Immune response to SARS-CoV-2 variants of concern in

Nature Communications 12, 3109 DOI: 10.1038/s41467-021-23473-6

Citation Report

CITATION REDORT

#	Article	IF	CITATIONS
2	Antibody Titers 3-Months Post-Vaccination with the Pfizer/Biontech Vaccine in Greece. SSRN Electronic Journal, 0, , .	0.4	1
3	Population Impact of SARS-CoV-2 Variants with Enhanced Transmissibility and/or Partial Immune Escape. SSRN Electronic Journal, 0, , .	0.4	0
4	Neutralizing Antibodies Against SARS-CoV-2 Variants Induced by Natural Infection or Vaccination: A Systematic Review and Individual Data Meta-Analysis. SSRN Electronic Journal, 0, , .	0.4	7
6	Assessment of salivary antibody response to BNT162b2 mRNA COVIDâ€19 vaccination. Journal of Medical Virology, 2021, 93, 5257-5259.	5.0	18
7	Limited Neutralization of Authentic Severe Acute Respiratory Syndrome Coronavirus 2 Variants Carrying E484K In Vitro. Journal of Infectious Diseases, 2021, 224, 1109-1114.	4.0	56
8	SARS-CoV-2 Variants: A Synopsis of In Vitro Efficacy Data of Convalescent Plasma, Currently Marketed Vaccines, and Monoclonal Antibodies. Viruses, 2021, 13, 1211.	3.3	35
9	Potency of BNT162b2 and mRNAâ€1273 vaccineâ€induced neutralizing antibodies against severe acute respiratory syndromeâ€CoVâ€2 variants of concern: A systematic review of in vitro studies. Reviews in Medical Virology, 2022, 32, e2277.	8.3	57
11	Neutralizing Antibodies Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants Induced by Natural Infection or Vaccination: A Systematic Review and Pooled Analysis. Clinical Infectious Diseases, 2022, 74, 734-742.	5.8	88
12	Characterization of the Diagnostic Performance of a Novel COVID-19 PETIA in Comparison to Four Routine N-, S- and RBD-Antigen Based Immunoassays. Diagnostics, 2021, 11, 1332.	2.6	4
15	Antibody-Mediated Neutralization of Authentic SARS-CoV-2 B.1.617 Variants Harboring L452R and T478K/E484Q. Viruses, 2021, 13, 1693.	3.3	69
16	Cellular and humoral immunogenicity of a SARS-CoV-2 mRNA vaccine in patients on haemodialysis. EBioMedicine, 2021, 70, 103524.	6.1	53
22	Lectin from Triticum vulgaris (WGA) Inhibits Infection with SARS-CoV-2 and Its Variants of Concern Alpha and Beta. International Journal of Molecular Sciences, 2021, 22, 10205.	4.1	17
24	Genomic sequencing of SARS-CoV-2 in Rwanda reveals the importance of incoming travelers on lineage diversity. Nature Communications, 2021, 12, 5705.	12.8	24
25	Highly Specific Memory B Cells Generation after the 2nd Dose of BNT162b2 Vaccine Compensate for the Decline of Serum Antibodies and Absence of Mucosal IgA. Cells, 2021, 10, 2541.	4.1	61
27	Evaluation of the immune response to COVID-19 vaccine mRNA BNT162b2 and correlation with previous COVID-19 infection. Journal of Clinical Virology, 2021, 143, 104962.	3.1	6
28	Appearance of IgG to SARS-CoV-2 in Saliva Effectively Indicates Seroconversion in mRNA Vaccinated Immunocompromised Individuals. SSRN Electronic Journal, 0, , .	0.4	0
29	Non-Invasive Antibody Assessment in Saliva to Determine SARS-CoV-2 Exposure in Young Children. Frontiers in Immunology, 2021, 12, 753435.	4.8	13
31	Qualitative assessment of antiâ€SARSâ€CoVâ€2 spike protein immunogenicity (QUASI) after COVIDâ€19 vaccination in older people living with HIV. HIV Medicine, 2022, 23, 178-185.	2.2	25

