Random access DNA memory using Boolean search in a

Nature Materials 20, 1272-1280 DOI: 10.1038/s41563-021-01021-3

Citation Report

#	Article	IF	CITATIONS
2	A PCR-free approach to random access in DNA. Nature Materials, 2021, 20, 1173-1174.	27.5	1
4	Electrically Controlled Nanofluidic DNA Sluice for Data Storage Applications. ACS Applied Nano Materials, 2021, 4, 11063-11069.	5.0	5
5	Scalable Nucleic Acid Storage and Retrieval Using Barcoded Microcapsules. ACS Applied Materials & Interfaces, 2021, 13, 49729-49736.	8.0	5
6	Current and emerging opportunities in biological mediumâ€based computing and digital data storage. Nano Select, 2022, 3, 883-902.	3.7	2
7	High-scale random access on DNA storage systems. NAR Genomics and Bioinformatics, 2022, 4, lqab126.	3.2	15
8	Combinatorial PCR Method for Efficient, Selective Oligo Retrieval from Complex Oligo Pools. ACS Synthetic Biology, 2022, 11, 1727-1734.	3.8	8
9	Tuning Optical Absorption and Emission Using Strongly Coupled Dimers in Programmable DNA Scaffolds. Journal of Physical Chemistry Letters, 2022, 13, 1863-1871.	4.6	18
10	Oblique Packing and Tunable Excitonic Coupling in DNAâ€∓emplated Squaraine Rotaxane Dimer Aggregates. ChemPhotoChem, 2022, 6, .	3.0	12
11	Noise logic with an InGaN/SiNx/Si uniband diode photodetector. Scientific Reports, 2022, 12, 8376.	3.3	3
12	Design considerations for advancing data storage with synthetic DNA for long-term archiving. Materials Today Bio, 2022, 15, 100306.	5.5	9
14	Adaptive coding for DNA storage with high storage density and low coverage. Npj Systems Biology and Applications, 2022, 8, .	3.0	26
15	Hidden Addressing Encoding for DNA Storage. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	10
16	In vivo processing of digital information molecularly with targeted specificity and robust reliability. Science Advances, 2022, 8, .	10.3	13
19	Robust data storage in DNA by de Bruijn graph-based de novo strand assembly. Nature Communications, 2022, 13, .	12.8	20
20	10 Years of Natural Data Storage. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2022, 8, 263-275.	2.1	1
21	Integrated Microfluidic DNA Storage Platform with Automated Sample Handling and Physical Data Partitioning. Analytical Chemistry, 2022, 94, 13153-13162.	6.5	6
22	Predicting accurate ab initio DNA electron densities with equivariant neural networks. Biophysical Journal, 2022, 121, 3883-3895.	0.5	7
23	Molecular â€~email': Electrochemical aptasensing of fish pathogens, molecular information encoding, encryption and hiding applications. Analytica Chimica Acta, 2022, 1232, 340483.	5.4	1

TATION REDO

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
24	Emerging Approaches to DNA Data Storage: Challenges and Prospects. ACS Nano, 2022, 16, 17552-17571.	14.6	48
25	FMG: An observable DNA storage coding method based on frequency matrix game graphs. Computers in Biology and Medicine, 2022, 151, 106269.	7.0	17
26	Peptide-based sensing of Pb2+, molecular logic computing, information encoding, cryptography, and steganography. Microchemical Journal, 2023, 184, 108198.	4.5	0
27	Levy Equilibrium Optimizer algorithm for the DNA storage code set. PLoS ONE, 2022, 17, e0277139.	2.5	1
28	DNA computing-based Big Data storage. Advances in Computers, 2022, , .	1.6	0
29	3D RNA-scaffolded wireframe origami. Nature Communications, 2023, 14, .	12.8	13
30	Metal–Organic Frameworks in Microfluidics Enable Fast Encapsulation/Extraction of DNA for Automated and Integrated Data Storage. ACS Nano, 2023, 17, 2840-2850.	14.6	13
32	DNA-Aeon provides flexible arithmetic coding for constraint adherence and error correction in DNA storage. Nature Communications, 2023, 14, .	12.8	15
33	Enabling technology and core theory of synthetic biology. Science China Life Sciences, 2023, 66, 1742-1785.	4.9	10
34	GCNSA: DNA storage encoding with a graph convolutional network and self-attention. IScience, 2023, 26, 106231.	4.1	11
35	DNA strand displacement based computational systems and their applications. Frontiers in Genetics, 0, 14, .	2.3	3
38	An outlook on the current challenges and opportunities in DNA data storage. Biotechnology Advances, 2023, 66, 108155.	11.7	7
39	In-vitro validated methods for encoding digital data in deoxyribonucleic acid (DNA). BMC Bioinformatics, 2023, 24, .	2.6	2
40	Performance analysis of DNA crossbar arrays for high-density memory storage applications. Scientific Reports, 2023, 13, .	3.3	0
41	Design of DNA Storage Coding and Encoding System Based on Transformer. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 523-534.	0.7	0
42	Content-based filter queries on DNA data storage systems. Scientific Reports, 2023, 13, .	3.3	4
43	DNA storage in thermoresponsive microcapsules for repeated random multiplexed data access. Nature Nanotechnology, 2023, 18, 912-921.	31.5	6
44	Magnetic DNA random access memory with nanopore readouts and exponentially-scaled combinatorial addressing. Scientific Reports, 2023, 13, .	3.3	2

