A Distance-Based Microfluidic Paper-Based Biosensor for Glucose Measurements in Tear Range. Applied Biochemistry and Biotechnology, 2022, 194, 2077-2092.	1.4	15
12	Rapid colorimetric discrimination of cyanide ions – mechanistic insights and applications. Analytical Methods, 2022, 14, 518-525.	1.3	1
13	Reversal of a Fluorescent Fluoride Chemosensor from Turn-Off to Turn-On Based on Aggregation Induced Emission Properties. ACS Sensors, 2022, 7, 37-43.	4.0	5
14	Traffic light type paper-based analytical device for intuitive and semi-quantitative naked-eye signal readout. Lab on A Chip, 2022, 22, 717-726.	3.1	6
15	<i>In Situ</i> Nanocoating on Porous Pyrolyzed Paper Enables Antibiofouling and Sensitive Electrochemical Analyses in Biological Fluids. ACS Applied Materials & Interfaces, 2022, 14, 2522-2533.	4.0	20
16	Bromine speciation by a paper-based sensor integrated with a citric acid/cysteamine fluorescent probe and smartphone detection. Sensors and Actuators B: Chemical, 2022, 358, 131499.	4.0	12
17	RGB color sensor for colorimetric determinations: Evaluation and quantitative analysis of colored liquid samples. Talanta, 2022, 241, 123244.	2.9	32
18	Microfluidic flow modulation with digitized sizing pattern in Xuan paper-based analytical devices. AEJ - Alexandria Engineering Journal, 2022, 61, 7171-7181.	3.4	3

#	ARTICLE	IF	CITATIONS
19	The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. Journal of Electroanalytical Chemistry, 2022, 909, 116140.	1.9	10
20	Fabrication of Paper-Based Microfluidics by Spray on Printed Paper. Polymers, 2022, 14, 639.	2.0	5
21	Materials for wearable sensors. , 2022, , 5-40.		3
22	A Paper Origami-Based Micro-Total Electrochemical Immunoassay (Μtei) for the Detection of Total Malachite Green in Aquatic Products. SSRN Electronic Journal, 0, , .	0.4	0
23	Nanomaterial-assisted microfluidics for multiplex assays. Mikrochimica Acta, 2022, 189, 139.	2.5	16
24	Microfluidic-based ion-selective thermoplastic electrode array for point-of-care detection of potassium and sodium ions. Mikrochimica Acta, 2022, 189, 152.	2.5	15
25	Biocompatible Wearable Electrodes on Leaves toward the On-Site Monitoring of Water Loss from Plants. ACS Applied Materials & Interfaces, 2022, 14, 22989-23001.	4.0	25
26	Polymer Components for Paperâ€Based Analytical Devices. Advanced Materials Technologies, 2022, 7, .	3.0	4
27	A paper origami-based micro-total electrochemical immunoassay ($\hat{l}\frac{1}{4}$ TEI) for the detection of total malachite green in aquatic products. Sensors and Actuators B: Chemical, 2022, 361, 131748.	4.0	6
28	SERS-based CRISPR/Cas assay on microfluidic paper analytical devices for supersensitive detection of pathogenic bacteria in foods. Biosensors and Bioelectronics, 2022, 207, 114167.	5.3	98
29	Microfluidic Evaporation, Pervaporation, and Osmosis: From Passive Pumping to Solute Concentration. Chemical Reviews, 2022, 122, 6938-6985.	23.0	23
30	Electrochemical Flow Injection Analysis Biosensors Using Biomolecules-immobilized Carbon Felt. Bunseki Kagaku, 2022, 71, 13-24.	0.1	0
31	Wax-Printed Fluidic Controls for Delaying and Accelerating Fluid Transport on Paper-Based Analytical Devices. Chemosensors, 2022, 10, 155.	1.8	2
32	Rapid and accurate nanoelectrokinetic diagnosis of drug-resistant bacteria. Biosensors and Bioelectronics, 2022, 213, 114350.	5.3	5
33	2D COFs paper composites fabricated by the in situ growth for visual detection of target metal ions. Materials Chemistry and Physics, 2022, 286, 126208.	2.0	4
