Efficacy of Wolbachia-Infected Mosquito Deployments

New England Journal of Medicine 384, 2177-2186 DOI: 10.1056/nejmoa2030243

Citation Report

#	Article	IF	CITATIONS
3	Defeating dengue with Wolbachia. Nature Reviews Microbiology, 2021, 19, 482-482.	13.6	0
4	Sixty seconds on dengue. BMJ, The, 2021, 373, n1500.	3.0	0
6	Dengue — Perils and Prevention. New England Journal of Medicine, 2021, 384, 2252-2253.	13.9	3
7	Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niterói, Brazil: A quasi-experimental study. PLoS Neglected Tropical Diseases, 2021, 15, e0009556.	1.3	93
8	Combating mosquito-borne diseases using genetic control technologies. Nature Communications, 2021, 12, 4388.	5.8	76
10	The expanding geographic range of dengue in Australia. Medical Journal of Australia, 2021, 215, 171-172.	0.8	6
11	Mosquito Control Priorities in Florida—Survey Results from Florida Mosquito Control Districts. Pathogens, 2021, 10, 947.	1.2	4
13	A single mutation weakens symbiont-induced reproductive manipulation through reductions in deubiquitylation efficiency. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
14	Diverse <i>w</i> Mel variants of <i>Wolbachia pipientis</i> differentially rescue fertility and cytological defects of the <i>bag of marbles</i> partial loss of function mutation in <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	6
15	<i>Wolbachia</i> -Conferred Antiviral Protection Is Determined by Developmental Temperature. MBio, 2021, 12, e0292320.	1.8	21
16	Les analyses bibliographiques en maladies infectieuses du groupe IDIST – sélection troisième trimestre 2021. Annales De Dermatologie Et De Vénéréologie, FMC, 2021, 1, 515-515.	0.0	0
17	Environmental factors influence the local establishment of Wolbachia in Aedes aegypti mosquitoes in two small communities in central Vietnam. Gates Open Research, 0, 5, 147.	2.0	26
18	Editorial: Systemic Coordination of Invertebrate Homeostasis. Frontiers in Physiology, 2021, 12, 736185.	1.3	0
19	Designing effective Wolbachia release programs for mosquito and arbovirus control. Acta Tropica, 2021, 222, 106045.	0.9	15
21	Current Trends and Limitations in Dengue Antiviral Research. Tropical Medicine and Infectious Disease, 2021, 6, 180.	0.9	35
24	Male and Female Mosquito (Diptera: Culicidae) Attraction to Sound and Its Relevance to Potential Applications in Vector Surveillance. Annals of the Entomological Society of America, 2022, 115, 113-126.	1.3	7
25	Structural and mechanistic insights into the complexes formed by <i>Wolbachia</i> cytoplasmic incompatibility factors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
26	The impact of city-wide deployment of Wolbachia-carrying mosquitoes on arboviral disease incidence in MedellÃn and Bello, Colombia: study protocol for an interrupted time-series analysis and a test-negative design study. F1000Research, 2019, 8, 1327.	0.8	8

ATION RE

#	Article	IF	CITATIONS
28	Tick Cell Culture Analysis of Growth Dynamics and Cellular Tropism of Rickettsia buchneri, an Endosymbiont of the Blacklegged Tick, Ixodes scapularis. Insects, 2021, 12, 968.	1.0	2
29	High Temperature Cycles Result in Maternal Transmission and Dengue Infection Differences Between <i>Wolbachia</i> Strains in Aedes aegypti. MBio, 2021, 12, e0025021.	1.8	20
30	Emergent Arboviruses: A Review About Mayaro virus and Oropouche orthobunyavirus. Frontiers in Tropical Diseases, 2021, 2, .	0.5	8