CITATION REPORT

#	Article	IF	CITATIONS
45	Next Generation Biorepository Informatics: Supporting Genomics, Imaging, and Innovations in Spatial Biology. Computers in Health Care, 2023, , 69-90.	0.3	0
47	Assembly of Reusable DNA Blocks for Data Storage Using the Principle of Movable Type Printing. ACS Applied Materials & Interfaces, 2023, 15, 24097-24108.	8.0	0
48	A biological camera that captures and stores images directly into DNA. Nature Communications, 2023, 14, .	12.8	6
49	The DNA Data Storage Model. Computer, 2023, 56, 78-85.	1.1	0
50	DBTRC: De Bruijn Trim rotation graph encoding for reliable DNA storage. Computational and Structural Biotechnology Journal, 2023, 21, 4469-4477.	4.1	1
51	DNA-mediated regioselective encoding of colloids for programmable self-assembly. Chemical Society Reviews, 2023, 52, 5684-5705.	38.1	2
52	Processing DNA Storage through Programmable Assembly in a Dropletâ€Based Fluidics System. Advanced Science, 2023, 10, .	11.2	2
53	Peptide-graphene logic sensing system for dual-mode detection of exosomes, molecular information processing and protection. Talanta, 2024, 267, 125261.	5.5	0
54	Generation of DNA oligomers with similar chemical kinetics via in-silico optimization. Communications Chemistry, 2023, 6, .	4.5	0
55	Digital data storage on DNA tape using CRISPR base editors. Nature Communications, 2023, 14, .	12.8	1
56	Parallel molecular computation on digital data stored in DNA. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	3
57	Survey of Information Encoding Techniques for DNA. ACM Computing Surveys, 2024, 56, 1-30.	23.0	1
58	Data Storage Using DNA. Advanced Materials, 2024, 36, .	21.0	0
59	DNA-Based Storage of RDF Graph Data: A Futuristic Approach to Data Analytics. IEEE Access, 2023, 11, 129931-129944.	4.2	0
61	Storageâ€Ð: A userâ€friendly platform that enables practical and personalized DNA data storage. , 2024, 3, .		0
62	Nanoporous Dna Field Effect Transistor with Potential for Randomâ€Access Memory Applications: A Selectivity Performance Evaluation. , 2024, 3, .		0
63	DNA as a universal chemical substrate for computing and data storage. Nature Reviews Chemistry, 2024, 8, 179-194.	30.2	0
64	"Cell Disk―DNA Storage System Capable of Random Reading and Rewriting. Advanced Science, 2024, 11, . 	11.2	0

#	Δρτιςιε	IF	CITATIONS
π	ARTICLE		CHAHONS
66	Gel-based electrochemical DNA synthesis for quasi-solid-state data storage. Chemical Engineering Journal, 2024, 487, 150485.	12.7	0
67	High-throughput DNA synthesis for data storage. Chemical Society Reviews, 2024, 53, 4463-4489.	38.1	0
68	Efficient data reconstruction: The bottleneck of large-scale application of DNA storage. Cell Reports, 2024, 43, 113699.	6.4	0

CITATION REPORT