Water at charged interfaces

Nature Reviews Chemistry 5, 466-485 DOI: 10.1038/s41570-021-00293-2

Citation Report

#	Article	IF	CITATIONS
1	Real-time study of on-water chemistry: Surfactant monolayer-assisted growth of a crystalline quasi-2D polymer. CheM, 2021, 7, 2758-2770.	11.7	23
2	Osmotic Transport at the Aqueous Graphene and hBN Interfaces: Scaling Laws from a Unified, First-Principles Description. ACS Nano, 2021, 15, 15249-15258.	14.6	21
3	Using Neural Network Force Fields to Ascertain the Quality of <i>Ab Initio</i> Simulations of Liquid Water. Journal of Physical Chemistry B, 2021, 125, 10772-10778.	2.6	13
4	Combined step potential electrochemical spectroscopy and electrochemical impedance spectroscopy analysis of the glassy carbon electrode in an aqueous electrolyte. Electrochimica Acta, 2021, 396, 139220.	5.2	8
5	Reduced Ionic Conductivity but Enhanced Local Ionic Conductivity in Nanochannels. Langmuir, 2021, 37, 12577-12585.	3.5	4
6	Facetâ€Dependent Surface Charge and Hydration of Semiconducting Nanoparticles at Variable pH. Advanced Materials, 2021, 33, e2106229.	21.0	33
7	Molecular Nature of Structured Water in the Light-Induced Interfacial Capacitance Changes at the Bioelectric Interface. Journal of Physical Chemistry Letters, 2021, 12, 9982-9988.	4.6	1
8	Nanoparticles formed during mineral-fluid interactions. Chemical Geology, 2021, 586, 120614.	3.3	13
9	Determining the Surface Potential of Charged Aqueous Interfaces Using Nonlinear Optical Methods. Journal of Physical Chemistry C, 2021, 125, 25307-25315.	3.1	11
10	Tuning the Dielectric Response of Water in Nanoconfinement through Surface Wettability. ACS Nano, 2021, 15, 20311-20318.	14.6	10
11	On the Unexpectedly High Capacitance of the Metal Nanoparticle/Water Interface – Molecular Level Insights into the Electrical Double Layer. Angewandte Chemie, 0, , .	2.0	3
12	Unexpectedly High Capacitance of the Metal Nanoparticle/Water Interface: Molecular‣evel Insights into the Electrical Double Layer. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
13	Enhancing breakdown strength and lifetime of multilayer dielectric films by using high temperature polycarbonate skin layers. Energy Storage Materials, 2022, 45, 494-503.	18.0	22
14	Confined pulsed diffuse layer charging for nanoscale electrodeposition with an STM. Nanoscale Advances, 2022, 4, 1182-1190.	4.6	2
15	In Situ Investigation on Lifeâ€Time Dynamic Structure–Performance Correlation Toward Electrocatalyst Service Behavior in Water Splitting. Advanced Functional Materials, 2022, 32, .	14.9	21
16	Influence of an electrified interface on the entropy and energy of solvation of methanol oxidation intermediates on platinum(111) under explicit solvation. Physical Chemistry Chemical Physics, 2022, 24, 4251-4261.	2.8	5
17	Classical and Nonclassical Nucleation and Growth Mechanisms for Nanoparticle Formation. Annual Review of Physical Chemistry, 2022, 73, 453-477.	10.8	32
18	Quantitative and qualitative studies for real monitoring of interfacial molecular water. Journal of Colloid and Interface Science, 2022, 613, 311-319.	9.4	10

#	Article	IF	CITATIONS
19	Mechanism of Energy Storage and Transformation in the Mitochondria at the Water–Membrane Interface. Biochemistry (Moscow), 2022, 87, 179-190.	1.5	3
20	Electrochemistry under confinement. Chemical Society Reviews, 2022, 51, 2491-2543.	38.1	52