31	Wolbachia-infected mosquitoes: The answer to the dengue endemic in Pakistan?. Asian Pacific Journal of Tropical Medicine, 2021, 14, 383.	0.4	1
32	Bioinformatic and cell-based tools for pooled CRISPR knockout screening in mosquitos. Nature Communications, 2021, 12, 6825.	5.8	3
34	Molecular Rationale of Insect-Microbes Symbiosis—From Insect Behaviour to Mechanism. Microorganisms, 2021, 9, 2422.	1.6	11
36	Impacts of fungal entomopathogens on survival and immune responses of Aedes albopictus and Culex pipiens mosquitoes in the context of native Wolbachia infections. PLoS Neglected Tropical Diseases, 2021, 15, e0009984.	1.3	10
37	Isolation and Characterization of Mosquito-Associated Spiroplasma cantharicola from Aedes japonicus Collected in Hokkaido, Japan. Insects, 2021, 12, 1056.	1.0	1
38	Revisiting dengue virus-mosquito interactions: molecular insights into viral fitness. Journal of General Virology, 2021, 102, .	1.3	7
40	Some tropical diseases: the flaviviruses. , 2022, , 209-253.		0
41	The CinB Nuclease from <i>w</i> No <i>Wolbachia</i> Is Sufficient for Induction of Cytoplasmic Incompatibility in <i>Drosophila</i> . MBio, 2022, 13, e0317721.	1.8	21
43	Lab-scale characterization and semi-field trials of Wolbachia Strain wAlbB in a Taiwan Wolbachia introgressed Ae. aegypti strain. PLoS Neglected Tropical Diseases, 2022, 16, e0010084.	1.3	9
44	Why did theÂ <i>Wolbachia</i> Âtransinfection cross the road? drift, deterministic dynamics, and disease control. Evolution Letters, 2022, 6, 92-105.	1.6	6
45	Recently introduced <i>Wolbachia</i> reduces bacterial species richness and reshapes bacterial community structure in <i>Nilaparvata lugens</i> . Pest Management Science, 2022, 78, 1881-1894.	1.7	3
46	Competitive Exclusion of Phytopathogenic Serratia marcescens from Squash Bug Vectors by the Gut Endosymbiont <i>Caballeronia</i> . Applied and Environmental Microbiology, 2022, 88, AEM0155021.	1.4	5
47	Review of the ecology and behaviour of Aedes aegypti and Aedes albopictus in Western Africa and implications for vector control. Current Research in Parasitology and Vector-borne Diseases, 2022, 2, 100074.	0.7	22
48	Vector microbiota and immunity: modulating arthropod susceptibility to vertebrate pathogens. Current Opinion in Insect Science, 2022, 50, 100875.	2.2	7
49	Monitoring Needs for Gene Drive Mosquito Projects: Lessons From Vector Control Field Trials and Invasive Species. Frontiers in Genetics, 2021, 12, 780327.	1.1	11

#	Article	IF	CITATIONS
50	Paternal transmission of the Wolbachia CidB toxin underlies cytoplasmic incompatibility. Current Biology, 2022, 32, 1319-1331.e5.	1.8	37
51	Assessing <i>Aedes aegypti</i> candidate genes during viral infection and <i>Wolbachia</i> â€mediated pathogen blocking. Insect Molecular Biology, 2022, 31, 356-368.	1.0	7
52	Temperature effects on cellular host-microbe interactions explain continent-wide endosymbiont prevalence. Current Biology, 2022, 32, 878-888.e8.	1.8	29
53	Vaccination for Dengue Prevention. JAMA - Journal of the American Medical Association, 2022, 327, 817.	3.8	6
55	A decade of stability for wMel Wolbachia in natural Aedes aegypti populations. PLoS Pathogens, 2022, 18, e1010256.	2.1	40
56	Symbionts and gene drive: two strategies to combat vector-borne disease. Trends in Genetics, 2022, 38, 708-723.	2.9	30
58	Trash to Treasure: How Insect Protein and Waste Containers Can Improve the Environmental Footprint of Mosquito Egg Releases. Pathogens, 2022, 11, 373.	1.2	1
