Comparing infectivity and virulence of emerging SARS-

EBioMedicine 68, 103403 DOI: 10.1016/j.ebiom.2021.103403

Citation Report

#	Article	IF	CITATIONS
1	Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clinical Hematology International, 2021, 3, 47.	1.7	4
5	CVnCoV and CV2CoV protect human ACE2 transgenic mice from ancestral B BavPat1 and emerging B.1.351 SARS-CoV-2. Nature Communications, 2021, 12, 4048.	12.8	45
7	SARS oVâ€2 B.1.617 Indian variants: Are electrostatic potential changes responsible for a higher transmission rate?. Journal of Medical Virology, 2021, 93, 6551-6556.	5.0	79
9	Molnupiravir Inhibits Replication of the Emerging SARS-CoV-2 Variants of Concern in a Hamster Infection Model. Journal of Infectious Diseases, 2021, 224, 749-753.	4.0	95
10	Broad sarbecovirus neutralization by a human monoclonal antibody. Nature, 2021, 597, 103-108.	27.8	220
13	Immunity elicited by natural infection or Ad26.COV2.S vaccination protects hamsters against SARS-CoV-2 variants of concern. Science Translational Medicine, 2021, 13, eabj3789.	12.4	32
14	A pair of noncompeting neutralizing human monoclonal antibodies protecting from disease in a SARS oVâ€2 infection model. European Journal of Immunology, 2022, 52, 770-783.	2.9	24
15	Low dose inocula of SARS-CoV-2 Alpha variant transmits more efficiently than earlier variants in hamsters. Communications Biology, 2021, 4, 1102.	4.4	20
16	Broad betacoronavirus neutralization by a stem helix–specific human antibody. Science, 2021, 373, 1109-1116.	12.6	262
17	Subtle differences in the pathogenicity of SARS-CoV-2 variants of concern B.1.1.7 and B.1.351 in rhesus macaques. Science Advances, 2021, 7, eabj3627.	10.3	24
18	An affinity-enhanced, broadly neutralizing heavy chain–only antibody protects against SARS-CoV-2 infection in animal models. Science Translational Medicine, 2021, 13, eabi7826.	12.4	41
20	Clinical Characteristics and Risk Factors for COVID-19 Infection and Disease Severity: A Nationwide Observational Study in Estonia. SSRN Electronic Journal, 0, , .	0.4	0
22	Release of infectious virus and cytokines in nasopharyngeal swabs from individuals infected with non-alpha or alpha SARS-CoV-2 variants: an observational retrospective study. EBioMedicine, 2021, 73, 103637.	6.1	19
23	Pathogenic and transcriptomic differences of emerging SARS-CoV-2 variants in the Syrian golden hamster model. EBioMedicine, 2021, 73, 103675.	6.1	26
26	Cross-validation of SARS-CoV-2 responses in kidney organoids and clinical populations. JCI Insight, 2021, 6, .	5.0	21
27	Animal models for SARS oVâ€2 infection and pathology. MedComm, 2021, 2, 548-568.	7.2	19
29	Hamster models of COVID-19 pneumonia reviewed: How human can they be?. Veterinary Pathology, 2022, 59, 528-545.	1.7	49
30	Isolation of SARS-CoV-2 B.1.1.28.2 (P2) variant and pathogenicity comparison with D614G variant in hamster model. Journal of Infection and Public Health, 2022, 15, 164-171.	4.1	7