21 ĐœĐμÑ...аĐ¼Đ,Đ⋅Đ¼ Đ⋅аĐ;аÑаĐ½Đ,Ñ•Đ, Ñ,Ñ€Đ°Đ½ÑŇ,,Đ¾Ñ€Đ¼Đ°Ñ†Đ,Đ, ÑĐ½ĐμÑ€Đ³Đ,Đ, Đ² Đ¼Đ,Ñ**ஹ**¾Ñ...Đ¾Đ½ĐÑ€

22	Probing and Visualizing Interfacial Charge at Surfaces in Aqueous Solution. Annual Review of Analytical Chemistry, 2022, 15, 247-267.	5.4	9
23	On swelling behaviours of a bentonite under different water contents. Geotechnique, 2024, 74, 64-80.	4.0	11
24	Electronic to ionic transduction of the electric field applied to PEDOT:PSS substrates to the cell cultures on top. Bioelectrochemistry, 2022, 145, 108099.	4.6	1
25	Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery. Nano Energy, 2022, 98, 107220.	16.0	144
26	Application of the Supercapacitor for Energy Storage in China: Role and Strategy. Applied Sciences (Switzerland), 2022, 12, 354.	2.5	38
27	Specific Ion Effects in Different Media: Current Status and Future Challenges. Journal of Physical Chemistry B, 2021, 125, 13840-13849.	2.6	15
28	Water as a contrast agent to quantify surface chemistry and physics using second harmonic scattering and imaging: A perspective. Applied Physics Letters, 2022, 120, .	3.3	9
29	Enhanced nanofluidic transport in activated carbon nanoconduits. Nature Materials, 2022, 21, 696-702.	27.5	36
30	Molecular dynamics simulations of the evaporation of hydrated ions from aqueous solution. Communications Chemistry, 2022, 5, .	4.5	15
31	Effect of Surface Pre-Charging and Electric Field on the Contact Electrification between Liquid and Solid. Journal of Physical Chemistry C, 2022, 126, 8897-8905.	3.1	11
32	Atomic Interfaceâ€Exciting Catalysis on Cobalt Nitrideâ€Oxide for Accelerating Hydrogen Generation. Small, 2022, 18, e2107417.	10.0	25
33	How to Gain Atomistic Insights on Reactions at the Water/Solid Interface?. ACS Catalysis, 2022, 12, 6294-6301.	11.2	17
34	Applying Classical, <i>Ab Initio</i> , and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews, 2022, 122, 10970-11021.	47.7	138
35	Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chemical Reviews, 2022, 122, 10821-10859.	47.7	186
36	Counting the Water: Characterize the Hydration Level of Aluminum Adjuvants Using Contrast Matching Small-Angle Neutron Scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022 129285.	4.7	2

