Deep-learning models for the detection and incidence p and type 2 diabetes from retinal fundus images

Nature Biomedical Engineering 5, 533-545

DOI: 10.1038/s41551-021-00745-6

Citation Report

#	Article	IF	CITATIONS
1	Retinal detection of kidney disease and diabetes. Nature Biomedical Engineering, 2021, 5, 487-489.	11.6	5
2	Deep Active Learning For Fibrosis Segmentation Of Chest CT Scans From Covid-19 Patients., 2021, , .		1
4	Multi-Task Learning-Based Immunofluorescence Classification of Kidney Disease. International Journal of Environmental Research and Public Health, 2021, 18, 10798.	1.2	5
5	A systematic review of the automatic kidney segmentation methods in abdominal images. Biocybernetics and Biomedical Engineering, 2021, 41, 1601-1628.	3.3	14
6	Artificial Intelligence to Detect Meibomian Gland Dysfunction From in-vivo Laser Confocal Microscopy. Frontiers in Medicine, 2021, 8, 774344.	1.2	9
7	Highly accurate and label-free discrimination of single cancer cell using a plasmonic oxide-based nanoprobe. Biosensors and Bioelectronics, 2022, 198, 113814.	5.3	14
9	Self-assembled di- and tripeptide gels for the passive entrapment and pH-responsive, sustained release of an antidiabetic drug, glimepiride. Biomaterials Science, 2022, 10, 2248-2262.	2.6	10
10	Image Deep Learning Assisted Prediction of Mechanical and Corrosion Behavior for Al-Zn-Mg Alloys. IEEE Access, 2022, 10, 35620-35631.	2.6	4
11	Optical Coherence Tomography Angiography in Type 1 Diabetes Mellitus—Report 2: Diabetic Kidney Disease. Journal of Clinical Medicine, 2022, 11, 197.	1.0	5
12	Integration of Metabolomics and Proteomics in Exploring the Endothelial Dysfunction Mechanism Induced by Serum Exosomes From Diabetic Retinopathy and Diabetic Nephropathy Patients. Frontiers in Endocrinology, 2022, 13, 830466.	1.5	10
14	Detection of Systemic Diseases From Ocular Images Using Artificial Intelligence: A Systematic Review. Asia-Pacific Journal of Ophthalmology, 2022, 11, 126-139.	1.3	3
15	"Big Data―Approaches for Prevention of the Metabolic Syndrome. Frontiers in Genetics, 2022, 13, 810152.	1.1	7
16	CKD.Net: A Novel Deep Learning Hybrid Model for Effective, Real-Time, Automated Screening Tool Towards Prediction of Multi Stages of CKD Along with eGFR and Creatinine. SSRN Electronic Journal, 0, , .	0.4	0
17	Artificial Intelligence in Predicting Systemic Parameters and Diseases From Ophthalmic Imaging. Frontiers in Digital Health, 0, 4, .	1.5	15
18	Automatic Segmentation of Retinal Fluid and Photoreceptor Layer from Optical Coherence Tomography Images of Diabetic Macular Edema Patients Using Deep Learning and Associations with Visual Acuity. Biomedicines, 2022, 10, 1269.	1.4	3
19	Retinal vascular profile in predicting incident cardiometabolic diseases among individuals with diabetes. Microcirculation, 2022, 29, .	1.0	4
20	A deep-learning system predicts glaucoma incidence and progression using retinal photographs. Journal of Clinical Investigation, 2022, 132, .	3.9	35
21	Predicting Systemic Health Features from Retinal Fundus Images Using Transfer-Learning-Based Artificial Intelligence Models. Diagnostics, 2022, 12, 1714.	1.3	11

#	Article	IF	CITATIONS
22	Build-in sensors and analysis algorithms aided smartphone-based sensors for point-of-care tests. Biosensors and Bioelectronics: X, 2022, , 100195.	0.9	0
23	Towards automated eye cancer classification via VGG and ResNet networks using transfer learning. Engineering Science and Technology, an International Journal, 2022, 35, 101214.	2.0	7
24	Artificial intelligence in retinal imaging for cardiovascular disease prediction: current trends and future directions. Current Opinion in Ophthalmology, 2022, 33, 440-446.	1.3	14
25	Thinking Outside the Circle—The Potential Value of Ultra-Widefield Imaging. JAMA Ophthalmology, 0, ,	1.4	0
26	A cascade eye diseases screening system with interpretability and expandability in ultra-wide field fundus images: A multicentre diagnostic accuracy study. EClinicalMedicine, 2022, 53, 101633.	3.2	6
27	Retinal Microvasculature and Choriocapillaris Flow Deficit in Relation to Serum Uric Acid Using Swept-Source Optical Coherence Tomography Angiography. Translational Vision Science and Technology, 2022, 11, 9.	1.1	3
28	Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy. Frontiers in Endocrinology, 0, 13 , .	1.5	15
29	A deep learning model for detection of Alzheimer's disease based on retinal photographs: a retrospective, multicentre case-control study. The Lancet Digital Health, 2022, 4, e806-e815.	5.9	52
31	Novel imaging techniques for hydroxychloroquine retinopathy. Frontiers in Medicine, 0, 9, .	1.2	8
32	An overview of artificial intelligence in diabetic retinopathy and other ocular diseases. Frontiers in Public Health, 0, 10 , .	1.3	37
33	Recent trends and advances in fundus image analysis: A review. Computers in Biology and Medicine, 2022, 151, 106277.	3.9	24
34	Federated Learning in Ocular Imaging: Current Progress and Future Direction. Diagnostics, 2022, 12, 2835.	1.3	9
36	Optical coherence tomography angiography for the characterisation of retinal microvasculature alterations in pregnant patients with anaemia: a nested caseâ€'control study. British Journal of Ophthalmology, 0, , bjophthalmol-2022-321781.	2.1	1
37	Efficacy of a Deep Learning System for Screening Myopic Maculopathy Based on Color Fundus Photographs. Ophthalmology and Therapy, 2023, 12, 469-484.	1.0	6
38	Reduced macula microvascular densities may be an early indicator for diabetic peripheral neuropathy. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
39	Association of Retinal Age Gap and Risk of Kidney Failure: A UK Biobank Study. American Journal of Kidney Diseases, 2023, 81, 537-544.e1.	2.1	9
40	Nailfold capillaroscopy and deep learning in diabetes. Journal of Diabetes, 0, , .	0.8	6
41	AMAT-Net: An Unbiased Network with High Performance for Metabolic Diseases Prediction Using Facial Images. , 2022, , .		O