34	Improvement strategies on colorimetric performance and practical applications of Paper-based analytical devices. Microchemical Journal, 2022, 180, 107562.	2.3	14
35	Fabrication of Polymer Microfluidics: An Overview. Polymers, 2022, 14, 2028.	2.0	14
36	Current Advancements and Future Road Map to Develop ASSURED Microfluidic Biosensors for Infectious and Non-Infectious Diseases. Biosensors, 2022, 12, 357.	2.3	12

#	Article	IF	Citations
37	A free customizable tool for easy integration of microfluidics and smartphones. Scientific Reports, 2022, 12, .	1.6	13
38	Mechanistic Understanding and Threeâ€Dimensional Tuning of Fluid Imbibition in Silicaâ€Coated Cotton Linter Paper Sheets. Advanced Materials Interfaces, 2022, 9, .	1.9	4
39	Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer. Analytical Chemistry, 2022, 94, 8833-8837.	3.2	25
40	Paperâ€based Wearable Electrochemical Sensors: A New Generation of Analytical Devices. Electroanalysis, 2023, 35, .	1.5	27
41	Nanomaterials and paper-based electrochemical devices: merging strategies for fostering sustainable detection of biomarkers. Journal of Materials Chemistry B, 2022, 10, 9021-9039.	2.9	14
42	An ion imprinting technology-assisted rotational microfluidic hybrid chip for the fluorescence detection of hexavalent chromium ions. Analyst, The, 2022, 147, 3756-3763.	1.7	6
43	Rapid and inexpensive process to fabricate paper based microfluidic devices using a cut and heat plastic lamination process. Lab on A Chip, 2022, 22, 3377-3389.	3.1	11
44	Threads in tubing: an innovative approach towards improved electrochemical thread-based microfluidic devices. Lab on A Chip, 2022, 22, 3045-3054.	3.1	7
45	Electrochemical paper-based devices: When the simple replacement of the support to print ecodesigned electrodes radically improves the features of the electrochemical devices. Current Opinion in Electrochemistry, 2022, 35, 101090.	2.5	11
46	Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications. Journal of Agricultural and Food Chemistry, 2022, 70, 8188-8206.	2.4	12
47	Research Progress and Future Trends of Microfluidic Paper-Based Analytical Devices in In-Vitro Diagnosis. Biosensors, 2022, 12, 485.	2.3	15
48	Multiplexed paper-based assay for personalized antimicrobial susceptibility profiling of Carbapenem-resistant Enterobacterales performed in a rechargeable coffee mug. Scientific Reports, 2022, 12, .	1.6	1
49	Recent Advances in Electrochemical Sensing Strategies for Food Allergen Detection. Biosensors, 2022, 12, 503.	2.3	8
50	Electrified lab on disc systems: A comprehensive review on electrokinetic applications. Biosensors and Bioelectronics, 2022, 214, 114381.	5.3	10
51	Metal-organic framework-enabled surface state passivation integrating with single-nuclease-propelled multistage amplification for ultrasensitive lab-on-paper photoelectrochemical biosensing. Chemical Engineering Journal, 2022, 450, 137955.	6.6	12
52	Design of a microfluidic paper-based device for the quantification of phenolic compounds in wine samples. Talanta, 2022, 250, 123747.	2.9	6
53	Paper-Based Enzymatic Electrochemical Sensors for Glucose Determination. Sensors, 2022, 22, 6232.	2.1	15
54	Current Advances in Paper-Based Biosensor Technologies for Rapid COVID-19 Diagnosis. Biochip Journal, 2022, 16, 376-396.	2.5	20

#	Article	IF	Citations
55	Polyimide adhesive tapes as a versatile and disposable substrate to produce CO2 laser-induced carbon sensors for batch and microfluidic analysis. Microchemical Journal, 2022, 182, 107893.	2.3	11
56	Modular Label-Free Electrochemical Biosensor Loading Nature-Inspired Peptide toward the Widespread Use of COVID-19 Antibody Tests. ACS Nano, 2022, 16, 14239-14253.	7.3	17