#	ARTICLE	IF	CITATIONS
37	Phospholipid acyl tail affects lipid headgroup orientation and membrane hydration. Journal of Chemical Physics, 2022, 156, .	3.0	7
38	The Role of Surface Chemistry in the Orientational Behavior of Water at an Interface. Journal of Physical Chemistry B, 2022, 126, 4697-4710.	2.6	3
39	A Happy Getâ€Together – Probing Electrochemical Interfaces by Nonâ€Linear Vibrational Spectroscopy. Chemistry - A European Journal, 2022, 28, .	3.3	5
40	Submolecular Insights into Interfacial Water by Hydrogen-Sensitive Scanning Probe Microscopy. Accounts of Chemical Research, 2022, 55, 1680-1692.	15.6	6
41	Continuum theories of structured dielectrics. Europhysics Letters, 2022, 139, 27002.	2.0	2
42	Defect-rich ultrathin poly-heptazine-imide-framework nanosheets with alkali-ion doping for photocatalytic solar hydrogen and selective benzylamine oxidation. Nano Research, 2022, 15, 8760-8770.	10.4	7
43	Role of water structure in alkaline water electrolysis. IScience, 2022, 25, 104835.	4.1	8
44	Ion Adsorption and Desorption at the CaF ₂ â€Water Interface Probed by Flow Experiments and Vibrational Spectroscopy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	4
45	Ion Adsorption and Desorption at the CaF2â€Water Interface Probed by Flow Experiments and Vibrational Spectroscopy. Angewandte Chemie, 0, , .	2.0	0
46	Effects of surface rigidity and metallicity on dielectric properties and ion interactions at aqueous hydrophobic interfaces. Journal of Chemical Physics, 2022, 157, .	3.0	5
47	Measuring anion binding at biomembrane interfaces. Nature Communications, 2022, 13, .	12.8	12
48	Investigating aqueous mineral interfaces using sum frequency generation spectroscopy. , 2023, , .		0
49	A molecular dynamics study of the nonlinear spectra and structure of charged (101) quartz/water interfaces. Physical Chemistry Chemical Physics, 2022, 24, 25118-25133.	2.8	3
50	Stable Water-Floating Transistor with Recyclability. Materials Horizons, 0, , .	12.2	0
51	The dielectric function profile across the water interface through surface-specific vibrational spectroscopy and simulations. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
53	Structural and charge transfer properties of ion intercalated 2D and bulk ice. Journal of Chemical Physics, 0, , .	3.0	0
54	Wien effect in interfacial water dissociation through proton-permeable graphene electrodes. Nature Communications, 2022, 13, .	12.8	13
55	Exploring the Nanoconfinement Effect Using 2D Capillaries. Accounts of Materials Research, 0, , .	11.7	0

#	Article	IF	Citations
56	Chemical transformations and transport phenomena at interfaces. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	14.6	5
57	Understanding water on surfaces, electrodes, and in bulk by vibrational spectroscopies. , 2024, , 150-170.		1
58	The Consequences of Water Interactions with Nitrogen-Containing Carbonaceous Quantum Dots—The Mechanistic Studies. International Journal of Molecular Sciences, 2022, 23, 14292.	4.1	3
59	In situ investigation of catalytic interfaces by scanning probe microscopy under electrochemical conditions. , 2024, , 656-680.		1
60	The physics behind water irregularity. Physics Reports, 2023, 998, 1-68.	25.6	15
61	Super-Resolution Fluorescence Imaging for Semiconductor Nanoscale Metrology and Inspection. Nano Letters, 2022, 22, 10080-10087.	9.1	7
62	Influence of the Hydrogen-Bonding Environment on Vibrational Coupling in the Electrical Double Layer at the Silica/Aqueous Interface. Journal of Physical Chemistry C, 2022, 126, 21734-21744.	3.1	4
63	Wide-field optical imaging of electrical charge and chemical reactions at the solid–liquid interface. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	0
64	Electrokinetic, electrochemical, and electrostatic surface potentials of the pristine water liquid–vapor interface. Journal of Chemical Physics, 2022, 157, .	3.0	7
65	Interfacial Liquid Water on Graphite, Graphene, and 2D Materials. ACS Nano, 2023, 17, 51-69.	14.6	11
66	Probing Silica–Kaolinite Interactions with Sum Frequency Generation Spectroscopy. Langmuir, 2022, 38, 15984-15994.	3.5	1
67	Direct Probe of Electrochemical Pseudocapacitive pH Jump at a Graphene Electrode**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
68	Direct Probe of Electrochemical Pseudocapacitive pH Jump at a Graphene Electrode. Angewandte Chemie, 0, , .	2.0	0
69	Dielectric Properties of Nanoconfined Water from <i>Ab Initio</i> Thermopotentiostat Molecular Dynamics. Journal of Chemical Theory and Computation, 2023, 19, 1035-1043.	5.3	11
70	lon Concentration Influences the Charge Transfer Due to a Water–Air Contact Line Moving over a Hydrophobic Surface: Charge Measurements and Theoretical Models. Langmuir, 2023, 39, 1826-1837.	3.5	8
71	Sum-frequency vibrational spectroscopy of centrosymmetric molecule at interfaces . Journal of Chemical Physics, 0, , .	3.0	3
72	A dendrite-free and anticaustic Zn anode enabled by high current-induced reconstruction of the electrical double layer. Chemical Communications, 2023, 59, 2437-2440.	4.1	8
73	The 3D structures of interfaces between solid electrodes and liquid electrolytes probed by atomic force measurements. , 2024, , 638-655.		0