#	Article	IF	CITATIONS
42	AIAT: Adaptive Iteration Adversarial Training for Robust Pulmonary Nodule Detection., 2022,,.		0
43	Application of Deep Learning to Retinal-Image-Based Oculomics for Evaluation of Systemic Health: A Review. Journal of Clinical Medicine, 2023, 12, 152.	1.0	6
44	Super-resolution microscopy and studies of peroxisomes. Biological Chemistry, 2023, 404, 87-106.	1.2	2
45	Federated Learning in Health care Using Structured Medical Data. , 2023, 30, 4-16.		12
46	Deep and handcrafted feature supported diabetic retinopathy detection: A study. Procedia Computer Science, 2023, 218, 2675-2683.	1.2	3
47	Multimodal deep learning of fundus abnormalities and traditional risk factors for cardiovascular risk prediction. Npj Digital Medicine, 2023, 6, .	5.7	10
48	Prediction of Disease Using Retinal Image in Deep Learning. Lecture Notes in Electrical Engineering, 2023, , 321-331.	0.3	0
49	Machine Learning as a Support for the Diagnosis of Type 2 Diabetes. International Journal of Molecular Sciences, 2023, 24, 6775.	1.8	12
50	CKD.Net: A novel deep learning hybrid model for effective, real-time, automated screening tool towards prediction of multi stages of CKD along with eGFR and creatinine. Expert Systems With Applications, 2023, 223, 119851.	4.4	1
51	Protocol for Multi-modality MEdical imaging sTudy bAsed on KaiLuan Study (META-KLS): rationale, design and database building. BMJ Open, 2023, 13, e067283.	0.8	2
52	Predict, diagnose, and treat chronic kidney disease with machine learning: a systematic literature review. Journal of Nephrology, 2023, 36, 1101-1117.	0.9	15
53	Application and prospect of artificial intellingence in diabetes care. Medical Review, 2023, 3, 102-104.	0.3	0
54	Kidney Disease Detection and Identification Using Artificial Intelligence., 2023,,.		0
56	Prediction and diagnosis of chronic kidney disease development and progression using machine-learning: Protocol for a systematic review and meta-analysis of reporting standards and model performance. PLoS ONE, 2023, 18, e0278729.	1.1	2
57	Deep Learning Algorithms for Screening and Diagnosis of Systemic Diseases Based on Ophthalmic Manifestations: A Systematic Review. Diagnostics, 2023, 13, 900.	1.3	1
58	Retinal disease prediction through blood vessel segmentation and classification using ensemble-based deep learning approaches. Neural Computing and Applications, 2023, 35, 12495-12511.	3.2	6
59	Intelligent Diagnosis of Diabetic Kidney Disease Based on Heterogeneous Data. , 2022, , .		0
60	Retinal imageâ€based artificial intelligence in detecting and predicting kidney diseases: Current advances and future perspectives. View, 0, , 20220070.	2.7	O

#	Article	IF	CITATIONS
61	Deep Learning Identifies Intelligible Predictors of Poor Prognosis in Chronic Kidney Disease. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 3677-3685.	3.9	3
62	A lightweight network guided with differential matched filtering for retinal vessel segmentation. Computers in Biology and Medicine, 2023, 160, 106924.	3.9	5
71	Beyond Predictions: Explainability and Learning from Machine Learning. , 2023, , 199-218.		0
81	Al-integrated ocular imaging for predicting cardiovascular disease: advancements and future outlook. Eye, 2024, 38, 464-472.	1.1	2
88	Artificial intelligence in ophthalmology III: systemic disease prediction. , 2024, , 119-125.		0
93	A scoping review of artificial intelligence-based methods for diabetes risk prediction. Npj Digital Medicine, 2023, 6, .	5.7	3
110	Retinal Fundus Diseases Detection and Identification Using CNN. , 2023, , .		0
111	A Review: Analyzing Risk Factors and Prediction for Chronic Kidney Disease using Machine and Deep Learning Techniques. , 2023, , .		0
115	A Study on Machine Learning and Deep Learning Techniques Applied in Predicting Chronic Kidney Diseases. Lecture Notes in Networks and Systems, 2024, , 79-97.	0.5	0