60	A <i>w</i> Mel <i>Wolbachia</i> variant in <i>Aedes aegypti</i> from fieldâ€collected <i>Drosophila melanogaster</i> with increased phenotypic stability under heat stress. Environmental Microbiology, 2022, 24, 2119-2135.	1.8	11
61	Dissecting the Species-Specific Virome in Culicoides of Thrace. Frontiers in Microbiology, 2022, 13, 802577.	1.5	3
63	EVITA Dengue: a cluster-randomized controlled trial to EValuate the efficacy of Wolbachia-InfecTed Aedes aegypti mosquitoes in reducing the incidence of Arboviral infection in Brazil. Trials, 2022, 23, 185.	0.7	5
65	"Best of Both World― The Amalgamation of Fuzzy Delphi Method with Nominal Group Technique for Dengue Risk Prioritisation Decision-Making. Journal of Function Spaces, 2022, 2022, 1-8.	0.4	5
66	Environmental factors influence the local establishment of Wolbachia in Aedes aegypti mosquitoes in two small communities in central Vietnam. Gates Open Research, 0, 5, 147.	2.0	9
69	Mathematical modelling to assess the feasibility of Wolbachia in malaria vector biocontrol. Journal of Theoretical Biology, 2022, 542, 111110.	0.8	5
71	Male Age and <i>Wolbachia</i> Dynamics: Investigating How Fast and Why Bacterial Densities and Cytoplasmic Incompatibility Strengths Vary. MBio, 2021, 12, e0299821.	1.8	18
72	Towards Integrated Management of Dengue in Mumbai. Viruses, 2021, 13, 2436.	1.5	4
73	The Effects of Boric Acid Sugar Bait on Wolbachia Trans-Infected Male Aedes albopictus (ZAP Males®) in Laboratory Conditions. Insects, 2022, 13, 1.	1.0	2
74	A metapopulation approach to identify targets for <i>Wolbachia</i> -based dengue control. Chaos, 2022, 32, 041105.	1.0	2
75	Aedes aegypti abundance and insecticide resistance profiles in the Applying Wolbachia to Eliminate Dengue trial. PLoS Neglected Tropical Diseases, 2022, 16, e0010284.	1.3	6

#	Article	IF	CITATIONS
76	Wolbachia endosymbionts in two Anopheles species indicates independent acquisitions and lack of prophage elements. Microbial Genomics, 2022, 8, .	1.0	3
78	Pilot trial using mass field-releases of sterile males produced with the incompatible and sterile insect techniques as part of integrated Aedes aegypti control in Mexico. PLoS Neglected Tropical Diseases, 2022, 16, e0010324.	1.3	29
79	Symbiosis and host responses to heating. Trends in Ecology and Evolution, 2022, 37, 611-624.	4.2	16
80	Interacting host modifier systems control <i>Wolbachia</i> -induced cytoplasmic incompatibility in a haplodiploid mite. Evolution Letters, 2022, 6, 255-265.	1.6	6
81	Inheritance through the cytoplasm. Heredity, 2022, 129, 31-43.	1.2	26
82	Transient Introgression of Wolbachia into Aedes aegypti Populations Does Not Elicit an Antibody Response to Wolbachia Surface Protein in Community Members. Pathogens, 2022, 11, 535.	1.2	2
83	Dengue: A Growing Problem With New Interventions. Pediatrics, 2022, 149, .	1.0	28
84	Highly transmissible cytoplasmic incompatibility by the extracellular insect symbiont Spiroplasma. IScience, 2022, 25, 104335.	1.9	20
86	Complex effects of environment and <i>Wolbachia</i> infections on the life history of <i>Drosophila melanogaster</i> hosts. Journal of Evolutionary Biology, 2022, 35, 788-802.	0.8	17
87	Wolbachia genetic similarity in different insect host species: Drosophila melanogaster and Yogyakarta's (Indonesia) Aedes aegypti as a novel host. Biodiversitas, 2022, 23, .	0.2	0