#	Article	IF	CITATIONS
74	Bonding of water to metal surfaces. , 2024, , 189-202.		0
75	Pore confined time-of-flight secondary ion electrochemical mass spectrometry. Chemical Society Reviews, 2023, 52, 2596-2616.	38.1	5
76	Nanofluidics at the crossroads. Journal of Chemical Physics, 2023, 158, .	3.0	11
77	High electric field-induced ferroelectric loss of polymer/paraelectric barium titanate particle nanocomposites. Chemical Engineering Journal, 2023, 463, 142490.	12.7	2
78	Ordered/Disordered Structures of Water at Solid/Liquid Interfaces. Crystals, 2023, 13, 263.	2.2	1
79	Addition of Dioxane in Electrolyte Promotes (002)-Textured Zinc Growth and Suppressed Side Reactions in Zinc-Ion Batteries. ACS Nano, 2023, 17, 3765-3775.	14.6	99
80	Remote surface charge detection device for water with excess charge. Engineering Research Express, 2023, 5, 015029.	1.6	0
81	Nanointerfaces: Concepts and Strategies for Optical and X-ray Spectroscopic Characterization. ACS Physical Chemistry Au, 0, , .	4.0	0
82	Waferâ€Scale Fabrication of Hierarchically Porous Silicon and Silica by Active Nanoparticleâ€Assisted Chemical Etching and Pseudomorphic Thermal Oxidation. Small, 0, , 2206842.	10.0	1
83	Nanoscale Electron Transfer Variations at Electrocatalyst–Electrolyte Interfaces Resolved by <i>in Situ</i> Conductive Atomic Force Microscopy. Journal of the American Chemical Society, 2023, 145, 5242-5251.	13.7	3
84	Voltage-Dependent FTIR and 2D Infrared Spectroscopies within the Electric Double Layer Using a Plasmonic and Conductive Electrode. Journal of Physical Chemistry B, 2023, 127, 2083-2091.	2.6	5
85	Lightâ€Driven Conversion of Silicon Nitride NanoporeÂto Nanonet for Singleâ€Protein Trapping Analysis. Advanced Materials, 2023, 35, .	21.0	4
86	Chemistry governs water organization at a graphene electrode. Nature, 2023, 615, E1-E2.	27.8	15
87	Quantifying the Molecular Polarization Response of Liquid Water Interfaces at Heterogeneously Charged Surfaces. Journal of Chemical Theory and Computation, 2023, 19, 1843-1852.	5.3	1
88	Hydration at Highly Crowded Interfaces. Physical Review Letters, 2023, 130, .	7.8	1
89	Polarity-dependence of the nonlinear dielectric response in interfacial water. Journal of Chemical Physics, 2023, 158, .	3.0	3
90	Forced Interactions: Ionic Polymers at Charged Surfactant Interfaces. Journal of Physical Chemistry B, 2023, 127, 2829-2836.	2.6	2
91	Adsorption of ions and solutes at electrified metal-aqueous interfaces: Insights from THz spectroscopy and simulations. , 2024, , 66-80.		0

