Biocidal chitosan-magnesium oxide nanoparticles via a

Journal of Hazardous Materials 411, 124884 DOI: 10.1016/j.jhazmat.2020.124884

Citation Report

#	Article	IF	CITATIONS
1	Biocidal activity of Ba ²⁺ -doped CeO ₂ NPs against <i>Streptococcus mutans</i> and <i>Staphylococcus aureus</i> bacterial strains. RSC Advances, 2021, 11, 30623-30634.	3.6	14
2	Synergistic enhancement of tendon-to-bone healing via anti-inflammatory and pro-differentiation effects caused by sustained release of Mg ²⁺ /curcumin from injectable self-healing hydrogels. Theranostics, 2021, 11, 5911-5925.	10.0	41
3	Bioactivity of Chitosan-Based Particles Loaded with Plant-Derived Extracts for Biomedical Applications: Emphasis on Antimicrobial Fiber-Based Systems. Marine Drugs, 2021, 19, 359.	4.6	23
4	Eco-friendly superwettable functionalized-fabric with pH-bidirectional responsiveness for controllable oil-water and multi-organic components separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126817.	4.7	19
5	Biocidal and biocompatible hybrid nanomaterials from biomolecule chitosan, alginate and ZnO. Carbohydrate Polymers, 2021, 274, 118646.	10.2	28
6	Biocidal Properties of Zinc Oxide-Titanium Dioxide-Graphene Oxide Nanocomposites via One-Pot Facile Precipitation Method. BioNanoScience, 0, , 1.	3.5	1
7	Biosynthesis and characterization of Eupatorium adenophorum and chitosan mediated Copper oxide nanoparticles and their antibacterial activity. Results in Surfaces and Interfaces, 2022, 6, 100048.	2.4	11
8	Use of magnesium nanomaterials in plants and crop pathogens. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	5
9	Multifunctional natural fibers: the potential of core shell MgO–SiO2 nanoparticles. Cellulose, 2022, 29, 5659-5676.	4.9	2
10	Nanohybrids of oxides nanoparticles-chitosan and their antimicrobial properties. Nanotechnology, 2022, 33, 435701.	2.6	2
11	Green magnesium oxide prepared by plant extracts: synthesis, properties and applications. Materials Today Sustainability, 2022, 20, 100203.	4.1	11
12	Biogenic synthesis of nickel oxide nanoparticles using Averrhoa bilimbi and investigation of its antibacterial, antidiabetic and cytotoxic properties. Inorganic Chemistry Communication, 2022, 144, 109930.	3.9	17
13	Progress and prospects of nanomaterials against resistant bacteria. Journal of Controlled Release, 2022, 351, 301-323.	9.9	27
14	Anticancer Phytochemical-Based Nanoformulations: Therapeutic Intervention in Cancer Cell Lines. Journal of Environmental Pathology, Toxicology and Oncology, 2023, 42, 79-93.	1.2	8
15	Green Synthesis of Magnesium Oxide Nanoparticles Using Mariposa christia vespertilionis Leaves Extract and Its Antimicrobial Study Toward S. aureus and E. coli. Arabian Journal for Science and Engineering, 2023, 48, 7373-7386.	3.0	2
16	A comprehensive review on biosynthesis of magnesium oxide nanoparticles, and their antimicrobial, anticancer, antioxidant activities as well as toxicity study. Inorganic Chemistry Communication, 2022, 146, 110156.	3.9	12
17	Electric field assisted assembly of nanoparticle loaded microspheres toward industrial applications for organic dye removal. Separation and Purification Technology, 2023, 306, 122565.	7.9	4
18	Bioinspired Strategies for Functionalization of Mg-Based Stents. Crystals, 2022, 12, 1761.	2.2	1