88	Bacterial Symbionts in Ceratitis capitata. Insects, 2022, 13, 474.	1.0	7
90	Modifying mosquitoes to suppress disease transmission: Is the long wait over?. Genetics, 2022, 221, .	1.2	6
91	Dengue virus population genetics in Yogyakarta, Indonesia prior to city-wide Wolbachia deployment. Infection, Genetics and Evolution, 2022, 102, 105308.	1.0	1
92	Prevalence of trypanosomes and selected symbionts in tsetse species of eastern Zambia. Parasitology, 0, , 1-23.	0.7	2
93	Sensitivity of wMel and wAlbB Wolbachia infections in Aedes aegypti Puducherry (Indian) strains to heat stress during larval development. Parasites and Vectors, 2022, 15, .	1.0	7
94	Efficacy of a spatial repellent for control of <i>Aedes</i> -borne virus transmission: A cluster-randomized trial in Iquitos, Peru. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	23
95	Disruption of spatiotemporal clustering in dengue cases by wMel Wolbachia in Yogyakarta, Indonesia. Scientific Reports, 2022, 12, .	1.6	3
96	<i>cifB-</i> transcript levels largely explain cytoplasmic incompatibility variation across divergent <i>Wolbachia</i> ., 0, , .		4

#	Article	IF	CITATIONS
97	The Strategy of Paratransgenesis for the Control of Malaria Transmission. Frontiers in Tropical Diseases, 0, 3, .	0.5	2
98	First comprehensive analysis of Aedes aegypti bionomics during an arbovirus outbreak in west Africa: Dengue in Ouagadougou, Burkina Faso, 2016–2017. PLoS Neglected Tropical Diseases, 2022, 16, e0010059.	1.3	9
100	Interspecies Isobaric Labeling-Based Quantitative Proteomics Reveals Protein Changes in the Ovary of Aedes aegypti Coinfected With ZIKV and Wolbachia. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	2
101	Detection of <i>Wolbachia</i> in Mosquitoes (Diptera: Culicidae) in the State of MaranhÃŁo, Brazil. Journal of Medical Entomology, 2022, 59, 1831-1836.	0.9	1
102	Toward an accurate mechanistic understanding of <i>Wolbachiaâ€</i> induced cytoplasmic incompatibility. Environmental Microbiology, 2022, 24, 4519-4532.	1.8	11
103	Observing the distribution of mosquito bites on humans to inform personal protection measures against malaria and dengue vectors. PLoS ONE, 2022, 17, e0271833.	1.1	5
105	Lack of robust evidence for a <i>Wolbachia</i> infection in <i>Anopheles gambiae</i> from Burkina Faso. Medical and Veterinary Entomology, 2022, 36, 301-308.	0.7	6
106	Attempts to use breeding approaches in Aedes aegypti to create lines with distinct and stable relative Wolbachia densities. Heredity, 0, , .	1.2	Ο
107	Human IgG responses to the Aedes albopictus 34k2 salivary protein: analyses in Réunion Island and Bolivia confirm its suitability as marker of host exposure to the tiger mosquito. Parasites and Vectors, 2022, 15, .	1.0	3
108	Local-scale virome depiction in MedellÃn, Colombia, supports significant differences between Aedes aegypti and Aedes albopictus. PLoS ONE, 2022, 17, e0263143.	1.1	9
109	Multiple insecticide resistance and first evidence of <scp><i>V410L</i></scp> kdr mutation in <i>Aedes (Stegomyia) aegypti</i> (Linnaeus) from Burkina Faso. Medical and Veterinary Entomology, 2022, 36, 309-319.	0.7	11
110	School and community driven dengue vector control and monitoring in Myanmar: Study protocol for a cluster randomized controlled trial. Wellcome Open Research, 0, 7, 206.	0.9	0
