Probable airborne transmission of SARS-CoV-2 in a poo

Building and Environment 196, 107788

DOI: 10.1016/j.buildenv.2021.107788

Citation Report

#	Article	IF	CITATIONS
1	On airborne transmission and control of SARS-Cov-2. Science of the Total Environment, 2020, 731, 139178.	3.9	144
2	Quantitative microbial risk assessment of SARS-CoV-2 for workers in wastewater treatment plants. Science of the Total Environment, 2021, 754, 142163.	3.9	95
3	Personal respiratory protection and resiliency in a pandemic, the evolving disposable versus reusable debate and its effect on waste generation. Resources, Conservation and Recycling, 2021, 168, 105262.	5.3	20
4	The effect of a mobile HEPA filter system on â€~infectious' aerosols, sound and air velocity in the SenseLab. Building and Environment, 2021, 188, 107475.	3.0	46
5	Modelling uncertainty in the relative risk of exposure to the SARS-CoV-2 virus by airborne aerosol transmission in well mixed indoor air. Building and Environment, 2021, 191, 107617.	3.0	61
6	Transmissibility and transmission of respiratory viruses. Nature Reviews Microbiology, 2021, 19, 528-545.	13.6	446
8	Covid-19: What do we know about airborne transmission of SARS-CoV-2?. BMJ, The, 2021, 373, n1030.	3.0	17
9	Why cleaning the invisible in restaurants is important during COVID-19: A case study of indoor air quality of an open-kitchen restaurant. International Journal of Hospitality Management, 2021, 94, 102854.	5.3	38
11	Could thermodynamics and heat and mass transfer research produce a fundamental step advance toward and significant reduction of SARS-COV-2 spread?. International Journal of Heat and Mass Transfer, 2021, 170, 120983.	2.5	14
12	Air Ventilation Performance of School Classrooms with Respect to the Installation Positions of Return Duct. Sustainability, 2021, 13, 6188.	1.6	6
14	CFD Simulation of the Airborne Transmission of COVID-19 Vectors Emitted during Respiratory Mechanisms: Revisiting the Concept of Safe Distance. ACS Omega, 2021, 6, 16876-16889.	1.6	39
15	Australia must act to prevent airborne transmission of SARS oVâ€2. Medical Journal of Australia, 2021, 215, 7.	0.8	11
16	Probable aerosol transmission of SARSâ€CoVâ€⊋ in a poorly ventilated courtroom. Indoor Air, 2021, 31, 1776-1785.	2.0	31
17	Modeling the viral load dependence of residence times of virusâ€laden droplets from COVIDâ€19â€infected subjects in indoor environments. Indoor Air, 2021, 31, 1786-1797.	2.0	14
18	Operation of airâ€conditioning and sanitary equipment for SARSâ€CoVâ€2 infectious disease control. Japan Architectural Review, 2021, 4, 608-620.	0.4	10
19	Status: nosocomial transmission and prevention of SARS oVâ€⊋ in a Danish context. Apmis, 2021, 129, 340-351.	0.9	1
20	Effects of ceiling fans on airborne transmission in an air-conditioned space. Building and Environment, 2021, 198, 107887.	3.0	25
21	Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): What is the implication of hospital infection control?. Infection Control and Hospital Epidemiology, 2022, 43, 1522-1523.	1.0	16

#	Article	IF	CITATIONS
22	Modeling Aerial Transmission of Pathogens (Including the SARS-CoV-2 Virus) through Aerosol Emissions from E-Cigarettes. Applied Sciences (Switzerland), 2021, 11, 6355.	1.3	4
23	COVID-19 false dichotomies and a comprehensive review of the evidence regarding public health, COVID-19 symptomatology, SARS-CoV-2 transmission, mask wearing, and reinfection. BMC Infectious Diseases, 2021, 21, 710.	1.3	118
24	Dynamic assessment of the risk of airborne viral infection. Indoor Air, 2021, 31, 1759-1775.	2.0	12
26	Airborne transmission of respiratory viruses. Science, 2021, 373, .	6.0	693
27	Aerosol transmission of human pathogens: From miasmata to modern viral pandemics and their preservation potential in the Anthropocene record. Geoscience Frontiers, 2022, 13, 101282.	4.3	9
28	An opinion on the multiscale nature of Covid-19 type disease spread. Current Opinion in Colloid and Interface Science, 2021, 54, 101462.	3.4	7
29	Indoor Air Quality Evaluation Using Mechanical Ventilation and Portable Air Purifiers in an Academic Dentistry Clinic during the COVID-19 Pandemic in Greece. International Journal of Environmental Research and Public Health, 2021, 18, 8886.	1.2	19
30	Evidence for lack of transmission by close contact and surface touch in a restaurant outbreak of COVID-19. Journal of Infection, 2021, 83, 207-216.	1.7	60
31	A systematic approach to estimating the effectiveness of multi-scale IAQ strategies for reducing the risk of airborne infection of SARS-CoV-2. Building and Environment, 2021, 200, 107926.	3.0	79
32	Fluid dynamics of respiratory droplets in the context of COVID-19: Airborne and surfaceborne transmissions. Physics of Fluids, 2021, 33, 081302.	1.6	46
33	The Facility Infection Risk Estimatorâ, 4: A web application tool for comparing indoor risk mitigation strategies by estimating airborne transmission risk. Indoor and Built Environment, 2022, 31, 1339-1362.	1.5	10
34	Exposure of Ophthalmologists to Patients' Exhaled Droplets in Clinical Practice: A Numerical Simulation of SARS-CoV-2 Exposure Risk. Frontiers in Public Health, 2021, 9, 725648.	1.3	5
35	Effective ventilation and air disinfection system for reducing coronavirus disease 2019 (COVID-19) infection risk in office buildings. Sustainable Cities and Society, 2021, 75, 103408.	5.1	78
36	Quantitative modeling of the impact of facemasks and associated leakage on the airborne transmission of SARS-CoV-2. Scientific Reports, 2021, 11, 19403.	1.6	21
38	Exploring the feasibility of predicting contaminant transport using a stand-alone Markov chain solver based on measured airflow in enclosed environments. Building and Environment, 2021, 202, 108027.	3.0	5
40	Modeling the impacts of physical distancing and other exposure determinants on aerosol transmission. Journal of Occupational and Environmental Hygiene, 2021, 18, 495-509.	0.4	13
41	Aerosols should not be defined by distance travelled. Journal of Hospital Infection, 2021, 115, 131-132.	1.4	10
43	Prediction and control of aerosol transmission of SARS-CoV-2 in ventilated context: from source to receptor. Sustainable Cities and Society, 2022, 76, 103416.	5.1	39

