Assessing the camera trap methodologies used to estim populations

Journal of Applied Ecology 58, 1583-1592

DOI: 10.1111/1365-2664.13913

Citation Report

#	Article	IF	CITATIONS
1	Assessing the camera trap methodologies used to estimate density of unmarked populations. Journal of Applied Ecology, 2021, 58, 1583-1592.	4.0	52
2	ENETWILD training: second online course on the use of camera trapping for monitoring wildlife and density estimation. EFSA Supporting Publications, 2021, 18, 6827E.	0.7	O
3	Effectiveness of signs of activity as relative abundance indices for wild boar. Wildlife Biology, 2021, 2021, .	1.4	6
4	How many macropods? <i>A manager's guide to smallâ€scale population surveys of kangaroos and wallabies</i> . Ecological Management and Restoration, 2021, 22, 75-89.	1.5	3
5	Towards a bestâ€practices guide for camera trapping: assessing differences among camera trap models and settings under field conditions. Journal of Zoology, 2022, 316, 197-208.	1.7	31
6	Overcoming the distance estimation bottleneck in estimating animal abundance with camera traps. Ecological Informatics, 2022, 68, 101536.	5.2	11
7	Population density, habitat use and activity patterns of endangered hog deer in Cambodia. Mammal Research, $0, 1$.	1.3	0
8	Methodological approaches for estimating populations of the endangered dhole <i>Cuon alpinus</i> PeerJ, 2022, 10, e12905.	2.0	2
9	Wild boar density data generated by camera trapping in nineteen European areas. EFSA Supporting Publications, 2022, 19, .	0.7	6
10	Can we model distribution of population abundance from wildlife–vehicles collision data?. Ecography, 2022, 2022, .	4.5	12
11	Population assessment without individual identification using camera-traps: A comparison of four methods. Basic and Applied Ecology, 2022, 61, 68-81.	2.7	15
12	Comparison of methods for estimating density and population trends for low-density Asian bears. Global Ecology and Conservation, 2022, 35, e02058.	2.1	15
13	Camera trap distance sampling for terrestrial mammal population monitoring: lessons learnt from a <scp>UK</scp> case study. Remote Sensing in Ecology and Conservation, 2022, 8, 717-730.	4.3	11
14	Deer Behavior Affects Density Estimates With Camera Traps, but Is Outweighed by Spatial Variability. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	11
15	Animal reactivity to camera traps and its effects on abundance estimate using distance sampling in the TaÃ⁻ National Park, Cà te d'Ivoire. PeerJ, 0, 10, e13510.	2.0	6
16	Evaluating unmarked abundance estimators using remote cameras and aerial surveys. Wildlife Society Bulletin, 2022, 46, .	0.8	O
17	Evaluation of a combined and portable light-ultrasound device with which to deter red deer. European Journal of Wildlife Research, 2022, 68, .	1.4	3
18	Estimating animal density for a community of species using information obtained only from cameraâ€traps. Methods in Ecology and Evolution, 2022, 13, 2248-2261.	5.2	10