		CITATION REPORT		
#	Article		IF	Citations
92	Lowâ€Concentration Redoxâ€Electrolytes for Highâ€Rate and Longâ€Life Zinc Metal Bat	teries. Small, 0, , .	10.0	11
93	Momentum-dependent sum-frequency vibrational spectroscopy of bonded interface laye water interfaces. Science Advances, 2023, 9, .	r at charged	10.3	2
94	Heterogeneous Electrocatalysis of Carbon Dioxide to Methane. Methane, 2023, 2, 148-1	75.	2.2	3
95	Interfacial binding rope theory of ion transport in sub-nanochannels and its application for energy conversion. Nano Energy, 2023, 113, 108545.	or osmotic	16.0	1
96	Harvesting energy from extreme environmental conditions with cellulosic triboelectric ma Materials Today, 2023, 66, 348-370.	aterials.	14.2	19
97	Revealing Silica's pH-Dependent Second Harmonic Generation Response with Overch Physical Chemistry C, 2023, 127, 8389-8398.	larging. Journal of	3.1	2
98	X-ray photoelectron spectroscopy meets electrochemistry: From UHV to operando condi 283-299.	tions. , 2024, ,		0
99	Diffraction-limited mid-infrared microspectroscopy to reveal a micron-thick interfacial wa signature. Analyst, The, 2023, 148, 2941-2955.	ter layer	3.5	0
100	Relationship between oxide identity and electrocatalytic activity of platinum for ethanol electrooxidation in perchlorate acidic solution. Communications Chemistry, 2023, 6, .		4.5	1
101	Orientational Ordering in Nano-confined Polar Liquids. Nano Letters, 2023, 23, 5548-555	54.	9.1	4
102	Water dynamics and sum-frequency generation spectra at electrode/aqueous electrolyte Faraday Discussions, 0, 249, 289-302.	interfaces.	3.2	1
103	Water/Solid Interface in Thermal- and Electrocatalysis for Wetting and Non-Wetting Surf Interactions and Models. , 2024, , 699-712.	aces:		0
104	Vibrational spectroscopy of geochemical interfaces. Surface Science Reports, 2023, , 100)606.	7.2	0
105	Interfacial Charge Transfer Modulated Static Friction Resistance of Water Drops. Langmu	ıir, O, , .	3.5	0
106	Charge Inversion in 1:1 Electrolytes: Analyzing the Energetics. Journal of Physical Chemis 127, 4318-4327.	try B, 2023,	2.6	1
107	An Electrostatically Embedded QM/MM Scheme for Electrified Interfaces. ACS Applied Ma Interfaces, 2023, 15, 25009-25017.	aterials &	8.0	3
108	Functionalizing the interfacial double layer to enable uniform zinc deposition. Science Ch Chemistry, 2023, 66, 1844-1853.	ina	8.2	3
109	Oxide $\hat{a} \in \hat{a}$ and Silicate $\hat{a} \in \hat{b}$ Water Interfaces and Their Roles in Technology and the Environ Reviews, 2023, 123, 6413-6544.	ment. Chemical	47.7	20

