Discovering hidden spatial patterns and their association potentially toxic elements in topsoil using hot spot analysis

Environment International 151, 106456 DOI: 10.1016/j.envint.2021.106456

Citation Report

#	Article	IF	CITATIONS
1	Effects of industrial agglomeration and environmental regulation on urban ecological efficiency: evidence from 269 cities in China. Environmental Science and Pollution Research, 2021, 28, 66389-66408.	5.3	27
2	Compositional and source patterns of potentially toxic elements (PTEs) in soils in southwestern Ghana using robust compositional contamination index (RCCI) and k-means cluster analysis. Environmental Challenges, 2021, 5, 100248.	4.2	13
3	Antimony, beryllium, cobalt, and vanadium in urban park soils in Beijing: Machine learning-based source identification and health risk-based soil environmental criteria. Environmental Pollution, 2022, 293, 118554.	7.5	26
4	A new risk zoning method for water inrush from separated layers at coal mines: a case study, Cuimu coal mine, China. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	1
5	Exploration of the spatially varying relationships between lead and aluminium concentrations in the topsoil of northern half of Ireland using Geographically Weighted Pearson Correlation Coefficient. Geoderma, 2022, 409, 115640.	5.1	12
6	Development and applications of GIS-based spatial analysis in environmental geochemistry in the big data era. Environmental Geochemistry and Health, 2023, 45, 1079-1090.	3.4	10
7	Soils of the Ribeira Valley (Brazil) as Environmental Protection Barriers: Characterization and Adsorption of Lead and Cadmium. Sustainability, 2022, 14, 5135.	3.2	1
8	Risk assessment and driving factors of trace metal(loid)s in soils of China. Environmental Pollution, 2022, 309, 119772.	7.5	13
9	Using a Sensitivity Analysis and Spatial Clustering to Determine Vulnerability to Potentially Toxic Elements in a Semiarid City in Northwest Mexico. Sustainability, 2022, 14, 10461.	3.2	4
10	Biogeochemical prospecting for gold at the Yellowknife City Gold Project, Northwest Territories, Canada: Part 1 - Species optimization. Applied Geochemistry, 2022, 145, 105423.	3.0	3
11	Understanding the distribution, source-pattern and geochemical controls of soils in an artisanal mine site during a ban on illegal mining activities: Is a ban an absolute solution?. Soil Security, 2022, 9, 100078.	2.3	1
12	An overview of plutonium isotopes in soils, China: Distribution, spatial patterns, and sources. Environmental Research, 2022, , 114677.	7.5	1
13	Habitat quality dynamics in China's first group of national parks in recent four decades: Evidence from land use and land cover changes. Journal of Environmental Management, 2023, 325, 116505.	7.8	27
14	Comparative analysis of nitrate evolution patterns during pollution episodes: Method development and results from Tianjin, China. Science of the Total Environment, 2023, 857, 159436.	8.0	1
15	Spatio-temporal characteristics of soil Cd pollution and its influencing factors: A Geographically and temporally weighted regression (GTWR) method. Journal of Hazardous Materials, 2023, 446, 130613.	12.4	19
16	Spatiotemporal characteristics and influencing factors of the coupling coordinated development of production-living-ecology system in China. Ecological Indicators, 2022, 145, 109738.	6.3	9
17	Identification of soil parent materials in naturally high background areas based on machine learning. Science of the Total Environment, 2023, 875, 162684.	8.0	4
18	Spatial prediction of soil contamination based on machine learning: a review. Frontiers of Environmental Science and Engineering, 2023, 17, .	6.0	3

	CHATION	KLPOKI	
#	Article	IF	CITATIONS
19	Identification of the spatial patterns and controlling factors of Se in soil and rice in Guangxi through hot spot analysis. Environmental Geochemistry and Health, 2023, 45, 4477-4492.	3.4	2
20	Detecting Urban Commercial Districts by Fusing Points of Interest and Population Heat Data with Region-Growing Algorithms. ISPRS International Journal of Geo-Information, 2023, 12, 96.	2.9	1
21	Identification of possible sources for potentially toxic elements and polycyclic aromatic hydrocarbons and their spatially varying relationships in urban soils of Dublin, Ireland. Environmental Pollution, 2023, 333, 122034.	7.5	2
22	China's National Park Construction Contributes to Carbon Peaking and Neutrality Goals. Land, 2023, 12, 1402.	2.9	0
23	An integrated overview of metals contamination, source-specific risks investigation in coal mining vicinity soils. Environmental Geochemistry and Health, 2023, 45, 7425-7458.	3.4	0
24	Optimising Urban Freight Logistics Using Discrete-Event Simulation and Cluster Analysis: A Stochastic Two-Tier Hub-and-Spoke Architecture Approach. Smart Cities, 2023, 6, 2347-2366.	9.4	0
25	Applying machine learning to model radon using topsoil geochemistry. Applied Geochemistry, 2023, 158, 105790.	3.0	0
26	Cadmium accumulation in paddy soils affected by geological weathering and mining: Spatial distribution patterns, bioaccumulation prediction, and safe land usage. Journal of Hazardous Materials, 2023, 460, 132483.	12.4	1
27	Source-sink response analysis of heavy metals and soil pollution assessment in non-ferrous metal industrial agglomeration areas based on decision unit. Science of the Total Environment, 2024, 906, 167437.	8.0	2
28	Spatiotemporal evolution and trend prediction of regional water–energy–food–ecology system vulnerability: a case study of the Yangtze River Economic Belt, China. Environmental Geochemistry and Health, 2023, 45, 9621-9638.	3.4	1
29	Spatiotemporal characteristics of air pollutants and their associated health risks in â€~2+26' cities in China during 2016-2020 heating seasons. Environmental Monitoring and Assessment, 2023, 195, .	2.7	0
30	Mapping the Mine: Combining Portable X-ray Fluorescence, Spectroradiometry, UAV, and Sentinel-2 Images to Identify Contaminated Soils—Application to the Mostardeira Mine (Portugal). Remote Sensing, 2023, 15, 5295.	4.0	0
31	Heavy Metal(Loid)s Contamination of Groundwater in Khyber District, Pakistan: Spatial Dependence, Source Apportionment, and Human Exposure. Environmental Forensics, 0, , 1-15.	2.6	0
32	A new model based on coupling coordination analysis incorporates the development rate for urbanization and ecosystem services assessment: A case of the Yangtze River Delta. Ecological Indicators, 2024, 159, 111596.	6.3	1
33	The Process of Patchy Expansion for Bamboo (Phyllostachys edulis) at the Bamboo–Broadleaf Forest Interface: Spreading and Filling in Order. Forests, 2024, 15, 438.	2.1	0
34	The Application of Local Moran's I and Getis–Ord Gi* to Identify Spatial Patterns and Critical Source Areas of Agricultural Nonpoint Source Pollution. Journal of Environmental Engineering, ASCE, 2024, 150, .	1.4	0
35	Intricate synergistic effects between air pollution and carbon emission: An emerging evidence from China. Environmental Pollution, 2024, 349, 123851.	7.5	0
36	A Review of Machine Learning Techniques in Agroclimatic Studies. Agriculture (Switzerland), 2024, 14, 481.	3.1	ο