#	Article	IF	CITATIONS
32	Advances and Utility of the Human Plasma Proteome. Journal of Proteome Research, 2021, 20, 5241-5263.	3.7	86
33	Receptor binding domainâ€lgG levels correlate with protection in residents facing SARSâ€CoVâ€2 B.1.1.7 outbreaks. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1885-1894.	5.7	13
35	Studies on Growth Characteristics and Cross-Neutralization of Wild-Type and Delta SARS-CoV-2 From Hisar (India). Frontiers in Cellular and Infection Microbiology, 2021, 11, 771524.	3.9	5
36	Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis. Lancet Microbe, The, 2022, 3, e52-e61.	7.3	436
37	Evaluation of Humoral Immune Response after SARS-CoV-2 Vaccination Using Two Binding Antibody Assays and a Neutralizing Antibody Assay. Microbiology Spectrum, 2021, 9, e0120221.	3.0	25
39	Population impact of SARS-CoV-2 variants with enhanced transmissibility and/or partial immune escape. Cell, 2021, 184, 6229-6242.e18.	28.9	72
40	MALDI MS-Based Investigations for SARS-CoV-2 Detection. Biochem, 2021, 1, 250-278.	1.2	12
42	Outcome of SARS-CoV-2 variant breakthrough infection in fully immunized solid organ transplant recipients. Journal of Infection and Public Health, 2022, 15, 51-55.	4.1	7
43	SARS-CoV-2 Variants Of Concern And Their Properties. Phoenix Medical Journal, 0, , .	0.2	0
44	The ins and outs of SARS-CoV-2 variants of concern (VOCs). Archives of Virology, 2022, 167, 327-344.	2.1	35
45	Determinants of early antibody responses to COVID-19 mRNA vaccines in a cohort of exposed and naÃ ⁻ ve healthcare workers. EBioMedicine, 2022, 75, 103805.	6.1	60
46	A 2-month field cohort study of SARS-CoV-2 in saliva of BNT162b2 vaccinated nursing home workers. Communications Medicine, 2022, 2, .	4.2	12
47	Robust and durable serological response following pediatric SARS-CoV-2 infection. Nature Communications, 2022, 13, 128.	12.8	54
48	Salivary IgG to SARS-CoV-2 indicates seroconversion and correlates to serum neutralization in mRNA-vaccinated immunocompromised individuals. Med, 2022, 3, 137-153.e3.	4.4	19
49	Regional and temporal coordinated mutation patterns in SARS-CoV-2 spike protein revealed by a clustering and network analysis. Scientific Reports, 2022, 12, 1128.	3.3	28
50	Multiplex Antibody Analysis of IgM, IgA and IgG to SARS-CoV-2 in Saliva and Serum From Infected Children and Their Close Contacts. Frontiers in Immunology, 2022, 13, 751705.	4.8	13
51	Response to Vaccination Against SARS-CoV-2 in Patients With Antineutrophil Cytoplasmic Antibody-Associated Vasculitis With Renal Involvement. Frontiers in Medicine, 2021, 8, 817845.	2.6	7
52	Zwitterionic Polymer Electroplating Facilitates the Preparation of Electrode Surfaces for Biosensing. Advanced Materials, 2022, 34, e2107892.	21.0	17