#	ARTICLE	IF	CITATIONS
33	Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science, 2022, 375, 449-454.	12.6	108
34	Advances and gaps in SARS-CoV-2 infection models. PLoS Pathogens, 2022, 18, e1010161.	4.7	61
35	The omicron (B.1.1.529) SARS-CoV-2 variant of concern does not readily infect Syrian hamsters. Antiviral Research, 2022, 198, 105253.	4.1	104
36	The B.1.427/1.429 (epsilon) SARS-CoV-2 variants are more virulent than ancestral B.1 (614G) in Syrian hamsters. PLoS Pathogens, 2022, 18, e1009914.	4.7	26
37	Synthesis, Structure–Activity Relationships, and Antiviral Profiling of 1-Heteroaryl-2-Alkoxyphenyl Analogs as Inhibitors of SARS-CoV-2 Replication. Molecules, 2022, 27, 1052.	3.8	4
38	Mitigation strategies to safely conduct HIV treatment research in the context of COVIDâ€19. Journal of the International AIDS Society, 2022, 25, e25882.	3.0	2
39	Enhanced fitness of SARS-CoV-2 variant of concern Alpha but not Beta. Nature, 2022, 602, 307-313.	27.8	79
42	An adjuvanted subunit SARS-CoV-2 spike protein vaccine provides protection against Covid-19 infection and transmission. Npj Vaccines, 2022, 7, 24.	6.0	18
43	Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. Nature Medicine, 2022, 28, 1031-1041.	30.7	281
44	The SARS-CoV-2 Alpha variant exhibits comparable fitness to the D614G strain in a Syrian hamster model. Communications Biology, 2022, 5, 225.	4.4	10
45	MVA-CoV2-S Vaccine Candidate Neutralizes Distinct Variants of Concern and Protects Against SARS-CoV-2 Infection in Hamsters. Frontiers in Immunology, 2022, 13, 845969.	4.8	16
46	lvermectin Does Not Protect against SARS-CoV-2 Infection in the Syrian Hamster Model. Microorganisms, 2022, 10, 633.	3.6	3
48	Transmissibility and pathogenicity of SARS-CoV-2 variants in animal models. Journal of Microbiology, 2022, 60, 255-267.	2.8	9
49	SARS oVâ€2 and its variants of concern including Omicron: A never ending pandemic. Chemical Biology and Drug Design, 2022, 99, 769-788.	3.2	37
50	Advances in Pathogenesis, Progression, Potential Targets and Targeted Therapeutic Strategies in SARS-CoV-2-Induced COVID-19. Frontiers in Immunology, 2022, 13, 834942.	4.8	10
51	Pathogenicity of SARS-CoV-2 Omicron (R346K) variant in Syrian hamsters and its cross-neutralization with different variants of concern. EBioMedicine, 2022, 79, 103997.	6.1	29
52	Propagation of SARS-CoV-2 in Calu-3 Cells to Eliminate Mutations in the Furin Cleavage Site of Spike. Viruses, 2021, 13, 2434.	3.3	19
53	The oral protease inhibitor (PF-07321332) protects Syrian hamsters against infection with SARS-CoV-2 variants of concern. Nature Communications, 2022, 13, 719.	12.8	86

#	Article	IF	CITATIONS
54	Ecological superâ€spreaders drive host–range oscillations: Omicron and risk space for emerging infectious disease. Transboundary and Emerging Diseases, 2022, 69, .	3.0	7
55	Use of wastewater surveillance for early detection of Alpha and Epsilon SARS-CoV-2 variants of concern and estimation of overall COVID-19 infection burden. Science of the Total Environment, 2022, 835, 155410.	8.0	34
56	Application of animal models to compare and contrast the virulence of current and future potential SARS-CoV-2 variants. Biosafety and Health, 2022, 4, 154-160.	2.7	3
57	SARS-CoV-2 Virion Infectivity and Cytokine Production in Primary Human Airway Epithelial Cells. Viruses, 2022, 14, 951.	3.3	6
58	SARS-CoV-2 Kappa Variant Shows Pathogenicity in a Syrian Hamster Model. Vector-Borne and Zoonotic Diseases, 2022, 22, 289-296.	1.5	2
60	Effects of Spike Mutations in SARS-CoV-2 Variants of Concern on Human or Animal ACE2-Mediated Virus Entry and Neutralization. Microbiology Spectrum, 2022, 10, .	3.0	24
61	Clinical characteristics and risk factors for COVID-19 infection and disease severity: A nationwide observational study in Estonia. PLoS ONE, 2022, 17, e0270192.	2.5	23
62	Animal models for COVID-19: advances, gaps and perspectives. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	40
63	Temporal changes in the accessory protein mutations of SARSâ€CoVâ€2 variants and their predicted structural and functional effects. Journal of Medical Virology, 2022, 94, 5189-5200.	5.0	6
64	SARS-CoV-2 Genomic Characteristics and Clinical Impact of SARS-CoV-2 Viral Diversity in Critically Ill COVID-19 Patients: A Prospective Multicenter Cohort Study. Viruses, 2022, 14, 1529.	3.3	4
65	ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science, 2022, 377, 735-742.	12.6	85
66	Potent neutralizing anti-SARS-CoV-2 human antibodies cure infection with SARS-CoV-2 variants in hamster model. IScience, 2022, 25, 104705.	4.1	8
67	Need for a Standardized Translational Drug Development Platform: Lessons Learned from the Repurposing of Drugs for COVID-19. Microorganisms, 2022, 10, 1639.	3.6	5
68	A SCID Mouse Model To Evaluate the Efficacy of Antivirals against SARS-CoV-2 Infection. Journal of Virology, 2022, 96, .	3.4	5
70	SARSâ€CoVâ€2 does not infect pigs, but this has to be verified regularly. Xenotransplantation, 2022, 29, .	2.8	3
71	Evolution and consequences of individual responses during the COVID-19 outbreak. PLoS ONE, 2022, 17, e0273964.	2.5	2
72	Increased pathogenicity and aerosol transmission for one SARS-CoV-2 B.1.617.2 Delta variant over the wild-type strain in hamsters. Virologica Sinica, 2022, 37, 796-803.	3.0	4
73	Diastereomeric Resolution Yields Highly Potent Inhibitor of SARS-CoV-2 Main Protease. Journal of Medicinal Chemistry, 2022, 65, 13328-13342.	6.4	13