#	Article	IF	CITATIONS
110	Unveiling the effects of ions in the electric double layer on the carbon dioxide reduction reaction. Materials Chemistry Frontiers, 2023, 7, 2750-2763.	5.9	0
111	Data-driven pursuit of electrochemically stable 2D materials with basal plane activity toward oxygen electrocatalysis. Energy and Environmental Science, 2023, 16, 5003-5018.	30.8	12
112	Tailoring interfaces for atmospheric water harvesting: Fundamentals and applications. Matter, 2023, 6, 2182-2205.	10.0	17
113	Water molecules mute the dependence of the double-layer potential profile on ionic strength. Faraday Discussions, 0, 249, 267-288.	3.2	0
114	Current understanding of ions and charged surfactants at aqueous solid interfaces. , 2024, , 230-239.		1
115	Experimental and theoretical understanding of processes at solid-liquid interfaces at molecular resolution. , 2024, , 8-28.		0
116	Biological lipid hydration: distinct mechanisms of interfacial water alignment and charge screening for model lipid membranes. Faraday Discussions, 0, 249, 317-333.	3.2	4
117	Kinetics and mechanism of heterogeneous voltage-driven water-dissociation catalysis. Joule, 2023, 7, 1867-1886.	24.0	6
118	Spatially and temporally understanding dynamic solid–electrolyte interfaces in carbon dioxide electroreduction. Chemical Society Reviews, 2023, 52, 5013-5050.	38.1	21
119	Confinement-Controlled Water Engenders Unusually High Electrochemical Capacitance. Journal of Physical Chemistry Letters, 2023, 14, 6572-6576.	4.6	0
120	Construction of DNA aggregates in cell milieu for bioâ€interference. Aggregate, 2023, 4, .	9.9	2
121	Iontronic components: From liquid- to solid-states. Nano Research, 0, , .	10.4	0
122	Stepwise dissolution of silica surface in alkaline solution revealed by molecular modeling. Journal of the American Ceramic Society, 0, , .	3.8	0
123	Impact of hierarchical water dipole orderings on the dynamics of aqueous salt solutions. Nature Communications, 2023, 14, .	12.8	2
124	Atomic-Scale Understanding of Electrified Interfacial Structures and Dynamics during the Oxygen Reduction Reaction on the Fe–N ₄ /C Electrocatalyst. ACS Catalysis, 2023, 13, 11080-11090.	11.2	0
126	Solvation of furfural at metal–water interfaces: Implications for aqueous phase hydrogenation reactions. Journal of Chemical Physics, 2023, 159, .	3.0	0
127	Density functional descriptions of interfacial electronic structure. Chemical Physics Reviews, 2023, 4,	5.7	0
128	Structural Evolution Governs Reversible Heat Generation in Electrical Double Layers. Physical Review Letters, 2023, 131, .	7.8	1

#	Article	IF	CITATIONS
129	Detection of a Chirality-Induced Spin Selective Quantum Capacitance in α-Helical Peptides. Nano Letters, 2023, 23, 8280-8287.	9.1	2
130	Preferred planar crystal growth and uniform solid electrolyte interfaces enabled by anion receptors for stable aqueous Zn batteries. Energy and Environmental Science, 2023, 16, 4572-4583.	30.8	17
131	Fully First-Principles Surface Spectroscopy with Machine Learning. Journal of Physical Chemistry Letters, 2023, 14, 8175-8182.	4.6	1
132	Designing active oxides for a durable oxygen evolution reaction. , 2023, 2, 817-827.		6
133	Moving water droplets induced electricity on an electret surface with a charge gradient. Nano Energy, 2023, 117, 108918.	16.0	2
134	Scanning tunneling microscopy under chemical reaction at solid–liquid and solid–gas interfaces. Chemical Physics Reviews, 2023, 4, .	5.7	0
135	Spiers Memorial Lecture: Water at interfaces. Faraday Discussions, 0, 249, 9-37.	3.2	0
136	Molecularly modulating solvation structure and electrode interface enables dendrite-free zinc-ion batteries. Journal of Colloid and Interface Science, 2024, 654, 476-485.	9.4	5
137	Anion-Specific Adsorption of Carboxymethyl Cellulose on Cellulose. Langmuir, 2023, 39, 15014-15021.	3.5	0
138	Finding Infinities in Nanoconfined Geothermal Electrolyte Static Dielectric Properties and Implications on Ion Adsorption/Pairing. Nano Letters, 2023, 23, 8868-8874.	9.1	2
139	Electrochemical double layer at electrode-water interfaces: Recent advances from nonlinear spectroscopic investigations. Current Opinion in Electrochemistry, 2023, 41, 101373.	4.8	0
141	Minireview of the Electrocatalytic Local Environment in Alkaline Hydrogen Evolution. Energy & Fuels, 0, , .	5.1	1
142	Enhancing nearâ€infrared fluorescence intensity and stability of <scp>PLGAâ€</scp> <i>b</i> <scp>â€PEG</scp> micelles by introducing <scp>Gdâ€DOTA</scp> at the core boundary. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2024, 112, .	3.4	0
143	Is water activity the elephant in the room?. Nature Catalysis, 2023, 6, 746-747.	34.4	Ο
144	Revisiting the Electrified Pt(111)/Water Interfaces through an Affordable Double-Reference Ab Initio Approach. Journal of Physical Chemistry C, 2023, 127, 19857-19866.	3.1	2
145	Computational Design and Experimental Validation of Enzyme Mimicking Cu-Based Metal–Organic Frameworks for the Reduction of CO ₂ into C ₂ Products: C–C Coupling Promoted by Ligand Modulation and the Optimal Cu–Cu Distance. Journal of the American Chemical Society. 2023, 145, 21442-21453.	13.7	4
146	Single Elementary Charge Fluctuations on Nanoparticles in Aqueous Solution. ACS Nano, 0, , .	14.6	0
147	Obtaining extended insight into molecular systems by probing multiple pathways in second-order nonlinear spectroscopy, Journal of Chemical Physics, 2023, 159, .	3.0	0