57	A smartphone-assisted hybrid sensor for simultaneous potentiometric and distance-based detection of electrolytes. Analytica Chimica Acta, 2022, 1226, 340245.	2.6	9
58	Microfluidics at the interface of bacteria and fresh produce. Trends in Food Science and Technology, 2022, 128, 102-117.	7.8	12
59	Paper Based Microfluidic Colorimetric Sensor Systems. International Journal of Eastern Anatolia Science Engineering and Design, 0, , 104-117.	0.1	0
60	Electrochemical paper-based antigen sensing platform using plant-derived monoclonal antibody for detecting SARS-CoV-2. Talanta, 2023, 251, 123783.	2.9	18
61	Microfluidic devices for photo-and spectroelectrochemical applications. Current Opinion in Electrochemistry, 2022, 36, 101138.	2.5	5
62	Palladium-platinum bimetallic nanomaterials and their application in Staphylococcus aureus detection on paper-based devices. Biosensors and Bioelectronics, 2022, 216, 114669.	5.3	14
63	Paper-based sensors for rapid important biomarkers detection. Biosensors and Bioelectronics: X, 2022, 12, 100246.	0.9	15
64	Quantum dots immobilized paper for specific and sensitive quantitation of Ni(II) by headspace photochemical vapor generation: Mechanism and application for RGB detection in tea fusion with a smartphone. Sensors and Actuators B: Chemical, 2022, 372, 132686.	4.0	15
65	Integrated calibration and serum iron in situ analysis into an array microfluidic paper-based analytical device with smartphone readout. Talanta, 2023, 253, 123914.	2.9	4
66	Dual-mode ion-selective electrodes and distance-based microfluidic device for detection of multiple urinary electrolytes. Analyst, The, 2022, 147, 4517-4524.	1.7	4
67	Microfluidicsâ€Based Urine Biopsy for Cancer Diagnosis: Recent Advances and Future Trends. ChemMedChem, 2022, 17, .	1.6	3
68	Recent advances in microfluidic devices for foodborne pathogens detection. TrAC - Trends in Analytical Chemistry, 2022, 157, 116788.	5.8	27
69	Paper-Based Screen-Printed Ionic-Liquid/Graphene Electrode Integrated with Prussian Blue/MXene Nanocomposites Enabled Electrochemical Detection for Glucose Sensing. Biosensors, 2022, 12, 852.	2.3	13
70	The Effect of Paper on the Detection Limit of Paper-Based Potentiometric Chloride Sensors. Analytical Chemistry, 2022, 94, 14898-14905.	3.2	4
71	A Paper-Based Photoelectrochemical Sensing Platform Based on In Situ Grown ZnO/ZnIn2S4 Heterojunctions onto Paper Fibers for Sensitively Detecting AFP. Biosensors, 2022, 12, 818.	2.3	8
72	Recent Developments in Microfluidic Paper-based Analytical Devices for Pharmaceutical Analysis. Current Topics in Medicinal Chemistry, 2022, 22, 2241-2260.	1.0	3

#	ARTICLE	IF	Citations
73	Microfluidic platforms integrated with nano-sensors for point-of-care bioanalysis. TrAC - Trends in Analytical Chemistry, 2022, 157, 116806.	5.8	25
74	Recent Progress and Challenges on the Microfluidic Assay of Pathogenic Bacteria Using Biosensor Technology. Biomimetics, 2022, 7, 175.	1.5	8
75	An Origami Paper-Based Biosensor for Allergen Detection by Chemiluminescence Immunoassay on Magnetic Microbeads. Biosensors, 2022, 12, 825.	2.3	7
76	The Road to Unconventional Detections: Paper-Based Microfluidic Chips. Micromachines, 2022, 13, 1835.	1.4	6
77	Fabrication of microtiter plate on paper using 96-well plates for wax stamping. Microfluidics and Nanofluidics, 2022, 26, .	1.0	0
78	Recent development of microfluidic biosensors for the analysis of antibiotic residues. TrAC - Trends in Analytical Chemistry, 2022, 157, 116797.	5.8	12