#	Article	IF	CITATIONS
75	Live-attenuated YF17D-vectored COVID-19 vaccine protects from lethal yellow fever virus infection in mouse and hamster models. EBioMedicine, 2022, 83, 104240.	6.1	5
76	SARS-CoV-2 infection causes prolonged cardiomyocyte swelling and inhibition of HIF11± translocation in an animal model COVID-19. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	7
78	Updated vaccine protects against SARS-CoV-2 variants including Omicron (B.1.1.529) and prevents transmission in hamsters. Nature Communications, 2022, 13, .	12.8	11
79	SARS-CoV-2 variant Alpha has a spike-dependent replication advantage over the ancestral B.1 strain in human cells with low ACE2 expression. PLoS Biology, 2022, 20, e3001871.	5.6	11
81	Infectious droplet exposure is an inefficient route for SARS-CoV-2 infection in the ferret model. Journal of General Virology, 2022, 103, .	2.9	5
82	Combination of the parent analogue of remdesivir (GS-441524) and molnupiravir results in a markedly potent antiviral effect in SARS-CoV-2 infected Syrian hamsters. Frontiers in Pharmacology, 0, 13, .	3.5	9
83	Impact of Reinfection with SARS-CoV-2 Omicron Variants in Previously Infected Hamsters. Journal of Virology, 0, , .	3.4	4
85	Is the post-COVID-19 syndrome a severe impairment of acetylcholine-orchestrated neuromodulation that responds to nicotine administration?. Bioelectronic Medicine, 2023, 9, .	2.3	5
86	EXPERIMENTAL MODEL OF SARS COV-2 IN YOUNG SYRIAN HAMSTERS FOR PRECLINICAL STUDIES. , 2022, , .		1
87	Syrian hamster convalescence from prototype SARS-CoV-2 confers measurable protection against the attenuated disease caused by the Omicron variant. PLoS Pathogens, 2023, 19, e1011293.	4.7	7
88	Animal Models, Zoonotic Reservoirs, and Cross-Species Transmission of Emerging Human-Infecting Coronaviruses. Annual Review of Animal Biosciences, 2023, 11, 1-31.	7.4	8
89	SARS-CoV-2 Disease Severity in the Golden Syrian Hamster Model of Infection Is Related to the Volume of Intranasal Inoculum. Viruses, 2023, 15, 748.	3.3	1
90	Both Feline Coronavirus Serotypes 1 and 2 Infected Domestic Cats Develop Cross-Reactive Antibodies to SARS-CoV-2 Receptor Binding Domain: Its Implication to Pan-CoV Vaccine Development. Viruses, 2023, 15, 914.	3.3	5
91	SARS-CoV-2 Variant Pathogenesis Following Primary Infection and Reinfection in Syrian Hamsters. MBio, 0, , .	4.1	4
92	Quantitative Mutation Analysis of Genes and Proteins of Major SARS-CoV-2 Variants of Concern and Interest. Viruses, 2023, 15, 1193.	3.3	2
93	Beta-containing bivalent SARS-CoV-2 protein vaccine elicits durable broad neutralization in macaques and protection in hamsters. Communications Medicine, 2023, 3, .	4.2	1
94	TMEM106B is a receptor mediating ACE2-independent SARS-CoV-2 cell entry. Cell, 2023, 186, 3427-3442.e22.	28.9	31
96	Rehoming and Other Refinements and Replacement in Procedures Using Golden Hamsters in SARS-CoV-2 Vaccine Research. Animals, 2023, 13, 2616.	2.3	0

#	Article	IF	CITATIONS
97	Is there a correlation between antibiotic use and the severity or post-infection conditions of COVID-19 and other viral infections?. Clinical and Experimental Medicine, 0, , .	3.6	0
98	Optimized vaccine candidate MVA-S(3P) fully protects against SARS-CoV-2 infection in hamsters. Frontiers in Immunology, 0, 14, .	4.8	3
99	Genomic surveillance of SARS-CoV-2 reveals highest severity and mortality of delta over other variants: evidence from Cameroon. Scientific Reports, 2023, 13, .	3.3	2
101	Comparing the Infectivity of Recent SARS-CoV-2 Omicron Sub-Variants in Syrian Hamsters. Viruses, 2024, 16, 122.	3.3	0
102	Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warranted. EBioMedicine, 2024, 100, 104960.	6.1	1