#	ARTICLE	IF	Citations
44	COVID-19 and urban spaces: A new integrated CFD approach for public health opportunities. Building and Environment, 2021, 204, 108131.	3.0	36
45	Patterns of SARS-CoV-2 aerosol spread in typical classrooms. Building and Environment, 2021, 204, 108167.	3.0	30
46	Numerical study on the effect of diner divider on the airborne transmission of diseases in canteens. Energy and Buildings, 2021, 248, 111171.	3.1	33
47	Estimating the impact of indoor relative humidity on SARS-CoV-2 airborne transmission risk using a new modification of the Wells-Riley model. Building and Environment, 2021, 205, 108278.	3.0	44
48	Analysis of efficacy of intervention strategies for COVID-19 transmission: A case study of Hong Kong. Environment International, 2021, 156, 106723.	4.8	21
49	Aerosols from speaking can linger in the air for up to nine hours. Building and Environment, 2021, 205, 108239.	3.0	22
50	Optimal control of high-rise building mechanical ventilation system for achieving low risk of COVID-19 transmission and ventilative cooling. Sustainable Cities and Society, 2021, 74, 103256.	5.1	45
51	A critical review of heating, ventilation, and air conditioning (HVAC) systems within the context of a global SARS-CoV-2 epidemic. Chemical Engineering Research and Design, 2021, 155, 230-261.	2.7	46
52	Model-based assessment of the risks of viral transmission in non-confined crowds. Safety Science, 2021, 144, 105453.	2.6	17
53	Weakening personal protective behavior by Chinese university students after COVID-19 vaccination. Building and Environment, 2021, 206, 108367.	3.0	24
54	Multizonal modeling of SARS-CoV-2 aerosol dispersion in a virtual office building. Building and Environment, 2021, 206, 108347.	3.0	21
55	Survey of air exchange rates and evaluation of airborne infection risk of COVID-19 on commuter trains. Environment International, 2021, 157, 106774.	4.8	28
56	Extended short-range airborne transmission of respiratory infections. Journal of Hazardous Materials, 2022, 422, 126837.	6.5	25
57	OUP accepted manuscript. Clinical Infectious Diseases, 2021, , .	2.9	6
58	Fit Test for N95 Filtering Facepiece Respirators and KF94 Masks for Healthcare Workers: a Prospective Single-center Simulation Study. Journal of Korean Medical Science, 2021, 36, e140.	1.1	5
59	Environmental Surveillance and Transmission Risk Assessments for SARS-CoV-2 in a Fitness Center. Aerosol and Air Quality Research, 2021, 21, 210106.	0.9	11
61	The COVIDâ€19 pandemic is a global indoor air crisis that should lead to change: A message commemorating 30 years of Indoor Air. Indoor Air, 2021, 31, 1683-1686.	2.0	19
62	Virucidal efficacy of antimicrobial surface coatings against the enveloped bacteriophage \hat{l}_{l}^{\dagger} 6. Journal of Applied Microbiology, 2022, 132, 1813-1824.	1.4	14

#	Article	IF	CITATIONS
63	Multiple airflow patterns in human microenvironment and the influence on short-distance airborne cross-infection $\hat{a} \in A$ review. Indoor and Built Environment, 2022, 31, 1161-1175.	1.5	25
64	The Carbon Dioxide = Miasma Hypothesis. Japanese Journal of Health and Human Ecology, 2021, 87, 214-222.	0.0	0
65	A Quantitative Risk Estimation Platform for Indoor Aerosol Transmission of COVIDâ€19. Risk Analysis, 2022, 42, 2075-2088.	1.5	17
66	Insufficient ventilation led to a probable long-range airborne transmission of SARS-CoV-2 on two buses. Building and Environment, 2022, 207, 108414.	3.0	69
67	Evaluation of airborne particle exposure for riding elevators. Building and Environment, 2022, 207, 108543.	3.0	31
68	The Impact of Large Mobile Air Purifiers on Aerosol Concentration in Classrooms and the Reduction of Airborne Transmission of SARS-CoV-2. International Journal of Environmental Research and Public Health, 2021, 18, 11523.	1.2	29
69	Numerical modeling of cough airflow: Establishment of spatial–temporal experimental dataset and CFD simulation method. Building and Environment, 2022, 207, 108531.	3.0	8
70	Current Insights Into Respiratory Virus Transmission and Potential Implications for Infection Control Programs. Annals of Internal Medicine, 2021, 174, 1710-1718.	2.0	45
71	Environmental Surveillance for SARS-CoV-2 in Two Restaurants from a Mid-scale City that Followed U.S. CDC Reopening Guidance. Aerosol and Air Quality Research, 2022, 22, 210304.	0.9	3
72	A coupled Computational Fluid Dynamics and Wells-Riley model to predict COVID-19 infection probability for passengers on long-distance trains. Safety Science, 2022, 147, 105572.	2.6	41
73	Impact of natural ventilation on exposure to SARS-CoV 2 in indoor/semi-indoor terraces using CO2 concentrations as a proxy. Journal of Building Engineering, 2022, 46, 103725.	1.6	16
74	Modelling aerosol-based exposure to SARS-CoV-2 by an agent based Monte Carlo method: Risk estimates in a shop and bar. PLoS ONE, 2021, 16, e0260237.	1.1	9
75	Exposure risk analysis of COVID-19 for a ride-sharing motorbike taxi. Physics of Fluids, 2021, 33, 113319.	1.6	11
76	ArchABM: An agent-based simulator of human interaction with the built environment. CO2 and viral load analysis for indoor air quality. Building and Environment, 2022, 207, 108495.	3.0	14
77	Prevention of Airborne Transmission of SARS-CoV-2 by UV-C Illumination of Airflow. Covid, 2021, 1, 602-607.	0.7	4
78	Control of airborne infectious disease in buildings: Evidence and research priorities. Indoor Air, 2022, 32, .	2.0	14
79	Estimates of the stochasticity of droplet dispersion by a cough. Physics of Fluids, 2021, 33, 115130.	1.6	12
80	Characterization of the indoor far-field aerosol transmission in a model commercial office building. International Communications in Heat and Mass Transfer, 2022, 130, 105744.	2.9	0