79	All-in-one portable microsystem for on-site electrochemical determination of phosphate in turbid coastal waters. Microchemical Journal, 2022, 183, 108079.	2.3	2
80	Towards papertronics based electrode decorated with zinc oxide nanoparticles for the detection of the yellow fever virus consensus sequence. Process Biochemistry, 2022, 123, 36-43.	1.8	10
81	A fabrication technique for paper-based analytical devices via two-sided patterning with thermal-transfer printer and laminator. Sensors and Actuators B: Chemical, 2023, 375, 132886.	4.0	1
82	Thermocapillary convection modulating ion migration for rapid recognition and detection of Cu (â¡) based on MnO2 NSs-AuNSs modified screen printed electrode. Sensors and Actuators B: Chemical, 2023, 374, 132819.	4.0	3
83	A paper-based point-of-care testing device for the colourimetric estimation of bilirubin in blood sample. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 287, 122045.	2.0	0
84	A rotating paper-based microfluidic sensor array combining Michael acceptors and carbon quantum dots for discrimination of biothiols. Chemical Engineering Journal, 2023, 454, 140065.	6.6	11
85	A portable paper-based aptasensor for simultaneous visual detection of two mycotoxins in corn flour using dual-color upconversion nanoparticles and Cu-TCPP nanosheets. Food Chemistry, 2023, 404, 134750.	4.2	10
86	A dual-readout paper-based analytical device for the simultaneous determination of hexavalent Cr and total Cr. Mikrochimica Acta, 2022, 189, .	2.5	6
87	Two-Way Detection of COVID-19 Spike Protein and Antibody Using All-Dielectric Metasurface Fluorescence Sensors. Biosensors, 2022, 12, 981.	2.3	5
88	Disposable Sensors for Heavy Metals Detection: A Review of Carbon and Nonâ€Noble Metalâ€Based Receptors. ChemistrySelect, 2022, 7, .	0.7	2
89	Microfluidic Paper-based Device for Medicinal Diagnosis. Current Topics in Medicinal Chemistry, 2022, 22, 2282-2313.	1.0	2
90	Rapid Detection of <i>Staphylococcus aureus</i> Using Paper-Derived Electrochemical Biosensors. Analytical Chemistry, 2022, 94, 16847-16854.	3.2	20

#	Article	IF	CITATIONS
91	Wax-Printed Microfluidic Paper Analytical Device for Viscosity-Based Biosensing in a 3D Printed Image Analysis Platform. Mechanisms and Machine Science, 2023, , 301-309.	0.3	1
92	Laser-induced fabrication of gold nanoparticles onto paper substrates and their application on paper-based electroanalytical devices. Sensors & Diagnostics, 2023, 2, 111-121.	1.9	4
93	Microfluidic (bio)-sensors based on 2-D layered materials. TrAC - Trends in Analytical Chemistry, 2023, 158, 116839.	5.8	5
94	Fabrication of Paper-based Analytical Devices by Laminating Method with Thermal Ink Ribbon, Sticky Notes, and Office Appliances. Analytical Methods, 0, , .	1.3	0
95	Paper-based optical nanosensors – A review. Analytica Chimica Acta, 2023, 1238, 340640.	2.6	16
96	Nanocatalysis meets microfluidics: A powerful platform for sensitive bioanalysis. TrAC - Trends in Analytical Chemistry, 2023, 158, 116887.	5.8	10
97	Achieving broad availability of SARS-CoV-2 detections via smartphone-based analysis. TrAC - Trends in Analytical Chemistry, 2023, 158, 116878.	5.8	8
98	Evaluation of chromogenic substrates for horseradish peroxidase on paper-based microfluidic devices. Sensors and Actuators B: Chemical, 2023, 377, 133028.	4.0	2
99	The potential of nano-enabled oral ecosystem surveillance for respiratory disease management. Nano Today, 2023, 48, 101693.	6.2	0
100	Threaded 3D microfluidic paper analytical device-based ratiometric fluorescent sensor for background-free and visual detection of organophosphorus pesticides. Biosensors and Bioelectronics, 2023, 222, 114981.	5. 3	23