111	Studies on the fitness characteristics of wMel- and wAlbB-introgressed Aedes aegypti (Pud) lines in comparison with wMel- and wAlbB-transinfected Aedes aegypti (Aus) and wild-type Aedes aegypti (Pud) lines. Frontiers in Microbiology, 0, 13, .	1.5	2
113	Recent Technological Advances and Strategies for Arbovirus Vector Control. Tropical Medicine and Infectious Disease, 2022, 7, 204.	0.9	2
114	First report of F1534C kdr mutation in deltamethrin resistant Aedes albopictus from northern part of West Bengal, India. Scientific Reports, 2022, 12, .	1.6	2
115	Control methods for Aedes aegypti: Have we lost the battle?. Travel Medicine and Infectious Disease, 2022, 49, 102428.	1.5	2
116	Modeling the Symbiotic Interactions Between Wolbachia and Insect Species. Springer Proceedings in Complexity, 2022, , 741-760.	0.2	0
117	Draft Genome of a Member of the Family <i>Chromobacteriaceae</i> Isolated from Anopheles Mosquitoes in West Africa. Microbiology Resource Announcements, 0, , .	0.3	0

#	ARTICLE	IF	CITATIONS
118	Genome sequencing and comparative analysis of Wolbachia strain wAlbA reveals Wolbachia-associated plasmids are common. PLoS Genetics, 2022, 18, e1010406.	1.5	8
119	A highly divergent <i>Wolbachia</i> with a tiny genome in an insect-parasitic tylenchid nematode. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	5
121	Women's participation in the prevention and control of dengue using environmental methods in the global south: a qualitative meta-synthesis. International Journal for Equity in Health, 2022, 21, .	1.5	3
122	<i>Wolbachia w</i> AlbB remains stable in <i>Aedes aegypti</i> over 15 years but exhibits genetic background-dependent variation in virus blocking. , 2022, 1, .		9
123	Estimating the effect of the wMel release programme on the incidence of dengue and chikungunya in Rio de Janeiro, Brazil: a spatiotemporal modelling study. Lancet Infectious Diseases, The, 2022, 22, 1587-1595.	4.6	24
124	Externalities modulate the effectiveness of the Wolbachia release programme. Lancet Infectious Diseases, The, 2022, 22, 1518-1519.	4.6	0
125	Genetic Engineering Aims to Take a Bite Out of Insect Pests. Engineering, 2022, , .	3.2	0
126	Fitness costs of <i>Wolbachia</i> shift in locallyâ€edapted <i>Aedes aegypti</i> mosquitoes. Environmental Microbiology, 2022, 24, 5749-5759.	1.8	3
127	<i>Wolbachia</i> -Virus interactions and arbovirus control through population replacement in mosquitoes. Pathogens and Global Health, 2023, 117, 245-258.	1.0	14
129	RNA Viruses, Pandemics and Anticipatory Preparedness. Viruses, 2022, 14, 2176.	1.5	4
130	Overview of <i>Aedes aegypti</i> and Use in Laboratory Studies. Cold Spring Harbor Protocols, 0, , .	0.2	1
131	Arboviruses as an unappreciated cause of non-malarial acute febrile illness in the Dschang Health District of western Cameroon. PLoS Neglected Tropical Diseases, 2022, 16, e0010790.	1.3	4
132	Updating the Insecticide Resistance Status of Aedes aegypti and Aedes albopictus in Asia: A Systematic Review and Meta-Analysis. Tropical Medicine and Infectious Disease, 2022, 7, 306.	0.9	8
136	Wolbachia wAlbB inhibit dengue and Zika infection in the mosquito Aedes aegypti with an Australian background. PLoS Neglected Tropical Diseases, 2022, 16, e0010786.	1.3	9
137	Predicting Transmission Suitability of Mosquito-Borne Diseases under Climate Change to Underpin Decision Making. International Journal of Environmental Research and Public Health, 2022, 19, 13656.	1.2	1