#	Article	IF	CITATIONS
81	Characterization of the indoor near-field aerosol transmission in a model commercial office building. International Communications in Heat and Mass Transfer, 2021, 130, 105745.	2.9	2
82	What We Are Learning from COVID-19 for Respiratory Protection: Contemporary and Emerging Issues. Polymers, 2021, 13, 4165.	2.0	5
83	Why don't we just open the windows?. BMJ, The, 2021, 375, n2895.	3.0	13
84	Ergonomics-oriented operation, maintenance and control of indoor air environment for public buildings. Chinese Science Bulletin, 2022, 67, 1783-1795.	0.4	6
85	Demonstration of Hollow Fiber Membrane-Based Enclosed Space Air Remediation for Capture of an Aerosolized Synthetic SARS-CoV-2 Mimic and Pseudovirus Particles. ACS ES&T Engineering, 2022, 2, 251-262.	3.7	9
86	Computational fluid dynamics simulation of SARS-CoV-2 aerosol dispersion inside a grocery store. Building and Environment, 2022, 209, 108652.	3.0	16
87	A Eulerian-Lagrangian approach for the non-isothermal and transient CFD analysis of the aerosol airborne dispersion in a car cabin. Building and Environment, 2022, 209, 108648.	3.0	20
88	Predominant airborne transmission and insignificant fomite transmission of SARS-CoV-2 in a two-bus COVID-19 outbreak originating from the same pre-symptomatic index case. Journal of Hazardous Materials, 2022, 425, 128051.	6.5	30
89	A spatiotemporally resolved infection risk model for airborne transmission of COVID-19 variants in indoor spaces. Science of the Total Environment, 2022, 812, 152592.	3.9	29
90	Interrupting aerosol spread and nasal acquisition of SARS-CoV-2 with topical trichloroacetic acid. Italian Journal of Dermatology and Venereology, 2022, 156, 637-641.	0.1	0
92	New Insights into the Prevention of Hospital-Acquired Pneumonia/Ventilator-Associated Pneumonia Caused by Viruses. Seminars in Respiratory and Critical Care Medicine, 2022, , .	0.8	2
94	Evidence of Air and Surface Contamination with SARS-CoV-2 in a Major Hospital in Portugal. International Journal of Environmental Research and Public Health, 2022, 19, 525.	1.2	13
95	Hypothesis: All respiratory viruses (including SARSâ€CoVâ€2) are aerosolâ€transmitted. Indoor Air, 2022, 32, e12937.	2.0	12
96	Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks. Environmental Science & Environmental Science & 2022, 56, 1125-1137.	4.6	109
97	Severe acute respiratory syndrome coronavirus 2 can be detected in exhaled aerosol sampled during a few minutes of breathing or coughing. Influenza and Other Respiratory Viruses, 2022, 16, 402-410.	1.5	13
98	Energy Analysis of Control Measures for Reducing Aerosol Transmission of COVID-19 in the Tourism Sector of the "Costa Daurada―Spain. Energies, 2022, 15, 937.	1.6	0
99	Respiratory pandemic and indoor aeraulics of classrooms. Building and Environment, 2022, 212, 108756.	3.0	3
100	Effects of face masks and ventilation on the risk of SARS-CoV-2 respiratory transmission in public toilets: a quantitative microbial risk assessment. Journal of Water and Health, 2022, 20, 300-313.	1.1	5