CITATION REPORT

#	Article	IF	CITATIONS
53	Biparatopic nanobodies protect mice from lethal challenge with SARS oVâ€2 variants of concern. EMBO Reports, 2022, 23, e53865.	4.5	18
54	SARS-CoV-2: Emergence of New Variants and Effectiveness of Vaccines. Frontiers in Cellular and Infection Microbiology, 2021, 11, 777212.	3.9	29
55	SARS-CoV-2 Antibodies Are Persisting in Saliva for More Than 15 Months After Infection and Become Strongly Boosted After Vaccination. Frontiers in Immunology, 2021, 12, 798859.	4.8	24
56	Monitoring and assessment of SARS-CoV-2 evolution. Zaporožskij Medicinskij Žurnal, 2022, 24, 109-114.	0.2	Ο
57	Systemic COVID-19 Vaccination Enhances the Humoral Immune Response after SARS-CoV-2 Infection: A Population Study from a Hospital in Poland Criteria for COVID-19 Reimmunization Are Needed. Vaccines, 2022, 10, 334.	4.4	6
58	Comparative Magnitude and Persistence of Humoral SARS-CoV-2 Vaccination Responses in the Adult Population in Germany. Frontiers in Immunology, 2022, 13, 828053.	4.8	11
59	A Thermostable Oral SARS-CoV-2 Vaccine Induces Mucosal and Protective Immunity. Frontiers in Immunology, 2022, 13, 837443.	4.8	4
60	Characterization of Serum and Mucosal SARS-CoV-2-Antibodies in HIV-1-Infected Subjects after BNT162b2 mRNA Vaccination or SARS-CoV-2 Infection. Viruses, 2022, 14, 651.	3.3	17
61	SARS-CoV-2 outbreak in a nursing home after vaccination with BNT162b2: A role for the quantification of circulating antibodies. Vaccine, 2022, 40, 2531-2534.	3.8	4
62	Diminishing Immune Responses against Variants of Concern in Dialysis Patients 4 Months after SARS-CoV-2 mRNA Vaccination. Emerging Infectious Diseases, 2022, 28, 743-750.	4.3	18
65	lota-Carrageenan Inhibits Replication of SARS-CoV-2 and the Respective Variants of Concern Alpha, Beta, Gamma and Delta. International Journal of Molecular Sciences, 2021, 22, 13202.	4.1	20
66	Geographical Landscape and Transmission Dynamics of SARS-CoV-2 Variants Across India: A Longitudinal Perspective. Frontiers in Genetics, 2021, 12, 753648.	2.3	7
68	Importance of nasal secretions in the evaluation of mucosal immunity elicited by mRNA BNT162b2 COVID-19 Vaccine. EBioMedicine, 2022, 79, 104006.	6.1	2
69	Immunopathological changes, complications, sequelae and immunological memory in COVID-19 patients. Heliyon, 2022, 8, e09302.	3.2	7
70	COVID-19 patient serum less potently inhibits ACE2-RBD binding for various SARS-CoV-2 RBD mutants. Scientific Reports, 2022, 12, 7168.	3.3	15
71	Neutralization assays for SARS-CoV-2: Implications for assessment of protective efficacy of COVID-19 vaccines. Indian Journal of Medical Research, 2022, 155, 105.	1.0	2
72	Characteristics of COVID-19 Breakthrough Infections among Vaccinated Individuals and Associated Risk Factors: A Systematic Review. Tropical Medicine and Infectious Disease, 2022, 7, 81.	2.3	15
73	A Multivalent Vaccine Based on Ferritin Nanocage Elicits Potent Protective Immune Responses against SARS-CoV-2 Mutations. International Journal of Molecular Sciences, 2022, 23, 6123.	4.1	9

CITATION REPORT

#	Article	IF	CITATIONS
74	Development of a Rapid Live SARS-CoV-2 Neutralization Assay Based on a qPCR Readout. Journal of Clinical Microbiology, 2022, 60, .	3.9	4
75	Antibody Binding and Angiotensin-Converting Enzyme 2 Binding Inhibition Is Significantly Reduced for Both the BA.1 and BA.2 Omicron Variants. Clinical Infectious Diseases, 2023, 76, e240-e249.	5.8	11
76	Synergistic Antiviral Activity of Pamapimod and Pioglitazone against SARS-CoV-2 and Its Variants of Concern. International Journal of Molecular Sciences, 2022, 23, 6830.	4.1	5
77	Cross-Reactivity of IgG Antibodies and Virus Neutralization in mRNA-Vaccinated People Against Wild-Type SARS-CoV-2 and the Five Most Common SARS-CoV-2 Variants of Concern. Frontiers in Immunology, 0, 13, .	4.8	7
78	Recapping the Features of SARS-CoV-2 and Its Main Variants: Status and Future Paths. Journal of Personalized Medicine, 2022, 12, 995.	2.5	9
79	Host genetic loci LZTFL1 and CCL2 associated with SARS-CoV-2 infection and severity of COVID-19. International Journal of Infectious Diseases, 2022, 122, 427-436.	3.3	11
80	SARS-CoV-2 and RT-PCR testing in travelers: results of a cross-sectional study of travelers at Iraq's International Borders. Disaster Medicine and Public Health Preparedness, 0, , 1-9.	1.3	0
81	Measurement of anti SARS-CoV-2 RBD IgG in saliva: validation of a highly sensitive assay and effects of the sampling collection method and correction by protein. Clinical Chemistry and Laboratory Medicine, 2022, 60, 1683-1689.	2.3	3
83	Limited neutralisation of the SARS-CoV-2 Omicron subvariants BA.1 and BA.2 by convalescent and vaccine serum and monoclonal antibodies. EBioMedicine, 2022, 82, 104158.	6.1	128
84	Immunogenicity of two COVID-19 vaccines used in India: An observational cohort study in health care workers from a tertiary care hospital. Frontiers in Immunology, 0, 13, .	4.8	13
85	SARS-CoV-2 Seroprevalence Study in Pediatric Patients and Health Care Workers Using Multiplex Antibody Immunoassays. Viruses, 2022, 14, 2039.	3.3	2
87	Saliva is suitable for SARS-CoV-2 antibodies detection after vaccination: A rapid systematic review. Frontiers in Immunology, 0, 13, .	4.8	8
88	Role of the humoral immune response during COVID-19: guilty or not guilty?. Mucosal Immunology, 2022, 15, 1170-1180.	6.0	19
89	Longitudinal cellular and humoral immune responses after triple BNT162b2 and fourth full-dose mRNA-1273 vaccination in haemodialysis patients. Frontiers in Immunology, 0, 13, .	4.8	11
90	Stabilized recombinant SARS-CoV-2 spike antigen enhances vaccine immunogenicity and protective capacity. Journal of Clinical Investigation, 2022, 132, .	8.2	12
91	Salivary Antibody Response of COVID-19 in Vaccinated and Unvaccinated Young Adult Populations. Vaccines, 2022, 10, 1819.	4.4	2
92	Induction of cross-reactive, mucosal anti-SARS-CoV-2 antibody responses in rheumatoid arthritis patients after 3rd dose of COVID-19 vaccination. Journal of Autoimmunity, 2022, 133, 102918.	6.5	1
93	BNT162b2 mRNA Vaccine–Induced Immune Response in Oral Fluids and Serum. International Dental Journal, 2023, 73, 435-442	2.6	3