138	Genomic and Phenotypic Comparisons Reveal Distinct Variants of <i>Wolbachia</i> Strain <i>w</i> AlbB. Applied and Environmental Microbiology, 2022, 88, .	1.4	2
139	Transgenic cytoplasmic incompatibility persists across age and temperature variation in Drosophila melanogaster. IScience, 2022, 25, 105327.	1.9	2
141	Why <i>Wolbachia</i> -induced cytoplasmic incompatibility is so common. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9

		CITATION REPORT		
#	Article		IF	Citations
143	Technological advances in mosquito olfaction neurogenetics. Trends in Genetics, 2023	, 39, 154-166.	2.9	4
145	The opportunities of research parasitism: A case study using the Barcode of Life Data S GigaScience, 2022, 11, .	ystem (BOLD).	3.3	2
146	Wolbachia infection in field-collected Aedes aegypti in Yunnan Province, southwestern Frontiers in Cellular and Infection Microbiology, 0, 12, .	China.	1.8	4
147	No room for complacency to control dengue in Nepal. QJM - Monthly Journal of the Ass Physicians, 0, , .	ociation of	0.2	0
148	Abundance of Phasi-Charoen-like virus in Aedes aegypti mosquito populations in differe India. PLoS ONE, 2022, 17, e0277276.	ent states of	1.1	3
149	Preventive residual insecticide applications successfully controlled Aedes aegypti in Yu Scientific Reports, 2022, 12, .	catan, Mexico.	1.6	2
151	Assessing the efficacy of male Wolbachia-infected mosquito deployments to reduce de in Singapore: study protocol for a cluster-randomized controlled trial. Trials, 2022, 23,	ngue incidence	0.7	7
153	Modelling the ecological dynamics of mosquito populations with multiple co-circulating strains. Scientific Reports, 2022, 12, .	g Wolbachia	1.6	1
154	A critical assessment of the detailed Aedes aegypti simulation model Skeeter Buster 2 experiments of indoor insecticidal control in Iquitos, Peru. PLoS Neglected Tropical Dise e0010863.	using field eases, 2022, 16,	1.3	0
155	Increasing Dengue Burden and Severe Dengue Risk in Bangladesh: An Overview. Tropic Infectious Disease, 2023, 8, 32.	al Medicine and	0.9	15
156	Harnessing Wolbachia cytoplasmic incompatibility alleles for confined gene drive: A mo PLoS Genetics, 2023, 19, e1010591.	odeling study.	1.5	6
157	Developing Wolbachia-based disease interventions for an extreme environment. PLoS F 19, e1011117.	Pathogens, 2023,	2.1	4
158	Impact of randomised <i>w</i> mel <i>Wolbachia</i> deployments on notified dengue insecticide fogging for dengue control in Yogyakarta City. Global Health Action, 2023,	e cases and 16, .	0.7	4
159	Endosymbionts. , 2023, , 621-644.			0
160	Singapore's Dengue Outbreak Amidst the COVID-19 Pandemic: Challenges, Respor Infection and Drug Resistance, 0, Volume 16, 1081-1085.	nses, and Lessons.	1.1	3
161	Metatranscriptomic Sequencing Reveals Host Species as an Important Factor Shaping Virome. Microbiology Spectrum, 2023, 11, .	the Mosquito	1.2	2
162	Isolation, culture and characterization of Arsenophonus symbionts from two insect spe loss of infectious transmission and extended host range. Frontiers in Microbiology, 0, 1	ecies reveal 4, .	1.5	4
163	Nowhere to fly: Avian malaria is ubiquitous from ocean to summit on a Hawaiian island Conservation, 2023, 279, 109943.	. Biological	1.9	3

#	Article	IF	CITATIONS
164	Scorpion envenomation in Brazil: Current scenario and perspectives for containing an increasing health problem. PLoS Neglected Tropical Diseases, 2023, 17, e0011069.	1.3	9