#	Article	IF	CITATIONS
101	COVID-19: the case for aerosol transmission. Interface Focus, 2022, 12, 20210072.	1.5	45
102	Infection risk of SARS-CoV-2 in a dining setting: Deposited droplets and aerosols. Building and Environment, 2022, 213, 108888.	3.0	11
103	Ventilation Strategies for Mitigation of Infection Disease Transmission in an Indoor Environment: A Case Study in Office. Buildings, 2022, 12, 180.	1.4	24
104	Infection Prevention during the Coronavirus Disease 2019 Pandemic. Infectious Disease Clinics of North America, 2022, 36, 15-37.	1.9	14
105	High efficacy of layered controls for reducing exposure to airborne pathogens. Indoor Air, 2022, 32, e12989.	2.0	2
106	Analysis of Infection Transmission Routes through Exhaled Breath and Cough Particle Dispersion in a General Hospital. International Journal of Environmental Research and Public Health, 2022, 19, 2512.	1.2	6
107	å§æ°"环境对SARS-CoV-2伿'的影å"ç"究进展. Chinese Science Bulletin, 2022, , .	0.4	1
108	Reduction of exposure to simulated respiratory aerosols using ventilation, physical distancing, and universal masking. Indoor Air, 2022, 32, e12987.	2.0	7
109	Planes, Trains, and Automobiles: Use of Carbon Dioxide Monitoring to Assess Ventilation During Travel. Pathogens and Immunity, 2022, 7, 31-40.	1.4	4
110	Removal of Environmental Nanoparticles Increases Protein Synthesis and Energy Production in Healthy Humans. Frontiers in Bioengineering and Biotechnology, 2022, 10, 800011.	2.0	0
112	Air exchange rates and advection–diffusion of CO ₂ and aerosols in a route bus for evaluation of infection risk. Indoor Air, 2022, 32, e13019.	2.0	9
113	Exposure Risk to Medical Staff in a Nasopharyngeal Swab Sampling Cabin under Four Different Ventilation Strategies. Buildings, 2022, 12, 353.	1.4	3
114	Factors associated with coronavirus disease 2019 (COVID-19) among Thai healthcare personnel with high-risk exposures: The important roles of double masking and physical distancing while eating. Infection Control and Hospital Epidemiology, 2022, , 1-3.	1.0	1
115	Numerical study of when and who will get infected by coronavirus in passenger car. Environmental Science and Pollution Research, 2022, 29, 57232-57247.	2.7	5
116	Predicting the spatio-temporal infection risk in indoor spaces using an efficient airborne transmission model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, 20210383.	1.0	11
117	Confirmation of SARS-CoV-2 airborne dissemination indoors using "COVID-19 traps― Journal of Infection, 2022, 84, 343-350.	1.7	4
118	Beyond wellâ€mixed: A simple probabilistic model of airborne disease transmission in indoor spaces. Indoor Air, 2022, 32, e13015.	2.0	5
119	COVID-19 aerosol transmission modeling in support of company HVAC guideline. Journal of Occupational and Environmental Hygiene, 2022, , 1-11.	0.4	1

#	Article	IF	CITATIONS
122	Optimization of energy efficiency and COVID-19 pandemic control in different indoor environments. Energy and Buildings, 2022, 261, 111954.	3.1	26
123	Visualization of the infection risk assessment of SARS-CoV-2 through aerosol and surface transmission in a negative-pressure ward. Environment International, 2022, 162, 107153.	4.8	18
124	A multi-zone spatial flow impact factor model for evaluating and layout optimization of infection risk in a Fangcang shelter hospital. Building and Environment, 2022, 214, 108931.	3.0	7
125	Effectiveness of Interventions for Controlling COVID-19 Transmission between Construction Workers and Their Close Contacts. Journal of Management in Engineering - ASCE, 2022, 38, .	2.6	5
126	Outbreak investigation of airborne transmission of Omicron (B.1.1.529) - SARS-CoV-2 variant of concern in a restaurant: Implication for enhancement of indoor air dilution. Journal of Hazardous Materials, 2022, 430, 128504.	6.5	22
127	A real-time web tool for monitoring and mitigating indoor airborne COVID-19 transmission risks at city scale. Sustainable Cities and Society, 2022, 80, 103810.	5.1	9
128	Real-time Monitoring of Aerosol Generating Dental Procedures. Journal of Dentistry, 2022, 120, 104092.	1.7	14
129	TU Delft COVID-app: A tool to democratize CFD simulations for SARS-CoV-2 infection risk analysis. Science of the Total Environment, 2022, 826, 154143.	3.9	12
130	Uncertainty analysis of facemasks in mitigating SARS-CoV-2 transmission. Environmental Pollution, 2022, 303, 119167.	3.7	11
131	A new PM2.5-based PM-up method to measure non-mechanical ventilation rate in buildings. Journal of Building Engineering, 2022, 52, 104351.	1.6	2
132	COVID-19 Vaccination Did Not Change the Personal Protective Behaviors of Healthcare Workers in China. Frontiers in Public Health, 2021, 9, 777426.	1.3	14
133	Efficacy of Ventilation, HEPA Air Cleaners, Universal Masking, and Physical Distancing for Reducing Exposure to Simulated Exhaled Aerosols in a Meeting Room. Viruses, 2021, 13, 2536.	1.5	19
134	SARS-CoV-2 Aerosol Transmission Indoors: A Closer Look at Viral Load, Infectivity, the Effectiveness of Preventive Measures and a Simple Approach for Practical Recommendations. International Journal of Environmental Research and Public Health, 2022, 19, 220.	1.2	26
135	Impact of the first superspreading outbreak of COVID-19 related to a nightlife establishment in Andalusia, Spain. Journal of Healthcare Quality Research, 2021, , .	0.2	0
136	The effect of head orientation and personalized ventilation on bioaerosol deposition from a cough. Indoor Air, 2022, 32, .	2.0	3
139	Indoor aerosol science aspects of SARSâ€CoVâ€2 transmission. Indoor Air, 2022, 32, .	2.0	36
140	Impact of COVID-19 on food outlets: symmetric or asymmetric? A case study of Amritsar. Journal of Hospitality and Tourism Insights, 2023, 6, 305-323.	2.2	2
141	Assessing impact of ventilation on airborne transmission of SARS-CoV-2: a cross-sectional analysis of naturally ventilated healthcare settings in Bangladesh. BMJ Open, 2022, 12, e055206.	0.8	6