#	Article	IF	CITATIONS
148	Corrosion-driven droplet wetting on iron nanolayers. Scientific Reports, 2023, 13, .	3.3	0
149	Nature of the electric double layer to modulate the electrochemical behaviors of Fe2O3 electrode. Acta Materialia, 2024, 263, 119500.	7.9	1
150	Electrochemical carbon–carbon coupling with enhanced activity and racemate stereoselectivity by microenvironment regulation. Nature Communications, 2023, 14, .	12.8	1
151	Trace Amount of Nitrilotriacetate Induced Electrolyte Evolution and Textured Surface for Stable Zn Anode. Advanced Energy Materials, 2023, 13, .	19.5	3
152	Energy harvesting from water streaming at charged surface. Electrophoresis, 2024, 45, 244-265.	2.4	0
153	Impact of Ionic Strength and Charge Density on Donnan Potential in the NaCl-Cation Exchange Membrane System. Water (Switzerland), 2023, 15, 3830.	2.7	Ο
154	Accurate modeling of aqueous chemistry at the nano-/micro-scale. Scientia Sinica Chimica, 2024, 54, 93-111.	0.4	1
155	Determination of the Thickness of Interfacial Water by Time-Resolved Sum-Frequency Generation Vibrational Spectroscopy. Langmuir, 0, , .	3.5	1
156	The concerted proton-electron transfer mechanism of proton migration in the electrochemical interface. IScience, 2023, 26, 108318.	4.1	1
157	Possible Approaches to Studying the Influence of Magnetic Fields and Mechanical Effects on the Physicochemical Properties of Aqueous IgG Colloids. Applied Sciences (Switzerland), 2023, 13, 13055.	2.5	0
158	Hydrophobic Hyamineâ€Mediated Waterâ€Lean Electric Double Layer Boosting Reversible Dendriteâ€Free Zinc Metal Anodes. Advanced Functional Materials, 0, , .	14.9	1
159	Understanding of interfacial molecular interactions and inner-sphere reaction mechanism in heterogeneous Fenton-like catalysis on Mn-N4 site. Applied Catalysis B: Environmental, 2024, 344, 123619.	20.2	0
160	Electrical responsiveness of carboxylate multi-walled carbon nanotube cross-linked composite anti-fouling membranes to organic pollutants. Journal of Membrane Science, 2024, 693, 122360.	8.2	0
161	Ions Adsorbed at Amorphous Solid/Solution Interfaces Form Wigner Crystal-like Structures. ACS Nano, 0, , .	14.6	1
162	Multiscale Modeling of Aqueous Electric Double Layers. Chemical Reviews, 2024, 124, 1-26.	47.7	1
163	The hydrogen-bonding dynamics of water to a nitrile-functionalized electrode is modulated by voltage according to ultrafast 2D IR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
164	Theoretical investigation on potential of zero free charge of (111) and (100) surfaces of Group 10 and 11 metals. Computational and Theoretical Chemistry, 2024, 1232, 114462.	2.5	0
165	Local reaction environment in electrocatalysis. Chemical Society Reviews, 2024, 53, 2022-2055.	38.1	2

