Treatment of microcystin-LR cyanotoxin contaminated bluegrass-derived biochar

Journal of Water Process Engineering 41, 102054

DOI: 10.1016/j.jwpe.2021.102054

Citation Report

#	Article	IF	CITATIONS
1	Trends in renewable energy production employing biomass-based biochar. Bioresource Technology, 2021, 340, 125644.	9.6	96
2	Quantum dot synthesis from waste biomass and its applications in energy and bioremediation. Chemosphere, 2022, 293, 133564.	8.2	22
3	Recent Advances in Technologies for Removal of Microcystins in Water: a Review. Current Pollution Reports, 2022, 8, 113-127.	6.6	10
4	Adsorptive removal of synthetic plastic components bisphenol-A and solvent black-3 dye from single and binary solutions using pristine pinecone biochar. Chemosphere, 2022, 296, 134034.	8.2	40
5	An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes. Energies, 2022, 15, 4168.	3.1	7
6	Adsorptive Behavior of Cu2+ and Benzene in Single and Binary Solutions onto Alginate Composite Hydrogel Beads Containing Pitch Pine-Based Biochar. Polymers, 2022, 14, 3468.	4.5	2
7	Molecularly imprinted nanoparticle-based assay (MINA) for microcystin-LR detection in water. Analyst, The, O, , .	3.5	0
8	Phosphoric acid-activated biochar derived from sunflower seed husk: Selective antibiotic adsorption behavior and mechanism. Bioresource Technology, 2023, 371, 128593.	9.6	24
9	The potential for synthesized invasive plant biochar with hydroxyapatite to mitigate allelopathy of <scp><i>S</i></scp> <i>anadensis</i> . Ecological Applications, 2024, 34, .	3.8	3
10	Production, characterization, and application of biochar for remediation of dyes from textile industry wastewater., 2023,, 231-251.		O
11	Valorization of waste biomass for biochar production and arsenic removal: A comparative assessment. Groundwater for Sustainable Development, 2023, 22, 100972.	4.6	5
12	Preparation of Chitosan-Modified Bentonite and Its Adsorption Performance on Tetracycline. ACS Omega, 2023, 8, 19455-19463.	3.5	4
13	Biochar as a multifunctional agent for aqueous chromium removal: A critical review of governing mechanisms, targeted syntheses, influencing factors, and practical applications. Chemical Engineering Journal, 2023, 475, 146364.	12.7	3
14	Evaluation of Antibacterial and Antiviral Compounds from Commiphora myrrha (T.Nees) Engl. Resin and Their Promising Application with Biochar. Applied Sciences (Switzerland), 2023, 13, 10549.	2.5	O
15	Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35, 109135.	9.0	0
16	Elucidating microcystin-LR adsorption on pyrolyzed hydrochars via experiments and molecular simulations. Journal of Analytical and Applied Pyrolysis, 2023, 176, 106243.	5 . 5	O
17	Review on hazardous microcystins originating from harmful cyanobacteria and corresponding eliminating methods. Hangug Hwangyeong Saengmul Haghoeji, 2023, 41, 370-385.	0.4	0
18	Evaluation of Carbonized Corncobs for Removal of Microcystins and Nodularin-R from Water. Separations, 2024, 11, 84.	2.4	O

IF **CITATIONS** ARTICLE

Harnessing the power of functionalized biochar: progress, challenges, and future perspectives in energy, water treatment, and environmental sustainability. Biochar, 2024, 6, . 19 12.6

0