#	Article	IF	CITATIONS
142	Heat recovery in ventilation systems in different climates: energy and economic comparison in old and new schools in COVID-19 pandemic conditions. Science and Technology for the Built Environment, 2022, 28, 864-885.	0.8	0
143	Experimental study on the exposure level of surgical staff to SARS-CoV-2 in operating rooms with mixing ventilation under negative pressure. Building and Environment, 2022, 217, 109091.	3.0	5
144	Effects of internal airflow on IAQ and cross-infection of infectious diseases between students in classrooms. Atmospheric Environment, 2022, 279, 119112.	1.9	2
145	Aerosol Transmission of SARS-CoV-2 in Two Dormitories — Hubei and Shandong Provinces, China, 2020. China CDC Weekly, 2022, 4, 298-301.	1.0	2
147	Airflow Patterns in Double-Occupancy Patient Rooms May Contribute to Roommate-to-Roommate Transmission of Severe Acute Respiratory Syndrome Coronavirus 2. Clinical Infectious Diseases, 2022, 75, 2128-2134.	2.9	8
148	Predicting the infection probability distribution of airborne and droplet transmissions. Indoor and Built Environment, 2023, 32, 1900-1913.	1.5	3
149	Elucidating the role of environmental management of forests, air quality, solid waste and wastewater on the dissemination of SARS-CoV-2., 2022, 3, 100006.		4
150	Estimating Spatiotemporal Contacts Between Individuals in Underground Shopping Streets Based on Multi-Agent Simulation. Frontiers in Physics, 2022, 10, .	1.0	1
151	Exposure and respiratory infection risk via the short-range airborne route. Building and Environment, 2022, 219, 109166.	3.0	13
152	Probable cross-corridor transmission of SARS-CoV-2 due to cross airflows and its control. Building and Environment, 2022, 218, 109137.	3.0	11
153	Ventilation strategies and design impacts on indoor airborne transmission: A review. Building and Environment, 2022, 218, 109158.	3.0	34
154	Enhancement effect of human movement on the high risk range of viral aerosols exhaled by a sitting person. Building and Environment, 2022, 218, 109136.	3.0	11
155	In-duct grating-like dielectric barrier discharge system for air disinfection. Journal of Hazardous Materials, 2022, 435, 129075.	6.5	15
156	Evaluation of SARS-CoV-2 transmission in COVID-19 isolation wards: On-site sampling and numerical analysis. Journal of Hazardous Materials, 2022, 436, 129152.	6.5	20
157	Temporal and spatial far-ultraviolet disinfection of exhaled bioaerosols in a mechanically ventilated space. Journal of Hazardous Materials, 2022, 436, 129241.	6.5	13
158	Role of pathogen-laden expiratory droplet dispersion and natural ventilation explaining a COVID-19 outbreak in a coach bus. Building and Environment, 2022, 220, 109160.	3.0	26
159	Understanding lifetime and dispersion of cough-emitted droplets in air. Indoor and Built Environment, 2023, 32, 1929-1948.	1.5	6
160	Simulating COVID-19 classroom transmission on a university campus. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6

#	ARTICLE	IF	Citations
161	Close contact behavior-based COVID-19 transmission and interventions in a subway system. Journal of Hazardous Materials, 2022, 436, 129233.	6.5	14
162	Air Quality in Dental Care Facilities: Update to Current Management and Control Strategies Implementing New Technologies: A Comprehensive Review. Vaccines, 2022, 10, 847.	2.1	1
163	Indoor transmission of airborne viral aerosol with a simplistic reaction-diffusion model. European Physical Journal: Special Topics, 2022, 231, 3591-3601.	1.2	5
164	Numerical Flow Simulation on the Virus Spread of SARS-CoV-2 Due to Airborne Transmission in a Classroom. International Journal of Environmental Research and Public Health, 2022, 19, 6279.	1.2	2
165	Monitoring CO ₂ concentration to control the infection probability due to airborne transmission in naturally ventilated university classrooms. Architectural Science Review, 0, , 1-13.	1.1	12
166	Aerosol emission from playing wind instruments and related COVID-19 infection risk during music performance. Scientific Reports, 2022, 12, .	1.6	7
167	Analysis of overdispersion in airborne transmission of COVID-19. Physics of Fluids, 2022, 34, .	1.6	4
168	Aerodynamic Prediction of Time Duration to Becoming Infected with Coronavirus in a Public Place. Fluids, 2022, 7, 176.	0.8	3
169	The Covid19 Pandemic: Virus Transmission and Risk Assessment. Current Opinion in Environmental Science and Health, 2022, , 100373.	2.1	6
170	How Safe is Singing Under Pandemic Conditions? - CO <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> -Measurements as Simple Method for Risk Estimation During Choir Rehearsals, Journal of Voice, 2022	0.6	3
171	Efficacy of the PlasmaShield \hat{A}^{\otimes} , a Non-Thermal, Plasma-Based Air Purification Device, in Removing Airborne Microorganisms. Electrochem, 2022, 3, 276-284.	1.7	1
172	Spatial variations of the third and fourth COVID-19 waves in Hong Kong: A comparative study using built environment and socio-demographic characteristics. Environment and Planning B: Urban Analytics and City Science, 2023, 50, 1144-1160.	1.0	2
173	A novel CO2-based demand-controlled ventilation strategy to limit the spread of COVID-19 in the indoor environment. Building and Environment, 2022, 219, 109232.	3.0	23
174	Airborne transmission of the Delta variant of SARS-CoV-2 in an auditorium. Building and Environment, 2022, 219, 109212.	3.0	7
175	Explosive outbreak of SARS-CoV-2 Omicron variant is associated with vertical transmission in high-rise residential buildings in Hong Kong. Building and Environment, 2022, 221, 109323.	3.0	13
176	Definition of an Indoor Air Sampling Strategy for SARS-CoV-2 Detection and Risk Management: Case Study in Kindergartens. International Journal of Environmental Research and Public Health, 2022, 19, 7406.	1.2	2
177	Airborne transmission of COVIDâ€19 virus in enclosed spaces: An overview of research methods. Indoor Air, 2022, 32, .	2.0	57
178	A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. Environmental Research, 2022, 213, 113579.	3.7	37

