Innervated, Selfâ€Sensing Liquid Crystal Elastomer Act

Advanced Materials 33, e2101814

DOI: 10.1002/adma.202101814

Citation Report

#	Article	IF	CITATIONS
1	Multiâ€Photon 4D Printing of Complex Liquid Crystalline Microstructures by In Situ Alignment Using Electric Fields. Advanced Materials Technologies, 2022, 7, 2100944.	3.0	29
2	Biology and bioinspiration of soft robotics: Actuation, sensing, and system integration. IScience, 2021, 24, 103075.	1.9	34
3	Robust Jumping Actuator with a Shrimp‧hell Architecture. Advanced Materials, 2021, 33, e2104558.	11.1	40
4	Composites of functional polymers: Toward physical intelligence using flexible and soft materials. Journal of Materials Research, 2022, 37, 2-24.	1.2	6
5	Lightâ€Fueled Polymer Film Capable of Directional Crawling, Frictionâ€Controlled Climbing, and Selfâ€Sustained Motion on a Human Hair. Advanced Science, 2022, 9, e2103090.	5.6	26
6	Liquid metals as soft electromechanical actuators. Materials Advances, 2022, 3, 173-185.	2.6	32
7	Multi-functional liquid crystal elastomer composites. Applied Physics Reviews, 2022, 9, .	5 . 5	87
8	Increasingly Intelligent Micromachines. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 279-310.	7.5	35
9	Multifunctional liquid metal polymer composites. Journal of Polymer Science, 2022, 60, 1300-1327.	2.0	39
10	Applications of liquid metals in nanotechnology. Nanoscale Horizons, 2022, 7, 141-167.	4.1	47
11	Progress in Utilizing Dynamic Bonds to Fabricate Structurally Adaptive Selfâ€Healing, Shape Memory, and Liquid Crystal Polymers. Macromolecular Rapid Communications, 2022, 43, e2100768.	2.0	18
12	Porous Liquidâ€Crystalline Networks with Hydrogelâ€Like Actuation and Reconfigurable Function. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
13	Porous Liquidâ€Crystalline Networks with Hydrogelâ€Like Actuation and Reconfigurable Function. Angewandte Chemie, 2022, 134, .	1.6	3
14	Three-Dimensional Printing of Liquid Crystal Elastomers and Their Applications. ACS Applied Polymer Materials, 2022, 4, 3153-3168.	2.0	20
15	Anisotropic mechanical behavior of 3D printed liquid crystal elastomer. Additive Manufacturing, 2022, 52, 102678.	1.7	9
16	Mechanics-based design strategies for 4D printing: A review. Forces in Mechanics, 2022, 7, 100081.	1.3	14
17	Rheology of liquid crystalline oligomers for 3-D printing of liquid crystalline elastomers. Soft Matter, 2022, 18, 3168-3176.	1.2	8
18	Stress-Induced Self-Alignment Monodomain Liquid Crystal Elastomer Fiber. SSRN Electronic Journal, 0, , .	0.4	O