#	Article	IF	CITATIONS
166	Surface stratification determines the interfacial water structure of simple electrolyte solutions. Nature Chemistry, 2024, 16, 644-650.	13.6	1
167	SHINERS Study of Chloride Order–Disorder Phase Transition and Solvation of Cu(100). Journal of the American Chemical Society, 2024, 146, 1588-1602.	13.7	0
168	PMC-IZ: A Simple Algorithm for the Electrostatics Calculation in Slab Geometric Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2024, 20, 832-841.	5.3	0
169	Interfacial H ₂ 0 Structure Matters: Realizing Stable Zinc Anodes with Trace Acesulfameâ€K in Aqueous Electrolyte. Advanced Functional Materials, 0, , .	14.9	0
170	Quantitative Dynamic AFM Hydrationâ€Adsorption Design for Hygroscopic and Bio ompatible Polymeric Nanofibers. Small Structures, 2024, 5, .	12.0	0
171	Molecular dynamics simulation study of water structure and dynamics on the gold electrode surface with adsorbed 4-mercaptobenzonitrile. Journal of Chemical Physics, 2024, 160, .	3.0	0
172	Silicon microresonator arrays: A comprehensive study on fabrication techniques and pH-controlled stress-induced variations in cantilever stiffness. Microelectronic Engineering, 2024, 287, 112154.	2.4	0
173	Experimental characterization technique to probe interfacial water. Journal of Catalysis, 2024, 430, 115355.	6.2	0
174	Understanding the Electrode–Electrolyte Interfaces of Ionic Liquids and Deep Eutectic Solvents. Langmuir, 0, , .	3.5	0
175	Charge Transfer Quenching and Maximum of a Liquid–Air Contact Line Moving over a Hydrophobic Surface. Langmuir, 2024, 40, 4340-4349.	3.5	0
176	Geochemical applications of mineral-water interactions. , 2024, , .		0
177	Deciphering Density Fluctuations in the Hydration Water of Brownian Nanoparticles via Upconversion Thermometry. Journal of Physical Chemistry Letters, 2024, 15, 2606-2615.	4.6	0
178	Sixty years of electrochemical optical spectroscopy: a retrospective. Chemical Society Reviews, 2024, 53, 3579-3605.	38.1	0
179	A charge-dependent long-ranged force drives tailored assembly of matter in solution. Nature Nanotechnology, 2024, 19, 485-493.	31.5	0
180	Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces. Nature Energy, 0, , .	39.5	0
181	Quantification and Mechanistic Investigation of the Spontaneous H ₂ O ₂ Generation at the Interfaces of Salt-Containing Aqueous Droplets. Journal of the American Chemical Society, 2024, 146, 8327-8334.	13.7	0
182	Role of Electrolyte pH on Water Oxidation for Iridium Oxides. Journal of the American Chemical Society, 2024, 146, 8928-8938.	13.7	0
183	NaCl, MgCl ₂ , and AlCl ₃ Surface Coverages on Fused Silica and Adsorption Free Energies at pH 4 from Nonlinear Optics. Journal of Physical Chemistry A, 2024, 128, 2162-2168.	2.5	0

			0
#	ARTICLE	IF	CITATIONS
184	Electrophoretic Mobility of Nanoparticles in Water. Journal of Physical Chemistry B, 2024, 128, 2930-2938.	2.6	0
185	The known-unknowns of anomalous underscreening in concentrated electrolytes. Chemical Physics Letters, 2024, 843, 141190.	2.6	0
186	Technique for in situ probing the dissociation of interfacial water. Science Bulletin, 2024, , .	9.0	0