#	Article	IF	CITATIONS
179	Indoor air pollution, occupant health, and building system controls—a COVID-19 perspective. , 2022, , 291-306.		1
180	Long distance airborne transmission of SARS-CoV-2: rapid systematic review. BMJ, The, 0, , e068743.	3.0	48
181	Finding the infectious dose for COVID-19 by applying an airborne-transmission model to superspreader events. PLoS ONE, 2022, 17, e0265816.	1.1	24
182	Air dispersal of respiratory viruses other than severe acute respiratory coronavirus virus 2 (SARS-CoV-2) and the implication on hospital infection control. Infection Control and Hospital Epidemiology, 2023, 44, 768-773.	1.0	5
183	Modeling the impact of indoor relative humidity on the infection risk of five respiratory airborne viruses. Scientific Reports, 2022, 12 , .	1.6	9
184	SARS-CoV-2 Surveillance in Indoor Air Using Electrochemical Sensor for Continuous Monitoring and Real-Time Alerts. Biosensors, 2022, 12, 523.	2.3	2
185	COVID-19 Outbreak at Sports Club: Conditions of Occurrence and Causes of the Spread of Infection. Epidemiologiya I Vaktsinoprofilaktika, 2022, 21, 63-71.	0.2	0
186	Prevention of SARS-CoV-2 and respiratory viral infections in healthcare settings: current and emerging concepts. Current Opinion in Infectious Diseases, 2022, 35, 353-362.	1.3	10
188	Privacy-Preserving Presence Tracing for Pandemics Via Machine-to-Machine Exposure Notifications. , 2022, , .		1
189	Characteristics of COVID-19 outbreaks and risk factors for transmission at an army training center in South Korea from June to August 2021. Osong Public Health and Research Perspectives, 2022, 13, 263-272.	0.7	2
190	SARS-CoV-2 Delta AY.1 Variant Cluster in an Accommodation Facility for COVID-19: Cluster Report. International Journal of Environmental Research and Public Health, 2022, 19, 9270.	1.2	0
191	How Spatial Epidemiology Helps Understand Infectious Human Disease Transmission. Tropical Medicine and Infectious Disease, 2022, 7, 164.	0.9	7
192	Reducing the risk of viral contamination during the coronavirus pandemic by using a protective curtain in the operating room. Patient Safety in Surgery, 2022, 16, .	1.1	0
193	Infection risk in cable cars and other enclosed spaces. Indoor Air, 2022, 32, .	2.0	3
194	Airborne Transmission and Control of Influenza and Other Respiratory Pathogens. Infectious Diseases, 0, , .	4.0	1
195	Airborne transmission of exhaled pollutants during short-term events: Quantitatively assessing inhalation monitor points. Building and Environment, 2022, 223, 109487.	3.0	6
196	The impact of inspection policies on reducing disease prevalence in public buildings: A systems dynamics approach. Building and Environment, 2022, 223, 109398.	3.0	0
197	Experimental measurement of bioaerosol concentrations and containment in long-term care environments. Building and Environment, 2022, 223, 109415.	3.0	2

#	Article	IF	CITATIONS
198	Ventilation reconstruction in bathrooms for restraining hazardous plume: Mitigate COVID-19 and beyond. Journal of Hazardous Materials, 2022, 439, 129697.	6.5	10
199	Real-Time Learning and Monitoring System in Fighting against SARS-CoV-2 in a Private Indoor Environment. Sensors, 2022, 22, 7001.	2.1	5
200	Experimental Methods of Investigating Airborne Indoor Virus-Transmissions Adapted to Several Ventilation Measures. International Journal of Environmental Research and Public Health, 2022, 19, 11300.	1.2	5
201	Evaluation of UVC Excimer Lamp (222 nm) Efficacy for Coronavirus Inactivation in an Animal Model. Viruses, 2022, 14, 2038.	1.5	1
202	Ceiling impact on air disinfection performance of Upper-Room Germicidal Ultraviolet (UR-GUV). Building and Environment, 2022, 224, 109530.	3.0	5
203	Airborne infection risk of inter-unit dispersion through semi-shaded openings: A case study of a multi-storey building with external louvers. Building and Environment, 2022, 225, 109586.	3.0	6
204	Molecular detection of SARS-COV-2 in exhaled breath at the point-of-need. Biosensors and Bioelectronics, 2022, 217, 114663.	5.3	12
205	Zonal modeling of air distribution impact on the long-range airborne transmission risk of SARS-CoV-2. Applied Mathematical Modelling, 2022, 112, 800-821.	2.2	8
206	The effects of room length on jet momentum flux. E3S Web of Conferences, 2022, 356, 01001.	0.2	0
207	Numerical simulation study on heat transfer characteristics and parameter optimization of solar phase change energy storage fresh air preheating system. E3S Web of Conferences, 2022, 356, 01046.	0.2	0
208	Investigation on the Contaminant Distribution with Dedicated Outdoor Air System in Restaurant. E3S Web of Conferences, 2022, 356, 05045.	0.2	0
209	Experimental study on multi-robot 3D source localization in indoor environments with weak airflow. E3S Web of Conferences, 2022, 356, 04008.	0.2	0
210	Antibody-mediated immunity to SARS-CoV-2 spike. Advances in Immunology, 2022, , 1-69.	1.1	12
211	Study on acquired infection of patients in waiting space of fever clinic. E3S Web of Conferences, 2022, 356, 05013.	0.2	0
212	Theoretical basis and method of airflow organization design in enclosed or semi-enclosed space. Chinese Science Bulletin, 2023, 68, 671-683.	0.4	3
213	Probable close contact transmission in a restaurant in China. Journal of Infection, 2022, 85, 573-607.	1.7	2
214	Combining and comparing regional SARS-CoV-2 epidemic dynamics in Italy: Bayesian meta-analysis of compartmental models and global sensitivity analysis. Frontiers in Public Health, 0, 10, .	1.3	0
215	The Influence of Plastic Barriers on Aerosol Infection Risk during Airport Security Checks. Sustainability, 2022, 14, 11281.	1.6	1