CITATION REPORT

#	Article	IF	CITATIONS
95	European Black Elderberry Fruit Extract Inhibits Replication of SARS-CoV-2 In Vitro. Nutraceuticals, 2023, 3, 91-106.	1.7	3
96	Titers of antibodies against ancestral SARS-CoV-2 correlate with levels of neutralizing antibodies to multiple variants. Npj Vaccines, 2022, 7, .	6.0	19
97	Dynamics of Different Classes and Subclasses of Antibody Responses to Severe Acute Respiratory Syndrome Coronavirus 2 Variants after Coronavirus Disease 2019 and CoronaVac Vaccination in Thailand. MSphere, 2023, 8, .	2.9	2
98	Saliva and Plasma Antibody Levels in Children and Adolescents After Primary Infection With Omicron Variants of SARS-CoV-2 Infection in Germany. JAMA Pediatrics, 2023, 177, 640.	6.2	2
99	Evaluation and deployment of isotype-specific salivary antibody assays for detecting previous SARS-CoV-2 infection in children and adults. Communications Medicine, 2023, 3, .	4.2	3
100	Third SARS-CoV-2 vaccination and breakthrough infections enhance humoral and cellular immunity against variants of concern. Frontiers in Immunology, 0, 14, .	4.8	5
101	Accurate prediction of serum antibody levels from noninvasive saliva/nasal samples. BioTechniques, 2023, 74, 131-136.	1.8	0
102	Evaluation of humoral immune response after <scp>ChAdOx1 nCoV</scp> â€19 vaccination among health care workers. Scandinavian Journal of Immunology, 2023, 98, .	2.7	0
103	Indian vaccine on COVID-19, competitive analysis. AIP Conference Proceedings, 2023, , .	0.4	0
104	Photobiomodulation: A Potential Non-invasive Method to Alleviate Neurological Events Following COVID-19 Infection. Neuroscience Bulletin, 2023, 39, 1595-1597.	2.9	2
107	Impact of a COVID-19 Outbreak in an Elderly Care Home after Primary Vaccination. Vaccines, 2023, 11, 1382.	4.4	2
108	Targeting spike glycans to inhibit SARS-CoV2 viral entry. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
111	A NaÃ ⁻ ve Phage Display Library-Derived Nanobody Neutralizes SARS-CoV-2 and Three Variants of Concern. International Journal of Nanomedicine, 0, Volume 18, 5781-5795.	6.7	1
112	Humoral immune response to SARS-CoV-2 and endemic coronaviruses in urban and indigenous children in Colombia. Communications Medicine, 2023, 3, .	4.2	0
113	SARS-CoV-2 specific sIgA in saliva increases after disease-related video stimulation. Scientific Reports, 2023, 13, .	3.3	0
114	Antibody targeting of conserved sites of vulnerability on the SARS-CoV-2 spike receptor-binding domain. Structure, 2024, 32, 131-147.e7.	3.3	1
115	Cross-protective HCoV immunity reduces symptom development during SARS-CoV-2 infection. MBio, 2024, 15, .	4.1	0
116	Intramuscular vaccination against SARS-CoV-2 transiently induces neutralizing IgG rather than IgA in the saliva. Frontiers in Immunology, 0, 15, .	4.8	0

#	Article	IF	CITATIONS
117	Development and validation of a respiratory syncytial virus multiplex immunoassay. Infection, 2024, 52, 597-609.	4.7	0