#	Article	IF	CITATIONS
19	Performance of wild animals with "broken―traits: Movement patterns in nature of moose with leg injuries. Ecology and Evolution, 2022, 12, .	1.9	0
20	A comparison of capture-mark-recapture and camera-based mark-resight to estimate abundance of Alpine marmot (Marmota marmota). Journal of Vertebrate Biology, 2022, 71, .	1.0	0
21	A cautionary tale comparing spatial count and partial identity models for estimating densities of threatened and unmarked populations. Global Ecology and Conservation, 2022, 38, e02268.	2.1	7
22	Stateâ€space model combining local camera data and regional administration data reveals population dynamics of wild boar. Population Ecology, 0, , .	1.2	2
23	Estimating species richness with camera traps: modeling the effects of delay period, deployment length, number of sites, and interference imagery. Wildlife Society Bulletin, 2022, 46, .	0.8	0
24	A comparison of density estimation methods for monitoring marked and unmarked animal populations. Ecosphere, 2022, 13, .	2.2	6
25	Environmental DNA metabarcoding effectively monitors terrestrial species by using urban green spaces. Urban Forestry and Urban Greening, 2022, 78, 127782.	5. 3	1
26	Guidelines for evaluating density estimation models for unmarked populations - Santini et al. (2022). Basic and Applied Ecology, 2022, , .	2.7	1
27	Using integrated wildlife monitoring to prevent future pandemics through one health approach. One Health, 2023, 16, 100479.	3.4	20
28	The influence of fineâ€scale topography on detection of a mammal assemblage at camera traps in a mountainous landscape. Wildlife Biology, 2023, 2023, .	1.4	1
29	Population development and landscape preference of reintroduced wild ungulates: successful rewilding in Southern Italy. PeerJ, 0, 10, e14492.	2.0	0
30	N-mixture model-based estimate of relative abundance of sloth bear ($\langle i \rangle$ Melursus ursinus $\langle i \rangle$) in response to biotic and abiotic factors in a human-dominated landscape of central India. PeerJ, 0, 10, e13649.	2.0	2
31	Risk Factors for Exposure of Wild Birds to West Nile Virus in A Gradient of Wildlife-Livestock Interaction. Pathogens, 2023, 12, 83.	2.8	4
32	Wildlife Population Assessment: Changing Priorities Driven by Technological Advances. Journal of Statistical Theory and Practice, 2023, 17 , .	0.5	5
33	Using costâ€effectiveness analysis to compare densityâ€estimation methods for largeâ€scale wildlife management. Wildlife Society Bulletin, 2023, 47, .	0.8	1
34	The Inhabitation Status of Wild Boars on the Island 10 years after Migration. Noson Keikaku Gakkai Ronbunshu, 2023, 3, 9-18.	0.2	0
35	Not Just Pictures: Utility of Camera Trapping in the Context of African Swine Fever and Wild Boar Management. Transboundary and Emerging Diseases, 2023, 2023, 1-9.	3.0	8
36	A camera trap method for estimating target densities of grey squirrels to inform wildlife management applications. Frontiers in Ecology and Evolution, $0,11,.$	2.2	0

3

#	Article	IF	CITATIONS
37	Tools and opportunities for African swine fever control in wild boar and feral pigs: a review. European Journal of Wildlife Research, 2023, 69, .	1.4	6
38	MAMMALNET – Citizen Science Data Collection from a One Health Perspective. , 0, , .		1
39	Estimating animal density using the <scp>Spaceâ€toâ€Event</scp> model and bootstrap resampling with motionâ€triggered cameraâ€trap data. Remote Sensing in Ecology and Conservation, 0, , .	4.3	0
40	Interâ€population variability in movement parameters: practical implications for population density estimation. Journal of Wildlife Management, 2023, 87, .	1.8	0
41	Virtual snow stakes: a new method for snow depth measurement at remote camera stations. Wildlife Society Bulletin, $0,$	0.8	0
43	Disentangling wildlife–cattle interactions in multiâ€host tuberculosis scenarios: systematic review and metaâ€analysis. Mammal Review, 2023, 53, 287-302.	4.8	1
44	Estimating mammal density from track counts collected by Indigenous Amazonian hunters. Perspectives in Ecology and Conservation, 2023, 21, 247-252.	1.9	0
45	A guidance on how to start up a national wildlife population monitoring program harmonizable at European level. EFSA Supporting Publications, 2023, 20, .	0.7	0
46	Estimating effective survey duration in camera trap distance sampling surveys. Ecology and Evolution, 2023, 13, .	1.9	0
47	Density estimates of unmarked mammals: comparing two models and assumptions across multiple species and years. Canadian Journal of Zoology, 2024, 102, 286-297.	1.0	0
48	Overcoming the limitations of wildlife disease monitoring. , 2024, 2, .		1
49	Badger Ecology, Bovine Tuberculosis, and Population Management: Lessons from the Island of Ireland. Transboundary and Emerging Diseases, 2024, 2024, 1-18.	3.0	0
50	Ãndice de abundancia relativa y tasa de encuentro con trampas cámara. Mammalogy Notes, 2024, 10, 389.	0.1	0
51	Ten years of camera trapping for a cryptic and threatened arboreal mammal $\hat{a} \in \hat{a}$ a review of applications and limitations. Wildlife Research, 2024, 51, .	1.4	0
52	Establishing a baseline of mammal diversity in Kali Tiger Reserve, India through camera trapping., 0,,.		O