101	Thermal buffering performance of passive phase change material micro-pillar array systems on temperature regulation of microfluidic chips. Journal of Energy Storage, 2023, 58, 106424.	3.9	2
102	Enhancing of detection resolution via designing of a multi-functional 3D connector between sampling and detection zones in distance-based microfluidic paper-based analytical device: multi-channel design for multiplex analysis. Mikrochimica Acta, 2022, 189, .	2.5	5
103	Simultaneous Cross-type Detection of Water Quality Indexes via a Smartphone-App Integrated Microfluidic Paper-Based Platform. ACS Omega, 2022, 7, 44338-44345.	1.6	3
104	Paper-Based Biosensors for the Detection of Nucleic Acids from Pathogens. Biosensors, 2022, 12, 1094.	2.3	12
105	Toward Integrated Molecular Lateral Flow Diagnostic Tests Using Advanced Micro- and Nanotechnology. Analytical Chemistry, 2023, 95, 468-489.	3.2	10
106	A Nitrocellulose Paper-Based Multi-Well Plate for Point-of-Care ELISA. Micromachines, 2022, 13, 2232.	1.4	5
107	Translational Nanomedicines Across Human Reproductive Organs Modeling on Microfluidic Chips: State-of-the-Art and Future Prospects. ACS Biomaterials Science and Engineering, 2023, 9, 62-84.	2.6	4
108	Rapid Measurement of Residual Kanamycin Using Highly Specific Biomimetic Recognition Paper-Based Chip. Analytical Chemistry, 2022, 94, 17567-17576.	3.2	5

#	Article	IF	CITATIONS
109	Application of Microfluidics for Bacterial Identification. Pharmaceuticals, 2022, 15, 1531.	1.7	4
110	Controllable Preparation of 2D V ₂ O ₅ Peroxidaseâ€Mimetic Nanozyme to Develop Portable Paperâ€Based Analytical Device for Intelligent Pesticide Assay. Small, 2023, 19, .	5.2	36
111	MagnEtophoretic Slider Assay (MeSA): A simple platform for point-of-care diagnostics. Frontiers in Sensors, $0, 3, .$	1.7	0
112	A novel paperâ€based microfluidic device and UVâ€visible spectroscopy coupled method for the field detection and analysis of seized marijuana samples. , 2023, 2, .		2
113	Recent advances on paper-based microfluidic devices for bioanalysis. TrAC - Trends in Analytical Chemistry, 2023, 158, 116893.	5.8	25
114	Advances on microfluidic paper-based electroanalytical devices. Biotechnology Advances, 2023, 63, 108093.	6.0	11
115	Microfluidic paper-based analytical devices for cancer diagnosis. Sensors and Actuators B: Chemical, 2023, 379, 133243.	4.0	7
116	Engineered detection zone to enhance color uniformity on paper microfluidics fabricated via Parafilm®-heating-laser-cutting. Sensors and Actuators B: Chemical, 2023, 380, 133324.	4.0	5
117	Soft Optomechanical Systems for Sensing, Modulation, and Actuation. Advanced Functional Materials, 2023, 33, .	7.8	11
118	Stimuliâ€Responsive Selfâ€Degradable DNA Hydrogels: Design, Synthesis, and Applications. Advanced Healthcare Materials, 2023, 12, .	3.9	11
119	Self-assembly of protein–DNA superstructures for alkaline phosphatase detection in blood. Chemical Communications, 2023, 59, 3399-3402.	2.2	2
120	Scalable and green formation of graphitic nanolayers produces highly conductive pyrolyzed paper toward sensitive electrochemical sensors. Nanoscale, 2023, 15, 6201-6214.	2.8	1
121	Digital microfluidic platform assembled into a home-made studio for sample preparation and colorimetric sensing of S-nitrosocysteine. Analytica Chimica Acta, 2023, 1254, 341077.	2.6	2
122	In vitro models to study human gut-microbiota interactions: Applications, advances, and limitations. Microbiological Research, 2023, 270, 127336.	2.5	5