#	Article	IF	CITATIONS
216	Performance of Textile Mask Materials in Varied Humidity: Filtration Efficiency, Breathability, and Quality Factor. Applied Sciences (Switzerland), 2022, 12, 9360.	1.3	3
217	A Review of Sustainable Design Strategies for Infection Prevention and Control (IPC) in Public Buildings. IOP Conference Series: Earth and Environmental Science, 2022, 1054, 012015.	0.2	2
218	Relationships between building attributes and COVID-19 infection in London. Building and Environment, 2022, 225, 109581.	3.0	5
219	Multiâ€person movementâ€induced airflow and the effects on virusâ€laden expiratory droplet dispersion in indoor environments. Indoor Air, 2022, 32, .	2.0	6
221	Nationwide evaluation of energy and indoor air quality predictive control and impact on infection risk for cooling season. Building Simulation, 2023, 16, 205-223.	3.0	6
222	Risk assessment for long- and short-range airborne transmission of SARS-CoV-2, indoors and outdoors. , 2022, 1 , .		7
223	Structured reflection increases intentions to reduce other people's health risks during COVID-19. , 2022, 1, .		0
224	Quantification of how mechanical ventilation influences the airborne infection risk of COVID-19 and HVAC energy consumption in office buildings. Building Simulation, 2023, 16, 713-732.	3.0	4
225	Evaluation of aerosol transmission risk during home quarantine under different operating scenarios: A pilot study. Building and Environment, 2022, 225, 109640.	3.0	4
226	Ventilation improvement and evaluation of its effectiveness in a Japanese manufacturing factory. Scientific Reports, 2022, 12, .	1.6	4
228	Infectiousness of places $\hat{a} \in \text{``Impact}$ of multiscale human activity places in the transmission of COVID-19. Npj Urban Sustainability, 2022, 2, .	3.7	2
229	Optimal position of air purifiers in elevator cabins for the improvement of their ventilation effectiveness. Journal of Building Engineering, 2023, 63, 105466.	1.6	3
230	Characteristics of collection and inactivation of virus in air flowing inside a winding conduit equipped with 280Ânm deep UV-LEDs. Environment International, 2022, 170, 107580.	4.8	4
231	Individual heterogeneity and airborne infection: Effect of non-uniform air distribution. Building and Environment, 2022, 226, 109674.	3.0	1
232	Large-scale evaluation of microorganism inactivation by bipolar ionization and photocatalytic devices. Building and Environment, 2023, 227, 109804.	3.0	6
234	Ultrafast inactivation of SARS-CoV-2 with 266Ânm lasers. Scientific Reports, 2022, 12, .	1.6	0
235	Performance Optimization of Natural Ventilation in Classrooms to Minimize the Probability of Viral Infection and Reduce Draught Risk. Sustainability, 2022, 14, 14966.	1.6	3
236	Nonnegligible pathogenic exposure risk of coarse part of PM10 in non-open environments. Frontiers in Environmental Science, $0,10,10$	1.5	0

#	Article	IF	CITATIONS
237	Masks, ventilation and exposure time: A web-based calculator of indoor COVID-19 infection risk. Frontiers in Built Environment, $0, 8, .$	1.2	1
238	Probable Aerosol Transmission of SARS-CoV-2 through Floors and Walls of Quarantine Hotel, Taiwan, 2021. Emerging Infectious Diseases, 2022, 28, .	2.0	5
239	Analysis of two choir outbreaks acting in concert to characterize long-range transmission risks through SARS-CoV-2, Berlin, Germany, 2020. PLoS ONE, 2022, 17, e0277699.	1.1	7
240	Experimental investigation on the purification performance of particle and planktonic bacteria in the human body micro-environment using low-temperature plasma. Journal of Cleaner Production, 2023, 384, 135577.	4.6	2
241	Numerical comparison of exhaled particle dispersion under different air distributions for winter heating. Sustainable Cities and Society, 2023, 89, 104342.	5.1	7
242	A review on indoor airborne transmission of COVID-19– modelling and mitigation approaches. Journal of Building Engineering, 2023, 64, 105599.	1.6	9
243	Simulations for Indoor Air Quality Control Planning. , 2022, , 1815-1853.		0
244	Biological Threats. Advanced Sciences and Technologies for Security Applications, 2022, , 47-78.	0.4	0
245	Pilot Evaluation of Possible Airborne Transmission in a Geriatric Care Facility Using Carbon Dioxide Tracer Gas: Case Study. JMIR Formative Research, 2022, 6, e37587.	0.7	2
246	Combining Phi6 as a surrogate virus and computational largeâ€eddy simulations to study airborne transmission of SARS oVâ€⊋ in a restaurant. Indoor Air, 2022, 32, .	2.0	10
247	AtmosozialitÃĦ Ökologien des Atmens nach COVID-19. Soziale Systeme: Zeitschrift FÜr Soziologische Theorie, 2022, 25, 354-376.	0.1	0
248	Measurement and rapid assessment of indoor air quality at mass gathering events to assess ventilation performance and reduce aerosol transmission of SARS-CoV-2. Building Services Engineering Research and Technology, 2023, 44, 113-133.	0.9	5
249	Predominance of inhalation route in short-range transmission of respiratory viruses: Investigation based on computational fluid dynamics. Building Simulation, 2023, 16, 765-780.	3.0	3
250	SARS-CoV-2 Aerosol and Surface Detections in COVID-19 Testing Centers and Implications for Transmission Risk in Public Facing Workers. International Journal of Environmental Research and Public Health, 2023, 20, 976.	1.2	1
251	Environmental Dissemination of SARS-CoV-2 in a University Hospital during the COVID-19 5th Wave Delta Variant Peak in Castile-León, Spain. International Journal of Environmental Research and Public Health, 2023, 20, 1574.	1.2	1
252	Research on the relationship between architectural features in northeast China and vertical aerosol transmission of COVID-19. Frontiers in Public Health, 0, 10 , .	1.3	1
253	Unanswered questions on the airborne transmission of COVID-19. Environmental Chemistry Letters, 2023, 21, 725-739.	8.3	5
254	Multizone Modeling of Airborne SARS-CoV-2 Quanta Transmission and Infection Mitigation Strategies in Office, Hotel, Retail, and School Buildings. Buildings, 2023, 13, 102.	1.4	3