#	Article	IF	Citations
19	Control Strategies for Soft Robot Systems. Advanced Intelligent Systems, 2022, 4, .	3.3	64
20	Design of untethered soft material micromachine for life-like locomotion. Materials Today, 2022, 53, 197-216.	8.3	38
21	Design, Regulation, and Applications of Soft Actuators Based on Liquid-Crystalline Polymers and Their Composites. ACS Applied Materials & Samp; Interfaces, 2022, 14, 12951-12963.	4.0	22
22	Biomimetic and Biologically Compliant Soft Architectures via 3D and 4D Assembly Methods: A Perspective. Advanced Materials, 2022, 34, e2108391.	11.1	34
23	Liquid Crystalline Elastomers Based on Click Chemistry. ACS Applied Materials & Diterfaces, 2022, 14, 14842-14858.	4.0	20
24	Microfluidic manipulation by spiral hollow-fibre actuators. Nature Communications, 2022, 13, 1331.	5.8	34
25	Advances in 4D Printed Shape Memory Polymers: From 3D Printing, Smart Excitation, and Response to Applications. Advanced Materials Technologies, 2022, 7, .	3.0	37
26	Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting. Advanced Materials, 2022, 34, e2200857.	11.1	52
27	Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applications. Materials Horizons, 2022, 9, 1825-1849.	6.4	59
28	Actuation of Liquid Crystalline Elastomers at or Below Ambient Temperature. Angewandte Chemie - International Edition, 2022, 61, e202202577.	7.2	39
29	Digital Fabrication of Pneumatic Actuators with Integrated Sensing by Machine Knitting., 2022,,.		27
30	Actuation of Liquid Crystalline Elastomers at or Below Ambient Temperature. Angewandte Chemie, 0, , .	1.6	1
31	Micro/nanofiber fabrication technologies for wearable sensors: a review. Journal of Micromechanics and Microengineering, 2022, 32, 064002.	1.5	5
32	Highly tunable actuation and mechanical properties of 4D-printed nematic liquid crystal elastomers. Mechanics of Materials, 2022, 170, 104329.	1.7	6
33	Photopolymerisable liquid crystals for additive manufacturing. Additive Manufacturing, 2022, 55, 102861.	1.7	1
34	In-Situ Sensing and Dynamics Predictions for Electrothermally-Actuated Soft Robot Limbs. Frontiers in Robotics and Al, 2022, 9, .	2.0	7
35	Shape-programmable, deformation-locking, and self-sensing artificial muscle based on liquid crystal elastomer and low–melting point alloy. Science Advances, 2022, 8, eabn5722.	4.7	46
36	Electrically driven liquid crystal network actuators. Soft Matter, 2022, 18, 4850-4867.	1.2	17

#	ARTICLE	IF	CITATIONS
37	A High-Fidelity Preparation Method for Liquid Crystal Elastomer Actuators. Langmuir, 2022, 38, 7190-7197.	1.6	9
38	Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites. Polymers, 2022, 14, 2259.	2.0	10
39	Liquid crystal elastomers for soft actuators., 0, 1,.		3
40	Design and printing of embedded conductive patterns in liquid crystal elastomer for programmable electrothermal actuation. Virtual and Physical Prototyping, 2022, 17, 881-893.	5.3	8
41	Understanding the effect of liquid crystal content on the phase behavior and mechanical properties of liquid crystal elastomers. Soft Matter, 2022, 18, 5074-5081.	1.2	8
42	Photothermal-Driven Liquid Crystal Elastomers: Materials, Alignment and Applications. Molecules, 2022, 27, 4330.	1.7	10
43	A Superabsorbent Sodium Polyacrylate Printing Resin as Actuator Material in 4D Printing. Macromolecular Materials and Engineering, 2022, 307, .	1.7	5
44	Bendingâ€Insensitive Intrinsically Flexible Ultraviolet Encoding Devices Based on Piezoelectric Nanogeneratorâ€Supplied Liquid Crystalline Polymer Fabrics. Small, 2022, 18, .	5.2	6
45	4D Printed Multifunctional Composites with Coolingâ€Rate Mediated Tunable Shape Morphing. Advanced Functional Materials, 2022, 32, .	7.8	26
46	Multisensory Flexible Braille Interactive Device Based on Liquid Crystal Elastomers. ACS Applied Electronic Materials, 2022, 4, 3834-3840.	2.0	4
48	Design of soft matter for additive processing. , 2022, 1, 592-600.		4
49	Artificial muscle fascicles integrated with high-performance actuation properties and energy-storage function. Nano Energy, 2022, 102, 107609.	8.2	13
50	Hybrid additive manufacturing of a piezopolymer-based inertial sensor. Additive Manufacturing, 2022, 59, 103091.	1.7	2
51	Recent advances in molecular programming of liquid crystal elastomers with additive manufacturing for 4D printing. Molecular Systems Design and Engineering, 2022, 7, 1588-1601.	1.7	7
52	On the origin of elasticity and heat conduction anisotropy of liquid crystal elastomers at gigahertz frequencies. Nature Communications, 2022, 13, .	5.8	4
53	A dynamically reprogrammable surface with self-evolving shape morphing. Nature, 2022, 609, 701-708.	13.7	45
54	Liquid Metalâ€Elastomer Composites with Dualâ€Energy Transmission Mode for Multifunctional Miniature Untethered Magnetic Robots. Advanced Science, 2022, 9, .	5.6	15
55	Celluloseâ€Reinforced Programmable and Stretchâ€Healable Actuators for Smart Packaging. Advanced Functional Materials, 2022, 32, .	7.8	12