#	Article	IF	CITATIONS
19	Fabrication of novel buckypaper metal oxide nano-catalysis glycerol carbonate/MWCNTs membrane for efficient removal of heavy metals. Heliyon, 2022, 8, e12633.	3.2	3
20	The characteristics of green-synthesized Magnesium oxide nanoparticles (MgONPs) and their biomedical applications. Mini-Reviews in Medicinal Chemistry, 2022, 23, .	2.4	0
21	Pluronic f127 encapsulated titanium dioxide nanoparticles: Evaluation of physiochemical properties for biological applications. Journal of Molecular Liquids, 2023, 379, 121655.	4.9	12
22	Chemical synthesis of magnesium oxide (MgO) from brine towards minimal energy consumption. Desalination, 2023, 556, 116594.	8.2	9
23	Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications. Heliyon, 2023, 9, e13128.	3.2	25
24	Exploring the potential of eco-friendly silver nanoparticles to inhibit azole-resistant clinical isolates of <i>Candida</i> spp Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2023, 58, 31-38.	1.7	0
25	Cytotoxic, Antidiabetic, and Antioxidant Study of Biogenically Improvised <i>Elsholtzia blanda</i> and Chitosan-Assisted Zinc Oxide Nanoparticles. ACS Omega, 2023, 8, 10954-10967.	3.5	5
26	Biopolymer Chitosan Surface Engineering with Magnesium Oxide-Pluronic-F127-Escin Nanoparticles on Human Breast Carcinoma Cell Line and Microbial Strains. Nanomaterials, 2023, 13, 1227.	4.1	4
27	Metalâ€based nanomaterials and nanocomposites as promising frontier in cancer chemotherapy. MedComm, 2023, 4, .	7.2	12
28	Enhanced photocatalytic activity of methylene blue dye by DIFS synthesized pure and Mn doped MgO nanostructures. Optik, 2023, 283, 170869.	2.9	4
29	Fabrication of chitosan and Trianthema portulacastrum mediated copper oxide nanoparticles: Antimicrobial potential against MDR bacteria and biological efficacy for antioxidant, antidiabetic and photocatalytic activities. International Journal of Biological Macromolecules, 2023, 242, 124954.	7.5	4
30	Hybrid nanomaterial composed of chitosan, curcumin, ZnO and TiO2 for antibacterial therapies. International Journal of Biological Macromolecules, 2023, 242, 124814.	7.5	8
31	Recent Advancements in the Field of Stimuli-Responsive Polymeric Nanomaterials for Cancer Treatment. , 2023, , 81-101.		0
32	Fabrication of Neodymium (Nd), Cadmium (Cd) and Nd:Cd doped hybrid copper oxide nanocomposites: Evaluation of their antibacterial activity and cytotoxicity against human L132 cell line. Ceramics International, 2023, 49, 29933-29947.	4.8	5
33	Superparamagnetic and antimicrobial biosynthesis of Ce/NiO nanomaterials for biomedical applications. Nano Structures Nano Objects, 2023, 35, 101018.	3.5	3
34	Ceftazidime-assisted synthesis of ultrasmall chitosan nanoparticles for biofilm penetration and eradication of Pseudomonas aeruginosa. Scientific Reports, 2023, 13, .	3.3	0
35	Pluronic F127-chitosan modified magnesium oxide hybrid nanomaterials prepared via a one-pot method: Potential uses in antibacterial and anticancer agents. Surfaces and Interfaces, 2023, 42, 103327.	3.0	2
36	Phytoextract-mediated synthesis of magnesium oxide nanoparticles using Caccinia macranthera extract and examination of their photocatalytic and anticancer effects. Materials Research Bulletin, 2024, 169, 112514.	5.2	2

#	Article	IF	CITATIONS
37	Application of oxygen vacancy defects in enhanced anti-cancer nanomedicine. Science China Chemistry, 2023, 66, 2492-2512.	8.2	0
38	Surface engineering of tin dioxide through chitosan: Band-gap tuning of spherical structure with oxygen vacancies for enhanced antibacterial therapeutic effects. Journal of Industrial and Engineering Chemistry, 2024, 130, 255-265.	5.8	1
39	Bio-derived synthesis of MgO nanoparticles and their anticancer and hemolytic bioactivities. Biocatalysis and Agricultural Biotechnology, 2023, 53, 102870.	3.1	3
40	Biocidal Properties of Vanadium, ZnO Nanoparticles Prepared Via Green Process. BioNanoScience, 0, , .	3.5	0
41	Magnesium oxide nanoparticles alleviate arsenic toxicity, reduce oxidative stress and arsenic accumulation in rice (Oryza sativa L). Environmental Science and Pollution Research, 0, , .	5.3	0
42	Dielectric performance of nanostructured magnesium oxide and effect of cobalt substitution. Materials Today Communications, 2024, 38, 108022.	1.9	0
43	A comprehensive review on antibacterial analysis of natural extract-based metal and metal oxide nanoparticles. Archives of Microbiology, 2024, 206, .	2.2	1
44	Therapeutic strategies for drugâ€resistant <i>Pseudomonas aeruginosa </i> : Metal and metal oxide nanoparticles. Journal of Biomedical Materials Research - Part A, O, , .	4.0	1
45	Nanoengineered chitosan functionalized titanium dioxide biohybrids for bacterial infections and cancer therapy. Scientific Reports, 2024, 14, .	3.3	0
46	Eco-Friendly Synthesis of MgO Nanoparticles for Biomedical Applications: Advances, Challenges, and Future Prospects. Nanotechnology in the Life Sciences, 2024, , 201-226.	0.6	0
47	Gold Nanoparticles as Antibacterial and Antiviral Agents: Biomedical Applications and Theranostic Potential. Nanotechnology in the Life Sciences, 2024, , 19-45.	0.6	0
48	Fabrication and evaluation of Dillenia indica-carrageenan blend hybrid superporous hydrogel reinforced with green synthesized MgO nanoparticles as an effective wound dressing material. International Journal of Biological Macromolecules, 2024, 265, 130835.	7.5	0
49	Preparation of the novel bioâ€nanocomposites based on chitosan, <i>Piper betle</i> leaf extract and <scp>MgO</scp> nanoparticles for chili preservation. Polymer Engineering and Science, 0, , .	3.1	0

CITATION REPORT