#	Article	IF	CITATIONS
255	Fast Air-to-Liquid Sampler Detects Surges in SARS-CoV-2 Aerosol Levels in Hospital Rooms. International Journal of Environmental Research and Public Health, 2023, 20, 576.	1.2	1
256	Transmission of SARS-CoV-2 in the workplace: Key findings from a rapid review of the literature. Aerosol Science and Technology, 2023, 57, 233-254.	1.5	2
257	On the Performance of Diffuse Ceiling Ventilation in Classrooms: A Pre-Occupancy Study at a School in Southern Sweden. Sustainability, 2023, 15, 2546.	1.6	1
258	Risk categorization and outcomes among healthcare workers exposed to COVID-19: A cohort study from a Thai tertiary-care center. Journal of Microbiology, Immunology and Infection, 2023, 56, 537-546.	1.5	1
259	Fate of Exhaled Droplets From Breathing and Coughing in Supermarket Checkouts and Passenger Cars. Environmental Health Insights, 2023, 17, 117863022211482.	0.6	2
260	A systematic review on impact of SARS-CoV-2 infection. Microbiological Research, 2023, 271, 127364.	2.5	1
261	CFD modelling of infection control in indoor environments: A focus on room-level air recirculation systems. Energy and Buildings, 2023, 288, 113033.	3.1	6
262	Assessment of environmental surface contamination with SARS-CoV-2 in concert halls and banquet rooms in Japan. Journal of Infection and Chemotherapy, 2023, 29, 604-609.	0.8	3
263	PANDEMIC: Occupancy driven predictive ventilation control to minimize energy consumption and infection risk. Applied Energy, 2023, 334, 120676.	5.1	11
264	Effect of ceiling fan in mitigating exposure to airborne pathogens and COVID-19. Indoor and Built Environment, 2023, 32, 1973-1999.	1.5	3
265	Modeling for understanding of coronavirus disease-2019 (COVID-19) spread and design of an isolation room in a hospital. Physics of Fluids, 2023, 35, 025111.	1.6	1
266	Effect of a barrier on spatial distribution of respiratory particles in a room. Aerosol Science and Technology, 2023, 57, 384-405.	1.5	1
267	Mechanisms controlling the transport and evaporation of human exhaled respiratory droplets containing the severe acute respiratory syndromeÂcoronavirus: a review. Environmental Chemistry Letters, 2023, 21, 1701-1727.	8.3	3
268	Airborne infection risk in classrooms based on environment and occupant behavior measurement under COVID-19 epidemic. Building Research and Information, 2023, 51, 701-716.	2.0	1
269	Indoor air surveillance and factors associated with respiratory pathogen detection in community settings in Belgium. Nature Communications, 2023, 14, .	5.8	12
270	Evaluation of Optimal Mechanical Ventilation Strategies for Schools for Reducing Risks of Airborne Viral Infection. Buildings, 2023, 13, 871.	1.4	2
271	Informing Building Strategies to Reduce Infectious Aerosol Transmission Risk by Integrating DNA Aerosol Tracers with Quantitative Microbial Risk Assessment. Environmental Science & Eamp; Technology, 2023, 57, 5771-5781.	4.6	2
272	接å¾ã,'ä¼´ã†é£²é£Ÿåº—ã«ãŠã⁵ã,‹å®å†ç'°å¢fãïæ"ŸæŸ"症対ç—ï¼^ãã®ï¼"):建築è¨å,™ã®æ	,è ůš ã³ã,	³ãf∄fŠç¦ã«

#	ARTICLE	IF	CITATIONS
273	COVID-19: Natural History andÂSpectrum of Disease. , 2024, , 72-98.		0
274	Influence of office furniture on exposure risk to respiratory infection under mixing and displacement air distribution systems. Building and Environment, 2023, 239, 110292.	3.0	4
275	A Novel IoT-Enabled Wireless Sensor Grid for Spatial and Temporal Evaluation of Tracer Gas Dispersion. Sensors, 2023, 23, 3920.	2.1	2
276	Exhaled aerosols among PCR-confirmed SARS-CoV-2-infected children. Frontiers in Pediatrics, $0,11,.$	0.9	0
298	Bioaerosol Transport inÂOccupied Environments. , 2023, , 123-161.		0
320	A Quantitative Framework for Numerically Estimating the COVID19 Infection Risk in a Crowded Indoor Environment. Environmental Science and Engineering, 2023, , 2157-2167.	0.1	0
321	Application of a Coupled CFD-Multizone Code on Ventilation and Filtration Analysis for Covid-19 Airborne Infection Control in a Small Office. Environmental Science and Engineering, 2023, , 2147-2155.	0.1	0
322	Risk Assessment and Mitigation of Airborne SARS-CoV-2 Transmissions in Selected Commercial Buildings. Environmental Science and Engineering, 2023, , 1761-1765.	0.1	0
330	On-site airborne pathogen detection for infection risk mitigation. Chemical Society Reviews, 2023, 52, 8531-8579.	18.7	1
356	Disease Spread Control in Cruise Ships: Monitoring, Simulation, and Decision Making. , 2024, , 93-141.		0
360	The Impact of Covid-19 on Refugees in the Hosting Country Case Study – Jordan. Lecture Notes in Networks and Systems, 2024, , 515-533.	0.5	0
363	A multiscale model to investigate the impact of the ventilation airflow type on the risk to contract COVID-19 in a closed environment. AIP Conference Proceedings, 2024, , .	0.3	O