123	Distance-based microfluidic assays for instrument-free visual point-of-care testing. TrAC - Trends in Analytical Chemistry, 2023, 162, 117029.	5.8	5
124	Distance-based paper microfluidics as environmentally friendly platforms for monitoring acid-base titrations. Talanta Open, 2023, 7, 100216.	1.7	4
125	Rapid pretreatment-free evaluation of antioxidant capacity in extra virgin olive oil using a laser-nanodecorated electrochemical lab-on-strip. Food Chemistry, 2023, 420, 136112.	4.2	0
126	Deep learning-assisted ultra-accurate smartphone testing of paper-based colorimetric ELISA assays. Analytica Chimica Acta, 2023, 1248, 340868.	2.6	6

#	Article	IF	CITATIONS
127	Azodye-based colorimetric sensor array for identification of biogenic amines: Food forensics by portable RGB-based signal readout. Sensors and Actuators B: Chemical, 2023, 387, 133794.	4.0	4
128	UV photometric assays on paper-based analytical devices by contact printing photography through transparent cellophane. Sensors and Actuators B: Chemical, 2023, 386, 133729.	4.0	0
129	Integration of on-chip lysis and paper-based sensor for rapid detection of viral and exosomal RNAs. Biosensors and Bioelectronics, 2023, 226, 115114.	5.3	5
130	Electrochemical microfluidic paper-based analytical devices for cancer biomarker detection: From 2D to 3D sensing systems. Talanta, 2023, 257, 124370.	2.9	6
131	Rapid detection of three mycotoxins in animal feed materials using competitive ELISA-based origami microfluidic paper analytical device (μPAD). Analytical and Bioanalytical Chemistry, 2023, 415, 1943-1951.	1.9	4
132	Fabrication Techniques and Materials for Bio-MEMS. Lecture Notes in Electrical Engineering, 2023, , 101-141.	0.3	1
133	Multiplex Detection of Infectious Diseases on Microfluidic Platforms. Biosensors, 2023, 13, 410.	2.3	6
134	Perovskite QD based paper microfluidic device for simultaneous detection of lung cancer biomarkers – Carcinoembryonic antigen and neuron specific enolase. Chemical Engineering Journal, 2023, 464, 142581.	6.6	8
135	Machine learning at the edge for Al-enabled multiplexed pathogen detection. Scientific Reports, 2023, 13, .	1.6	5
136	Detection of gases and organic vapors by cellulose-based sensors. Analytical and Bioanalytical Chemistry, 2023, 415, 4039-4060.	1.9	10
137	Paper-based analytical devices for point-of-need applications. Mikrochimica Acta, 2023, 190, .	2.5	15
138	Enhancement in the limit of detection of labâ€onâ€chip microfluidic devices using functional nanomaterials. Canadian Journal of Chemical Engineering, 2023, 101, 5208-5221.	0.9	6
146	Disposable paper-based sensors. , 2023, , 803-860.		1
176	Point-of-care testing of infectious diseases: recent advances. Sensors & Diagnostics, 2023, 2, 1123-1144.	1.9	3
181	Focusing the intervention of paper-based microfluidic devices for the forensic investigative purposes. Microfluidics and Nanofluidics, 2023, 27, .	1.0	0
192	Immobilization of Anti-hCG Antibody to Nitrocellulose via Protein G. IFMBE Proceedings, 2024, , 615-630.	0.2	0
211	Recent advances in point-of-care testing of COVID-19. Chemical Society Reviews, 2023, 52, 8500-8530.	18.7	4
228	Bio-analysis of Saliva Using Paper Devices and Colorimetric Assays. Journal of Analysis and Testing, 2024, 8, 114-132.	2.5	0

#	Article	IF	CITATIONS
238	Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. Lab on A Chip, 2024, 24, 1175-1206.	3.1	1
252	Microfluidic systems for infectious disease diagnostics. Lab on A Chip, 2024, 24, 1441-1493.	3.1	0
253	Wearable flexible biosensing devices contributing to modern precision medicine., 2024,, 267-313.		0