#	Article	IF	CITATIONS
57	Liquid crystal-based actuators., 0, 2,.		3
58	3Dâ€Printed Photoresponsive Liquid Crystal Elastomer Composites for Freeâ€Form Actuation. Advanced Functional Materials, 2023, 33, .	7.8	34
59	Development of low-temperature driven high-strength interpenetrating polyurethane-liquid crystal elastomer actuators with self-sensing property. Sensors and Actuators A: Physical, 2023, 349, 114069.	2.0	1
60	Continuous Flow Microfluidic Production of Arbitrarily Long Tubular Liquid Crystal Elastomer Peristaltic Pump Actuators. Small, 0, , 2204693.	5. 2	1
61	Recent Advances in 4D Printing of Liquid Crystal Elastomers. Advanced Materials, 2023, 35, .	11.1	28
62	Femtosecond Laser 4D Printing of Lightâ€Driven Intelligent Micromachines. Advanced Functional Materials, 2023, 33, .	7.8	20
63	Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface. Light: Science and Applications, 2023, 12, .	7.7	31
64	Bioâ€Inspired Softâ€Rigid Hybrid Smart Artificial Muscle Based on Liquid Crystal Elastomer and Helical Metal Wire. Small, 2023, 19, .	5.2	9
65	Degree of Orientation in Liquid Crystalline Elastomers Defines the Magnitude and Rate of Actuation. ACS Macro Letters, 2023, 12, 248-254.	2.3	7
66	Soft Actuators and Robots Enabled by Additive Manufacturing. Annual Review of Control, Robotics, and Autonomous Systems, 2023, 6, 31-63.	7.5	11
67	Mechanical assessment of interfacial stability of LCP/MWCNT nanocomposites during phase transition. Composites Part A: Applied Science and Manufacturing, 2023, 167, 107461.	3.8	2
68	Advanced supramolecular design for direct ink writing of soft materials. Chemical Society Reviews, 2023, 52, 1614-1649.	18.7	25
69	Liquid Crystal Elastomer Based Dexterous Artificial Motor Unit. Advanced Materials, 2023, 35, .	11.1	12
70	Fiber-Shaped Soft Actuators: Fabrication, Actuation Mechanism and Application. Advanced Fiber Materials, 2023, 5, 868-895.	7.9	14
71	Bioinspired Liquid Crystalline Spinning Enables Scalable Fabrication of Highâ€Performing Fibrous Artificial Muscles. Advanced Materials, 2023, 35, .	11.1	27
72	Monodomain liquid crystal elastomer bionic muscle fibers with excellent mechanical and actuation properties. IScience, 2023, 26, 106357.	1.9	7
73	Modeling and Control Strategies for Liquid Crystal Elastomer-Based Soft Robot Actuator. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2023, 27, 235-242.	0.5	1
74	Tunable, Textile-Based Joint Impedance Module for Soft Robotic Applications. Soft Robotics, 2023, 10, 937-947.	4.6	1

#	Article	IF	CITATIONS
75	Scalable functionalized liquid crystal elastomer fiber soft actuators with multi-stimulus responses and photoelectric conversion. Materials Horizons, 2023, 10, 2587-2598.	6.4	13
76	Liquid-phase drawing of LCE/CNT composites for electrothermal actuators. Sensors and Actuators B: Chemical, 2023, 390, 133846.	4.0	4
88	Navigating Soft Robots through Wireless Heating. , 2023, , .		1
89	基于共价自é€,应网络的液晶弹性体: 从å^†å设èèjå^°åº"甓. Science China Materials, 20	23366, 30	00423021.