165	A phylogenetic study of dengue virus in urban Vietnam shows long-term persistence of endemic strains. Virus Evolution, 2023, 9, .	2.2	2
167	Modeling the effect of Wolbachia to control malaria transmission. Expert Systems With Applications, 2023, 221, 119769.	4.4	2
168	Genome evolution of dengue virus serotype 1 under selection by <i>Wolbachia pipientis</i> in <i>Aedes aegypti</i> mosquitoes. Virus Evolution, 2023, 9, .	2.2	6
170	Importance of Wolbachia-mediated biocontrol to reduce dengue in Bangladesh and other dengue-endemic developing countries. Biosafety and Health, 2023, 5, 69-77.	1.2	3
171	Native Wolbachia infection and larval competition stress shape fitness and West Nile virus infection in Culex quinquefasciatus mosquitoes. Frontiers in Microbiology, 0, 14, .	1.5	5
173	History matters: Thermal environment before but not during wasp attack determines the efficiency of symbiontâ€mediated protection. Molecular Ecology, 0, , .	2.0	0
174	Recovery of metagenomic data from the Aedes aegypti microbiome using a reproducible snakemake pipeline: MINUUR. Wellcome Open Research, 0, 8, 131.	0.9	1
175	Grand challenges in major tropical diseases: Part II. Frontiers in Tropical Diseases, 0, 4, .	0.5	2
176	The Promise and Challenge of Genetic Biocontrol Approaches for Malaria Elimination. Tropical Medicine and Infectious Disease, 2023, 8, 201.	0.9	2
177	Differences in gene expression in field populations of Wolbachia-infected Aedes aegypti mosquitoes with varying release histories in northern Australia. PLoS Neglected Tropical Diseases, 2023, 17, e0011222.	1.3	3
178	The second local dengue fever outbreak: A field experience from Muscat Governorate in Oman, 2022. IJID Regions, 2023, , .	0.5	0
179	Spatial Distribution and Long-Term Persistence of Wolbachia-Infected Aedes aegypti in the Mentari Court, Malaysia. Insects, 2023, 14, 373.	1.0	2
181	Massive mosquito factory in Brazil aims to halt dengue. Nature, 2023, 616, 637-638.	13.7	3
182	Community perceptions on challenges and solutions to implement an Aedes aegypti control project in Ponce, Puerto Rico (USA). PLoS ONE, 2023, 18, e0284430.	1.1	0
183	Association of 410L, 1016I and 1534C kdr mutations with pyrethroid resistance in Aedes aegypti from Ouagadougou, Burkina Faso, and development of a one-step multiplex PCR method for the simultaneous detection of 1534C and 1016I kdr mutations. Parasites and Vectors, 2023, 16, .	1.0	1
191	Twenty-Seven Years of Field Studies on Dengue and Aedes aegypti in Latin America. , 2023, , 425-464.		0
210	The cellular lives of Wolbachia. Nature Reviews Microbiology, 2023, 21, 750-766.	13.6	8

#	Article	IF	CITATIONS
215	Susceptibility of Wolbachia mosquito control to temperature shifts. Nature Climate Change, 2023, 13, 767-768.	8.1	2
226	Flaviviruses: Dengue. , 2023, , 1-65.		Ο
232	Flaviviruses: Yellow Fever, Japanese B, West Nile, and Others. , 2023, , 1-62.		0
247	Measuring Host Fitness Effects and Transmission of Wolbachia Strains in Aedes aegypti Mosquitoes. Methods in Molecular Biology, 2024, , 189-203.	0.4	1
248	Procedures for the Detection of Wolbachia-Conferred Antiviral Protection in Drosophila melanogaster. Methods in Molecular Biology, 2024, , 219-237.	0.4	0
249	Wolbachia Transinfection Via Embryonic Microinjection. Methods in Molecular Biology, 2024, , 175-188.	0.4	1
250	Detection of Natural Wolbachia Strains in Anopheles Mosquitoes. Methods in Molecular Biology, 2024, , 205-218.	0.4	0